CN114755220B - 基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用 - Google Patents

基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用 Download PDF

Info

Publication number
CN114755220B
CN114755220B CN202210427300.2A CN202210427300A CN114755220B CN 114755220 B CN114755220 B CN 114755220B CN 202210427300 A CN202210427300 A CN 202210427300A CN 114755220 B CN114755220 B CN 114755220B
Authority
CN
China
Prior art keywords
mnco
ncs
phenolic
concentration
pollutants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210427300.2A
Other languages
English (en)
Other versions
CN114755220A (zh
Inventor
汤琳
朱旭
陈丽
卢雅婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202210427300.2A priority Critical patent/CN114755220B/zh
Publication of CN114755220A publication Critical patent/CN114755220A/zh
Application granted granted Critical
Publication of CN114755220B publication Critical patent/CN114755220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用,属于比色传感技术领域。该方法包括先制备核壳结构的MnCo@C NCs类酶活性材料,利用其类漆酶活性,将MnCo@C NCs加入到多个含有不同浓度酚类污染物的吗啉乙磺酸缓冲液样品中,随后加入显色剂4‑AP进行反应,记录反应后各样品在510nm波长处的吸光度值A,得到酚类污染物浓度与吸光度值A的检测线性关系。根据检测线性关系以及含酚类污染物的待测样品的吸光度值,分析待测样品的酚类污染物的浓度。该比色检测方法具有成本低、操作简便、响应快速、灵敏度高等优点,并可应用于焦化废水中酚类污染物的测定。

Description

基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及 其应用
技术领域
本发明属于比色传感技术领域,涉及一种环境中酚类污染物的比色分析方法,具体涉及基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其在测定焦化废水中酚类污染物的应用。
背景技术
酚类物质在工农业生产领域是一类重要的有机原料,被广泛应用在塑料、染料、农药制造领域。然而,过量的使用导致酚类物质在环境中残留,并通过皮肤接触、呼吸道呼吸以及食物链途径进入人体,对人体健康造成严重危害,如高毒性、三致效应等。因此测定环境中的酚类污染物对公共卫生和环境监测具有非常重要的意义。目前测定酚类物质的方法包括:高效液相色谱、气相色谱、液相色谱-质谱联用法等等,这些方法中存在仪器设备操作繁琐、前处理复杂、检测成本较高或检测周期长等问题。因此,迫切需要开发一种低成本、简单、快速、高灵敏度的方法来定量分析环境中酚类污染物。
基于类酶活性纳米材料的比色分析由于其简单、成本效益、可视化以及可现场应用等优点引起了人们广泛的关注。具有模拟酶特性的纳米材料,成本低、制备简便、稳定性高。目前报道表现出多种类酶特性,如类过氧化物酶、氧化物酶、过氧化氢酶、漆酶等,其中,类漆酶特性纳米材料能够催化一些酚类物质氧化,进一步与显色剂(如4-AP)反应生成肉眼可见颜色而得到广泛关注。但是,获得高催化活性的类酶活性纳米材料仍然是一个挑战,这极大限制了它们的广泛应用。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种低成本、操作简便、肉眼可见、高灵敏度的MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,该方法具有所需试剂量低、响应快速、抗干扰能力强等优点,并可应用于焦化废水中酚类污染物的测定。
为解决上述技术问题,本发明采用如下技术方案。
基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,,所述MnCo@C NCs为核壳结构,所述内核为MnCo双金属氧化物,所述外壳为多孔碳壳C NCs,所述方法包括以下步骤:
(1)MnCo@C NCs的制备:
(1.1)将乙酸锰、PVP分散在乙醇和水混合溶液中并搅拌,随后,加入钴氰化钾水溶液,室温孵育,得到MnCo前驱体;
(1.2)将MnCo前驱体重新分散到水溶液中,然后加入多巴胺水溶液,室温反应,得到聚多巴胺涂覆的MnCo前驱体;
(1.3)将上述所得聚多巴胺涂覆的MnCo前驱体进行高温热解,得到核壳结构的MnCo双金属氧化物多孔碳复合纳米材料,即MnCo@C NCs;
(2)测试MnCo@C NCs类漆酶活性:将上述所得MnCo@C NCs加入含酚类污染物的吗啉乙磺酸缓冲液中,随后加入显色剂4-氨基安替比林(4-AP)进行反应,然后记录反应后的溶液在510nm波长处的吸光度值A,验证MnCo@C NCs是否具备类漆酶活性;
(3)将上述测试具有类漆酶活性的MnCo@C NCs分别加入到多个含有不同浓度酚类污染物的吗啉乙磺酸缓冲液样品中,然后加入显色剂4-AP进行反应,得到反应体系,记录反应后各样品在510nm波长处的吸光度值A,得到酚类污染物浓度与吸光度值A的检测线性关系;
(4)根据上述所得酚类污染物浓度与吸光度值A的检测线性关系,以及含酚类污染物的待测样品的吸光度值,得到待测样品中酚类污染物的浓度。
上述的基于复合纳米材料用于酚类污染物的快速比色分析方法,优选的,步骤(2)中,当MnCo@C NCs加入到含有酚类污染物和4-AP的吗啉乙磺酸缓冲液样品中进行反应,得到反应体系时,反应体系呈深红色,由此验证MnCo@C NCs是否具有类漆酶活性。
上述的基于复合纳米材料用于酚类污染物的快速比色分析方法,优选的,步骤(3)中,当MnCo@C NCs加入到不含酚类污染物的吗啉乙磺酸缓冲液(空白样品)中,然后加入显色剂4-AP进行反应,得到反应体系时,反应体系几乎无色。当加入含酚类污染物的待测样品(加标样品)时,反应体系变深红色,由此定性检测待测样品中是否含有酚类污染物。
上述的基于复合纳米材料用于酚类污染物的快速比色分析方法,优选的,所述酚类污染物包括2,4-二氯酚(2,4-DP)。所述2,4-DP浓度与吸光度值A的检测线性回归方程为:
A=0.0043 C2,4-DP+0.147(3.1μM~122.7μM)和A=0.0015C2,4-DP+0.477(122.7μM~613.5μM) (1)
式(1)中,A表示吸光度值,C2,4-DP为待测溶液中2,4-DP的浓度值,该浓度值对应的单位为μM,式(1)的相关系数R2=0.986和0.998,2,4-DP的检测线性范围为3.1μM~613.5μM,检测限为0.76μM。
优选的,步骤(1.1)中,所述乙酸锰与PVP的质量比为1∶5~10,Mn与Co的摩尔比为1:1~3。
优选的,步骤(1.2)中,所述多巴胺与MnCo前驱体的质量比为1∶1~3。
上述的基于复合纳米材料用于酚类污染物的快速比色分析方法,优选的,步骤(2)中,所述反应时间为3min~10min。步骤(2)和步骤(3)中,所述吗啉乙磺酸的浓度为30mM~50mM。
作为一个总的技术构思,本发明还提供一种上述的MnCo@C NCs类酶活性快速比色分析酚类污染物的方法在测定焦化废水中酚类污染物的应用。
需要说明的是,本发明中,单位M指mol/L。
本发明中,乙酸锰、PVP、钴氰化钾在水中的浓度不做限定,溶解于水中即可。
本发明的检测原理主要在于:本发明制备的MnCo@C NCs表现出优异的类漆酶活性,能够催化酚类污染物氧化,并在显色剂4-AP存在下发生聚合反应而呈现红色。申请人发现,在酚类污染物(如2,4-DP)存在时,溶液呈肉眼可见的红色,且随着2,4-DP浓度增加而趋向深红色,并体现在510nm处吸光度值的增加。基于催化酚类物质氧化而显色策略,实现2,4-DP的检测。
与现有技术相比,本发明的优点在于:
本发明提供了一种基于复合纳米材料用于酚类污染物的快速比色分析方法,申请人发现,聚多巴胺涂覆的MnCo前驱体在热解之后,其形貌特征为核壳多孔结构,这种独特的结构将为MnCo@C NCs提供了更大的比表面积和催化活性位点。该材料制备方法具有制备工艺简单、成本低、稳定性高、环境友好等优点,适合于大规模制备。同时,Mn和Co协同作用和可逆的多价态赋予了其具有高的类漆酶活性,在显色剂4-AP存在下就能将酚类物质催化氧化并显色生成红色产物,提高了检测灵敏度。另外,加入MnCo@C NCs催化剂含量极低,仅在μg/mL级别就可以高效催化,大大降低检测成本。同时,响应迅速,该比色分析方法在3min之内就能观察到肉眼可见的颜色变化,极大缩短检测时间。
本发明的比色传感策略基于类漆酶活性复合纳米材料催化酚类物质氧化而显色,具有操作简便、低成本、可视化和现场应用等优点,通过在比色传感体系中加入不同浓度的酚类物质,建立酚类物质浓度与吸光度值的检测线性关系,根据该检测线性回归方程计算待测样品中酚类物质的浓度,可实现对环境样品中酚类污染物的快速检测,有着很好的使用价值和市场前景。
附图说明
图1为本发明实施例1中制备的MnCo@C NCs的扫描电镜图。
图2为本发明实施例1制备的MnCo@C NCs UV-vis图。其中,a为2,4-DP和4-AP溶液的UV-vis吸收曲线(2,4-DP-4-AP),b为MnCo@C NCs加入到2,4-DP和4-AP溶液的UV-vis吸收曲线(2,4-DP-4-AP-MnCo@C NCs)。
图3为本发明实施例1中不同浓度2,4-DP与吸光度值变化的检测线性回归图。
图4为本发明实施例1中pH对MnCo@C NCs类漆酶活性的影响。
图5为本发明实施例1中温度对MnCo@C NCs类漆酶活性的影响。
图6为评估实施例1中基于复合纳米材料用于酚类污染物的快速比色分析方法的普适性。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中,若无特别说明,所采用的原料和仪器均为市售。
实施例1
一种本发明的基于复合纳米材料用于酚类污染物的快速比色分析方法,包括以下步骤:
(1)MnCo@C NCs复合材料的制备:
(1.1)将乙酸锰、PVP分散在乙醇和水混合溶液中并搅拌,随后,加入钴氰化钾水溶液,乙酸锰与PVP的质量比为1∶6,Mn与Co元素的摩尔比为1:1,在室温下孵育,得到MnCo前驱体;
(1.2)将制备的MnCo前驱体重新分散到水溶液中,随后加入多巴胺水溶液,多巴胺与MnCo前驱体的质量比为1∶1,得到聚多巴胺涂覆的MnCo前驱体;
(1.3)将步骤(1.2)得到的聚多巴胺涂覆的MnCo前驱体在下高温热解中,得到MnCo@C NCs。
如图1所示,对MnCo@C NCs进行电镜成像分析,其结果表明,MnCo@C NCs表面呈疏松多孔的立方体结构,直径300nm左右,这些孔将增大其比表面积,提供更多的活性位点。由此说明,多孔结构的MnCo@C NCs制备成功。
(2)测试MnCo@C NCs类漆酶活性,将MnCo@C NCs加入含4-AP和2,4-DP的30mM吗啉乙磺酸缓冲液中孵育3min。
如图2所示,发现MnCo@C NCs参与反应溶液在510nm有明显的吸收峰,说明MnCo@CNCs具备高类漆酶活性。
(3)将MnCo@C NCs分别加入到多个含有不同浓度2,4-DP的30mM吗啉乙磺酸缓冲液中,2,4-DP的浓度分别为3.1μM、6.1μM、12.3μM、30.7μM、60.3μM、122.7μM、184μM、306.7μM、460.1μM和613.5μM,然后加入显色剂4-AP反应3min,得到反应体系。记录反应后各样品在510nm波长处的吸光度值A,得到2,4-DP浓度与吸光度值A的检测线性关系。
(4)根据上述所得2,4-DP浓度与吸光度值A的检测线性关系,以及含2,4-DP的待测样品的吸光度值,得到待测样品中2,4-DP的浓度。
本实施例中,吸光度的测定方法为:将样品放置于紫外可见分光光度计中,测定510nm处的吸光度值。
图3为本实施例中不同浓度2,4-DP与吸光度值A的检测线性回归图。由图3可知,吸光度值A随着2,4-DP浓度的增加而增加,且吸光度值A与2,4-DP浓度呈现良好的线性关系。检测线性回归方程为:
A=0.0043 C2,4-DP+0.147(3.1μM~122.7μM)和A=0.0015C2,4-DP+0.477(122.7μM~613.5μM) (1)
式(1)中,A表示吸光度值,C2,4-DP为待测溶液中2,4-DP的浓度值,该浓度值对应的单位为μM,式(1)的相关系数R2=0.986和0.998,2,4-DP的检测线性范围为3.1μM~613.5μM,检测限为0.76μM。
本实施例中,在进行步骤(3)时,当MnCo@C NCs加入到不含2,4-DP的吗啉乙磺酸缓冲液中,然后加入显色剂4-AP进行反应,得到反应体系时,反应体系几乎无色。当加入含2,4-DP的待测样品时,反应体系呈深红色,由此定性检测待测样品中是否含有2,4-DP,且由反应体系红色深浅程度可定性判断AA浓度变化趋势。
实施例2
其中,步骤(1)中,乙酸锰与PVP的质量比为1∶10,Mn与Co的摩尔比为1:3,在室温下孵育,得到MnCo前驱体;多巴胺与MnCo前驱体的质量比为1∶3。
其余同实施例1。
需要说明的是,实施例2所制得的MnCo@C NCs的性质与实施例1所制备的MnCo@CNCs的性质相同,同样具有较好的类漆酶活性。
由此可见,本发明的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法可以用来定性和定量检测2,4-DP浓度。
稳定性评估
评估实施例1中的稳定性,将MnCo@C NCs在不同pH孵育7h,或者在不同温度条件孵育45min,然后再对MnCo@C NCs的漆酶活性进行测定,观察它的酶活性变化,结果图4-5所示。由图4可知,MnCo@C NCs无论是在酸碱条件下,其相对酶活性没有发生明显变化。同样,由图5可知,在不同温度条件下孵育,即使高温环境,MnCo@C NCs的酶活性几乎未发生明显变化,表明MnCo@C NCs具有很强的苛刻条件耐受能力,维持很高的稳定性。
普适性考察
考察实施例1的基于复合纳米材料用于酚类污染物的快速比色分析方法用于酚类物质检测的普适性,包括2,4-DP、对氯酚、邻硝基酚、邻氨基酚、间硝基酚、对苯二酚、邻苯二酚和苯酚。结果如图6可知,基于此比色分析方法,可以对大多数酚类物质有响应,说明基于此比色分析方法检测酚类物质具有良好的普适性。
实际样品分析
(1)采用实施例1的比色分析方法测定焦化废水中2,4-DP的浓度,具体步骤为:将不同焦化废水样品经0.22μm膜过滤后,取上清液用吗啉乙磺酸缓冲溶液稀释,采用标准添加法,利用实施例1的比色检测方法测定待测溶液中的2,4-DP浓度,测定结果列于表1中。样品中2,4-DP的加入浓度参照表1。
从表1中可以看出,本发明的基于复合纳米材料用于酚类污染物的快速比色分析方法在可测定的浓度范围内,回收率基本在98.6%~103.9%之间,测定结果理想,说明该比色检测方法具有检测实际样品可行性。
由上述检测结果表明,本发明的基于复合纳米材料用于酚类污染物的快速比色分析方法具有分析可靠性、稳定性高、普适性强、高灵敏度等优点。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (7)

1.基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,其特征在于,所述MnCo@C NCs为核壳结构,内核为MnCo双金属氧化物,外壳为多孔碳壳C NCs,所述方法包括以下步骤:
S1、MnCo@C NCs的制备:
S1.1、将乙酸锰、PVP分散在乙醇和水混合溶液中并搅拌,加入钴氰化钾水溶液,室温孵育,得到MnCo 前驱体;
S1.2、将MnCo 前驱体重新分散到水溶液中,然后加入多巴胺水溶液,室温反应,得到聚多巴胺涂覆的MnCo 前驱体;
S1.3、将上述所得聚多巴胺涂覆的MnCo 前驱体进行高温热解,得到核壳结构的MnCo双金属氧化物多孔碳复合纳米材料,即MnCo@C NCs;
S2、将测试具有类漆酶活性的MnCo@C NCs分别加入到多个含有不同浓度酚类污染物的吗啉乙磺酸缓冲液样品中,然后加入显色剂4-氨基安替比林进行反应,得到反应体系,记录反应后各样品在510nm波长处的吸光度值A,得到酚类污染物浓度与吸光度值A的检测线性关系;
S3、根据上述所得酚类污染物浓度与吸光度值A的检测线性关系,以及含酚类污染物的待测样品的吸光度值,得到待测样品中酚类污染物的浓度。
2. 根据权利要求1所述的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,其特征在于,步骤S2中,当MnCo@C NCs加入到不含酚类污染物的吗啉乙磺酸缓冲液,然后加入显色剂4-AP进行反应,得到反应体系时,反应体系几乎无色;当加入含酚类污染物的待测样品时,反应体系变深红色,由此定性检测待测样品中是否含有酚类污染物。
3. 根据权利要求1所述的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,其特征在于,所述酚类污染物包括2,4-二氯酚;所述2,4-DP浓度与吸光度值A的检测线性回归方程为:
当2,4-DP浓度为3.1μM~122.7μM时,A = 0.0043 C2,4-DP + 0.147 (1);
当2,4-DP浓度为122.7μM~613.5μM时,A=0.0015 C2,4-DP + 0.477 (2);
式(1)、(2)中,A表示吸光度值,C2,4-DP为待测溶液中2,4-DP的浓度值,该浓度值对应的单位为μM,式(1)的相关系数R2 = 0.986、式(2)的相关系数R2 = 0.998,2,4-DP的检测线性范围为3.1μM~613.5μM,检测限为0.76μM。
4. 根据权利要求1~3中任一项所述的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,其特征在于,步骤S1.1中,所述乙酸锰与PVP的质量比为1∶5~10,Mn与Co的摩尔比为1:1~3。
5. 根据权利要求1~3中任一项所述的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,其特征在于,步骤S1.2中,所述多巴胺与MnCo 前驱体的质量比为1∶1~3。
6. 根据权利要求1~3中任一项所述的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法,其特征在于,步骤S2中,所述吗啉乙磺酸的浓度为30mM~50mM。
7. 根据权利要求1~6中任一项所述的基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法在测定焦化废水中酚类污染物的应用。
CN202210427300.2A 2022-04-21 2022-04-21 基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用 Active CN114755220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210427300.2A CN114755220B (zh) 2022-04-21 2022-04-21 基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210427300.2A CN114755220B (zh) 2022-04-21 2022-04-21 基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用

Publications (2)

Publication Number Publication Date
CN114755220A CN114755220A (zh) 2022-07-15
CN114755220B true CN114755220B (zh) 2024-05-10

Family

ID=82330819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210427300.2A Active CN114755220B (zh) 2022-04-21 2022-04-21 基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用

Country Status (1)

Country Link
CN (1) CN114755220B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533322C1 (ru) * 2013-07-12 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ определения суммарного содержания фенолов в водах
CN113295682A (zh) * 2021-05-21 2021-08-24 吉林大学 一种基于多酚氧化酶活性纳米酶的酚类化合物分析方法
CN115266859A (zh) * 2022-07-08 2022-11-01 河北医科大学 一种检测酚类的电化学传感器及其制备方法和检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292506B1 (ko) * 2020-01-17 2021-08-24 재단법인대구경북과학기술원 접착성 발색체를 이용한 효소 면역반응 비색 검출 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2533322C1 (ru) * 2013-07-12 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ определения суммарного содержания фенолов в водах
CN113295682A (zh) * 2021-05-21 2021-08-24 吉林大学 一种基于多酚氧化酶活性纳米酶的酚类化合物分析方法
CN115266859A (zh) * 2022-07-08 2022-11-01 河北医科大学 一种检测酚类的电化学传感器及其制备方法和检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Multifunctional MnCo@C yolk-shell nanozymes with smartphone platform for rapid colormetric analysis of total antioxidant capacity and phenolic compounds;汤琳等;《Biosensors and bioelectronics》;20220801;全文 *
环境污染控制过程高灵敏生物传感技术研究及其检测体系构建;汤琳;《中国优秀博士学位论文全文数据库(信息科技辑)》;20100115;全文 *
超快速液相色谱-荧光可变波长测定纺织废水中酚类污染物;李志刚;吴勇;;印染助剂;20180820(08);全文 *

Also Published As

Publication number Publication date
CN114755220A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
Wu et al. Colorimetric quantification and discrimination of phenolic pollutants based on peroxidase-like Fe3O4 nanoparticles
AU2020100704A4 (en) A method of synthesis of ultrathin palladium nanosheet with peroxidase mimetic activity for the colorimetric detection of H2O2
Sengupta et al. Chemically modified carbon nitride-chitin-acetic acid hybrid as a metal-free bifunctional nanozyme cascade of glucose oxidase-peroxidase for “click off” colorimetric detection of peroxide and glucose
Ponnaiah et al. Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor
Wang et al. A ratiometric fluorescence and colorimetric dual-mode assay for H2O2 and xanthine based on Fe, N co-doped carbon dots
Ding et al. The CoOOH-TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid
Long et al. Detection of glucose based on the peroxidase-like activity of reduced state carbon dots
CN101655493A (zh) 一种测定葡萄糖含量及葡萄糖氧化酶活性的比色分析法
Zhang et al. Direct electrocatalytic oxidation of hydrogen peroxide based on nafion and microspheres MnO2 modified glass carbon electrode
Li et al. A novel immobilization multienzyme glucose fluorescence capillary biosensor
Liu et al. “Turn-on” fluorometric probe for hydroquinone and catechol based on an in situ reaction between protamine sulfate and dihydroxybenzene isomers and the formation of fluorescent polymer nanoparticles
Huang et al. Color-coded detection of malathion based on enzyme inhibition with dark-field optical microscopy
Feng et al. Sweetsop-like α-Fe 2 O 3@ CoNi catalyst with superior peroxidase-like activity for sensitive and selective detection of hydroquinone
Luo et al. The peroxidase-mimicking function of acetate and its application in single-enzyme-based glucose test paper
CN114755220B (zh) 基于MnCo@C NCs类酶活性快速比色分析酚类污染物的方法及其应用
Luo et al. In-situ growth of multienzyme-inorganic hybrid nanoflowers on PVA-co-PE nanofibrous strip for colorimetric biosensor
CN110227483A (zh) 一种新型磁性纳米模拟氧化酶及其制备方法和应用
Abdullah et al. Stacked films immobilization of MBTH in nafion/sol-gel silicate and horseradish peroxidase in chitosan for the determination of phenolic compounds
CN114705673B (zh) 基于MnCo@C NCs类酶活性快速比色分析总抗氧化能力的方法及其应用
Jiang et al. An ordered one-step colorimetric sensor for the selective determination of catechol based on the polyacrylic acid-coated cerium oxide with laccase-like activity
CN116482090A (zh) 一种新型尿酸检测试纸
Rattu et al. TiO2 nanoparticles reagent based nonenzymatic label-free optical sensor for the rapid detection of L-lactate in apple juice
CN115629063A (zh) 一种基于金属基硅酸盐纳米酶的焦磷酸根及碱性磷酸酶检测方法
Duarte et al. Development of Electrochemical HRP-MWCNT-Based Screen-Printed Biosensor for the Determination of Phenolic Compounds in Effluent from Washing Coffee Beans
CN114705646A (zh) 基于MnCo@C NCs活性材料快速比色分析儿茶酚胺的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant