CN114744938B - A full parameter observer and full parameter identification method based on Kalman filtering - Google Patents
A full parameter observer and full parameter identification method based on Kalman filtering Download PDFInfo
- Publication number
- CN114744938B CN114744938B CN202210373246.8A CN202210373246A CN114744938B CN 114744938 B CN114744938 B CN 114744938B CN 202210373246 A CN202210373246 A CN 202210373246A CN 114744938 B CN114744938 B CN 114744938B
- Authority
- CN
- China
- Prior art keywords
- parameter
- axis
- state
- current
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000001360 synchronised effect Effects 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 39
- 230000004907 flux Effects 0.000 claims description 28
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000014509 gene expression Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 230000005284 excitation Effects 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/13—Observer control, e.g. using Luenberger observers or Kalman filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/12—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域Technical Field
本发明属于永磁同步电机的参数辨识领域,更具体地,涉及一种基于卡尔曼滤波的全参数观测器及全参数辨识方法。The present invention belongs to the field of parameter identification of permanent magnet synchronous motors, and more specifically, relates to a full-parameter observer based on Kalman filtering and a full-parameter identification method.
背景技术Background technique
目前各个行业在进行着电气化,智能化的转变。其中家用电器,多电飞机和电动汽车的电气化正在迅速普及,而电机作为电气化系统的关键动力部位,自然面对更多的挑战与机遇。相比传统工业场景电机,此类应用场景电机必须具有较宽的转速运行范围和较强的过载能力来满足动力系统的调速和牵引需求,而且由于空间限制,必须具有较高的功率密度和效率,从而减小冷却系统的体积占比。在众多电机类型中,永磁同步电机因为具有较强的过载能力和宽范围弱磁能力成为电动汽车主驱电机的首选。而且在电驱控制上不仅要实现其高效率运行,还要实现在整个运行速度范围内实现精确的转速和力矩控制。为了满足以上的应用要求,必须获得电机运行状态下的精确参数,实现系统的精确控制与智能控制。但现有的方法和数学模型存在以下弊端:At present, various industries are undergoing a transformation towards electrification and intelligence. Among them, the electrification of household appliances, more electric aircraft and electric vehicles is rapidly becoming popular, and motors, as the key power parts of electrification systems, naturally face more challenges and opportunities. Compared with traditional industrial scene motors, motors in such application scenarios must have a wider speed operating range and stronger overload capacity to meet the speed regulation and traction requirements of the power system, and due to space limitations, they must have higher power density and efficiency to reduce the volume share of the cooling system. Among the many types of motors, permanent magnet synchronous motors have become the first choice for the main drive motors of electric vehicles because of their strong overload capacity and wide range of weak magnetic field capabilities. Moreover, in terms of electric drive control, it is necessary not only to achieve high-efficiency operation, but also to achieve precise speed and torque control within the entire operating speed range. In order to meet the above application requirements, it is necessary to obtain accurate parameters under the operating state of the motor to achieve precise and intelligent control of the system. However, the existing methods and mathematical models have the following disadvantages:
传统的电机驱动控制系统和参数辨识系统均是建立在线性永磁同步电机的数学模型上的,其表达式如下:The traditional motor drive control system and parameter identification system are both based on the mathematical model of the linear permanent magnet synchronous motor, which is expressed as follows:
其中,Rs表示电机定子绕组,ψf表示永磁体磁链,Ld和Lq分别表示d、q轴电感,ud和uq分别表示d、q轴电压,id和iq分别表示d、q轴电流,ωe表示电机基频。Among them, Rs represents the stator winding of the motor, ψf represents the permanent magnet flux, Ld and Lq represent the d-axis and q-axis inductances respectively, ud and uq represent the d-axis and q-axis voltages respectively, id and iq represent the d -axis and q-axis currents respectively, and ωe represents the motor fundamental frequency.
上述简化的数学模型可以为控制器的设计带来便利,但实际上,电机是一个高耦合强非线性的系统,当电机运行在大电流情况下,该模型无法反映电机内部的真实电磁情况,相应地,参数辨识结果的准确度也得不到保证。The above simplified mathematical model can facilitate the design of the controller, but in fact, the motor is a highly coupled and strongly nonlinear system. When the motor runs at a large current, the model cannot reflect the actual electromagnetic conditions inside the motor. Accordingly, the accuracy of the parameter identification results cannot be guaranteed.
传统的基于高频注入的参数辨识算法,会在电机电流环输出的电压指令中注入高频扰动电压,并基于注入电压信号频率ωh远大于电机运行基波频率ωe的假设,在参数辨识过程中直接忽略ωeLdid和ωeLqiq项。由于逆变器开关频率的限制,注入的高频信号频率不能无限增大,所以这种方案只能实现零速和低速状态下的参数辨识,当电机运行在高速情况下则这种假设不成立,而且由于内嵌式永磁同步电机具有Ld<<Lq的特性,所以在忽略ωeLdid和ωeLqiq项时也会导致对电感的观测产生较大误差,进而影响参数辨识的准确性。The traditional parameter identification algorithm based on high-frequency injection will inject high-frequency disturbance voltage into the voltage command output by the motor current loop, and directly ignore the ω e L d i d and ω e L q i q items in the parameter identification process based on the assumption that the frequency of the injected voltage signal ω h is much greater than the fundamental frequency ω e of the motor operation. Due to the limitation of the inverter switching frequency, the frequency of the injected high-frequency signal cannot be increased infinitely, so this scheme can only realize parameter identification under zero speed and low speed conditions. This assumption does not hold true when the motor runs at high speed. In addition, since the embedded permanent magnet synchronous motor has the characteristic of L d << L q , ignoring the ω e L d i d and ω e L q i q items will also cause large errors in the observation of inductance, thereby affecting the accuracy of parameter identification.
发明内容Summary of the invention
针对现有技术的缺陷和改进需求,本发明提供了一种基于卡尔曼滤波的全参数观测器及全参数辨识方法,其目的在于,在全工况条件下实现对永磁同步电机运行过程中的参数的准确辨识。In view of the defects of the prior art and the need for improvement, the present invention provides a full-parameter observer and a full-parameter identification method based on Kalman filtering, the purpose of which is to achieve accurate identification of parameters during the operation of a permanent magnet synchronous motor under all operating conditions.
为实现上述目的,按照本发明的一个方面,提供了一种基于卡尔曼滤波的全参数观测器,用于对永磁同步电机进行参数辨识,永磁同步电机在运行过程中,其电流环输出的d、q轴指令电压内分别注入了频率为ωh的小信号电压udh和uqh;全参数观测器包括:参数扩展卡尔曼滤波器和状态扩展卡尔曼滤波器;To achieve the above object, according to one aspect of the present invention, a full parameter observer based on Kalman filtering is provided, which is used for parameter identification of a permanent magnet synchronous motor. During the operation of the permanent magnet synchronous motor, the d-axis and q-axis command voltages output by the current loop are respectively injected with small signal voltages u dh and u qh with a frequency of ω h ; the full parameter observer includes: a parameter extended Kalman filter and a state extended Kalman filter;
参数扩展卡尔曼滤波器包括:参数先验预测模块和参数后验估计模块;状态扩展卡尔曼滤波器包括:状态先验预测模块和状态后验估计模块;The parameter extended Kalman filter includes: a parameter priori prediction module and a parameter a posteriori estimation module; the state extended Kalman filter includes: a state priori prediction module and a state a posteriori estimation module;
参数先验预测模块,其第一输入端连接至参数后验估计模块的输出端,其用于对当前周期的参数进行先验预测,得到当前周期的参数先验预测值θk -;A parameter a priori prediction module, whose first input terminal is connected to the output terminal of the parameter posterior estimation module, is used to perform a priori prediction on the parameters of the current cycle to obtain a priori prediction value θ k − of the parameters of the current cycle;
状态先验预测模块,其第一输入端连接至状态后验估计的输出端,其第二输入端连接至参数先验预测模块的输出端,其用于对当前周期的状态进行先验预测,得到当前周期的状态先验预测值 The state prior prediction module has a first input terminal connected to the output terminal of the state posterior estimation, and a second input terminal connected to the output terminal of the parameter prior prediction module, which is used to perform a priori prediction on the state of the current cycle to obtain the a priori prediction value of the state of the current cycle.
参数后验估计模块,其第一输入端连接至参数先验预测模块的输出端,其第二输入端连接至状态先验预测模块的输出端,其用于对当前周期的参数进行后验估计,得到当前周期的参数后验估计值 A parameter posterior estimation module, whose first input end is connected to the output end of the parameter a priori prediction module, and whose second input end is connected to the output end of the state a priori prediction module, is used to perform a posteriori estimation on the parameters of the current cycle to obtain the a posteriori estimation value of the parameters of the current cycle
状态后验估计模块,其第一输入端连接至状态先验预测模块的输出端,其第二输入端连接至参数先验预测模块的输出端,其用于对当前周期的状态进行后验估计,得到当前周期的状态后验估计值 A state posterior estimation module, whose first input end is connected to the output end of the state a priori prediction module, and whose second input end is connected to the output end of the parameter a priori prediction module, is used to perform a posteriori estimation on the state of the current cycle to obtain a posteriori estimation value of the state of the current cycle.
其中,表示上一周期的状态后验估计值,Uk-1表示上一周期注入的小信号电压;Ts表示采样时间间隔,ωe表示电机基频;/>Rs表示电机定子绕组电阻;表示为电感矩阵的逆矩阵,,/>和分别表示d轴增量自感和q轴增量自感,/>表示d、q轴增量互感;θ=[Rs Tdd Tdq Tqq]T表示待观测的参数,/>f*()表示电机的离散状态方程。in, represents the state posterior estimation value of the previous cycle, U k-1 represents the small signal voltage injected in the previous cycle; T s represents the sampling time interval, ω e represents the motor fundamental frequency; /> Rs represents the stator winding resistance of the motor; Expressed as the inverse matrix of the inductance matrix,,/> and They represent the d-axis incremental self-inductance and the q-axis incremental self-inductance respectively,/> represents the incremental mutual inductance of d and q axes; θ=[R s T dd T dq T qq ] T represents the parameter to be observed, /> f * () represents the discrete state equation of the motor.
进一步地,参数先验预测模块进行信号处理的计算表达式为:Furthermore, the calculation expression of the parameter prior prediction module for signal processing is:
其中,表示上一周期的参数后验估计值;/>表示当前周期的参数先验预测协方差矩阵,/>表示上一周期的参数后验估计协方差矩阵,Qp表示参数先验预测中的系统噪声协方差矩阵。in, Represents the posterior estimate of the parameters of the previous cycle; /> Represents the parameter prior prediction covariance matrix of the current period,/> represents the covariance matrix of the posterior estimation of the parameters in the previous period, and Qp represents the system noise covariance matrix in the prior prediction of the parameters.
进一步地,状态先验预测模型进行信号处理的计算表达式为:Furthermore, the calculation expression of the state prior prediction model for signal processing is:
其中,表示当前周期的参数先验估计协方差矩阵,/>表示上一周期的状态后验估计协方差矩阵,Qx表示状态先验预测中的系统噪声协方差矩阵;Fx,k-1表示离散状态方程f*()对电机状态X*的导数在上一周期的取值。in, Represents the parameter prior estimation covariance matrix of the current period,/> represents the state posterior estimation covariance matrix of the previous cycle, Q x represents the system noise covariance matrix in the state prior prediction; F x,k-1 represents the value of the derivative of the discrete state equation f * () with respect to the motor state X* in the previous cycle.
进一步地,参数后验估计模块进行信号处理的计算表达式为:Furthermore, the calculation expression of the signal processing performed by the parameter posterior estimation module is:
其中,表示电机在当前周期的输出,h*()表示电机的离散输出方程;/>表示当前周期的参数后验估计协方差矩阵;Kθ,k表示当前周期参数的卡尔曼增益,Hθ,k表示离散输出方程对电机参数θ的导数在当前周期的取值;M表示系统的测量噪声协方差矩阵。in, represents the output of the motor in the current cycle, h * () represents the discrete output equation of the motor; /> represents the posterior estimation covariance matrix of the parameters in the current cycle; K θ,k represents the Kalman gain of the parameters in the current cycle; H θ,k represents the value of the derivative of the discrete output equation with respect to the motor parameter θ in the current cycle; M represents the measurement noise covariance matrix of the system.
进一步地,状态后验估计模块进行信号处理的计算表达式为:Furthermore, the calculation expression of the state posterior estimation module for signal processing is:
其中,表示当前周期的状态后验估计协方差矩阵,Kx,k表示当前周期状态的卡尔曼增益,Hx,k表示离散输出方程对电机状态X*的导数在当前周期的取值。in, represents the posterior estimation covariance matrix of the state of the current cycle, K x,k represents the Kalman gain of the state of the current cycle, and H x,k represents the value of the derivative of the discrete output equation with respect to the motor state X* in the current cycle.
按照本发明的另一个方面,提供了一种基于上述全参数观测器的永磁同步电机全参数辨识方法,包括:According to another aspect of the present invention, a method for full parameter identification of a permanent magnet synchronous motor based on the above-mentioned full parameter observer is provided, comprising:
小信号扰动电压注入步骤:在电机运行过程中,在电机的电流环输出的d、q轴指令电压内分别注入频率为ωh的d轴小信号扰动电压udh和q轴小信号扰动电压uqh;Small signal disturbance voltage injection step: during the operation of the motor, a d-axis small signal disturbance voltage u dh and a q-axis small signal disturbance voltage u qh with a frequency of ω h are respectively injected into the d-axis and q-axis command voltages output by the current loop of the motor;
全参数辨识步骤,包括:The full parameter identification steps include:
(S1)对电机运行状态下的三相电流进行采样,并变换到同步转速为电机基频ωe的dq轴旋转坐标系,得到d轴电流id和q轴电流iq;(S1) sampling the three-phase current of the motor in the running state, and transforming it to a dq-axis rotating coordinate system whose synchronous speed is the motor fundamental frequency ω e , to obtain the d-axis current i d and the q-axis current i q ;
(S2)从d轴电流id和q轴电流iq中分别提取频率为ωh的成分,得到在d轴小信号扰动电压udh和q轴小信号扰动电压uqh激励下的d轴小信号扰动电流idh和q轴小信号扰动电流iqh;(S2) extracting the components with frequency ωh from the d -axis current id and the q-axis current iq respectively, and obtaining the d-axis small-signal disturbance current idh and the q-axis small-signal disturbance current iqh under the excitation of the d-axis small-signal disturbance voltage udh and the q-axis small-signal disturbance voltage uqh ;
(S3)将d轴小信号扰动电流idh和q轴小信号扰动电流iqh输入至基于卡尔曼滤波的全参数观测器,获得基于卡尔曼滤波的全参数观测器输出的参数后验估计值θ=[Rs Tdd TdqTqq]T,以计算电机定子绕组电阻Rs、d轴增量自感q轴增量自感/>以及d、q轴增量互感 (S3) Input the d-axis small signal disturbance current i dh and the q-axis small signal disturbance current i qh into the full parameter observer based on Kalman filtering, and obtain the parameter posterior estimation value θ = [R s T dd T dq T qq ] T output by the full parameter observer based on Kalman filtering to calculate the motor stator winding resistance R s and the d-axis incremental self-inductance Q-axis incremental self-inductance/> And the incremental mutual inductance of d and q axes
(S4)基于(S3)计算的参数,计算d轴磁链ψd0和q轴磁链ψq0。(S4) Based on the parameters calculated in (S3), the d-axis magnetic flux ψ d0 and the q-axis magnetic flux ψ q0 are calculated.
进一步地,步骤(S4)中,计算d轴磁链ψd0和q轴磁链ψq0的计算表达式为:Further, in step (S4), the calculation expressions for calculating the d-axis flux ψ d0 and the q-axis flux ψ q0 are:
其中,ud0和uq0分别表示d轴基频信号电压和q轴基频信号电压,id0和iq0分别表示d轴基频信号电流和q轴基频信号电流。Among them, u d0 and u q0 represent the d-axis fundamental frequency signal voltage and the q-axis fundamental frequency signal voltage respectively, and i d0 and i q0 represent the d-axis fundamental frequency signal current and the q-axis fundamental frequency signal current respectively.
进一步地,在步骤(S1)和(S2)之间还包括:Furthermore, between steps (S1) and (S2), the following steps are further included:
滤除d轴电流id和q轴电流iq中频率为ωh的成分,得到电机运行状态下的d轴直流电流id0和q轴直流电流iq0;Filter out the components with a frequency of ω h in the d-axis current i d and the q-axis current i q to obtain the d-axis direct current i d0 and the q-axis direct current i q0 when the motor is running;
将d轴直流电流id0和q轴直流电流iq0输入电流环。The d-axis DC current i d0 and the q-axis DC current i q0 are input into the current loop.
总体而言,通过本发明所构思的以上技术方案,所使用的离散化的电机状态模型f*(),充分考虑了永磁同步电机高耦合强非线性的特性,以及在注入高频扰动电压信号的情况下,所注入的信号对电机状态的影响,因此,该电机状态模型f*()能够更为准确地反映电机运行过程中的状态,也不受电机转速的限制,在全工况下均可实现对电机参数的准确观测;此外,本发明中,设计了两个卡尔曼滤波器分别用于对电机状态和电机参数的观测,并且两个卡尔曼滤波器的先验预测结果会发生相互调用,在状态观测和参数观测的相互促进之下,能够进一步提高参数观测的准确度,进而提高后续电机参数辨识的准确度。In general, through the above technical scheme conceived by the present invention, the discretized motor state model f * () used fully considers the high-coupling and strong nonlinear characteristics of the permanent magnet synchronous motor, as well as the influence of the injected signal on the motor state when a high-frequency disturbance voltage signal is injected. Therefore, the motor state model f * () can more accurately reflect the state of the motor during operation, is not limited by the motor speed, and can achieve accurate observation of the motor parameters under all working conditions; in addition, in the present invention, two Kalman filters are designed for observing the motor state and motor parameters respectively, and the a priori prediction results of the two Kalman filters will be called by each other. Under the mutual promotion of state observation and parameter observation, the accuracy of parameter observation can be further improved, thereby improving the accuracy of subsequent motor parameter identification.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例提供的基于卡尔曼滤波的全参数观测器示意图;FIG1 is a schematic diagram of a full parameter observer based on Kalman filtering provided by an embodiment of the present invention;
图2为本发明实施例提供的永磁同步电机的控制系统示意图;FIG2 is a schematic diagram of a control system of a permanent magnet synchronous motor provided in an embodiment of the present invention;
图3为本发明实施例提供的永磁同步电机全参数辨识方法示意图。FIG3 is a schematic diagram of a method for identifying all parameters of a permanent magnet synchronous motor provided in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
在本发明中,本发明及附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。In the present invention, the terms "first", "second", etc. (if any) in the present invention and the drawings are used to distinguish similar objects but not necessarily to describe a specific order or sequence.
为了解决现有的参数辨识方法无法在全工况条件下实现对永磁同步电机参数的准确辨识的技术问题,本发明提供了一种基于卡尔曼滤波的全参数观测器及全参数辨识方法,其整体思路在于:在建立电机的状态方程时,充分考虑永磁同步电机高耦合强非线性的特性,以及在注入高频扰动电压信号的情况下,所注入的信号对电机状态的影响;在所建立的状态方程的基础上,结合卡尔曼滤波器的特点,对观测变量进行相应设计,得到可准确进行电机参数辨识的观测器。基于所设计的观测器,实现全工况条件下对永磁同步电机参数的准确辨识。In order to solve the technical problem that the existing parameter identification method cannot accurately identify the parameters of the permanent magnet synchronous motor under all working conditions, the present invention provides a full parameter observer and full parameter identification method based on Kalman filtering, the overall idea of which is: when establishing the state equation of the motor, the high coupling and strong nonlinear characteristics of the permanent magnet synchronous motor, as well as the influence of the injected signal on the motor state when injecting a high-frequency disturbance voltage signal, are fully considered; on the basis of the established state equation, combined with the characteristics of the Kalman filter, the observation variables are designed accordingly to obtain an observer that can accurately identify the motor parameters. Based on the designed observer, the accurate identification of the parameters of the permanent magnet synchronous motor under all working conditions is achieved.
在详细解释本发明的技术方案之前,先对相关的原理进行如下分析。Before explaining the technical solution of the present invention in detail, the relevant principles are analyzed as follows.
线性永磁同步电机的数学模型如公式(1)所示:The mathematical model of the linear permanent magnet synchronous motor is shown in formula (1):
其中,Rs表示电机定子绕组,ψf表示永磁体磁链,Ld和Lq分别表示d、q轴电感,ud和uq分别表示d、q轴电压,id和iq分别表示d、q轴电流,ωe表示电机基频。Among them, Rs represents the stator winding of the motor, ψf represents the permanent magnet flux, Ld and Lq represent the d-axis and q-axis inductances respectively, ud and uq represent the d-axis and q-axis voltages respectively, id and iq represent the d -axis and q-axis currents respectively, and ωe represents the motor fundamental frequency.
将公式(1)所示的永磁同步电机数学模型转换至同步旋转坐标系下,如公式(2)所示:The mathematical model of the permanent magnet synchronous motor shown in formula (1) is converted to the synchronous rotating coordinate system, as shown in formula (2):
其中,ψd和ψq分别表示d轴磁链和q轴磁链;考虑在注入小信号扰动电压的情况下,d、q轴电压ud和uq可表示为基频信号电压和小信号扰动电压的和,即ud=ud0+udh,uq=uq0+uqh,ud0和uq0分别表示d、q轴基频信号电压,udh和uqh分别表示注入的d、q轴小信号扰动电压;同样地,d、q轴电流id和iq可表示为基频电流信号和小信号扰动电流的和,即id=id0+idh,iq=iq0+iqh,id0和iq0分别表示d、q轴基频电流信号,idh和iqh分别表示在小信号扰动电压激励下的d、q轴小信号扰动电流。Among them, ψ d and ψ q represent the d-axis flux and q-axis flux, respectively; considering the case of injected small-signal disturbance voltage, the d- and q-axis voltages u d and u q can be expressed as the sum of the fundamental frequency signal voltage and the small-signal disturbance voltage, that is, u d =u d0 +u dh , u q =u q0 +u qh , u d0 and u q0 represent the d- and q-axis fundamental frequency signal voltages, respectively, and u dh and u qh represent the injected d- and q-axis small-signal disturbance voltages, respectively; similarly, the d- and q-axis currents i d and i q can be expressed as the sum of the fundamental frequency current signal and the small-signal disturbance current, that is, i d =i d0 +i dh , i q =i q0 +i qh , i d0 and i q0 represent the d- and q-axis fundamental frequency current signals, respectively, and i dh and i qh represent the d- and q-axis small-signal disturbance currents under the excitation of the small-signal disturbance voltage, respectively.
考虑到永磁同步电机是一个高耦合强非线性的系统,d、q轴磁链ψd和ψq主要取决于永磁体磁链ψf和d、q轴电流id和iq,因此可以认为磁链是d、q轴电流的函数。对电机d、q轴磁链ψd和ψq进行泰勒展开可得:Considering that the permanent magnet synchronous motor is a highly coupled and strongly nonlinear system, the d-axis and q-axis flux ψ d and ψ q mainly depend on the permanent magnet flux ψ f and the d-axis and q-axis currents i d and i q , so the flux can be considered to be a function of the d-axis and q-axis currents. Taylor expansion of the motor d-axis and q-axis flux ψ d and ψ q yields:
其中,add、adq、aqd、aqq分别是d轴磁链和q轴磁链在id0和iq0点对d、q轴电流的导数,称为增量电感;H.O.T.表示高阶项。本发明注入的扰动电压信号激励的小信号扰动电流的幅值较小(优选小于电机额定电流的5%),由于扰动电流幅值较小,公式(3)中的高阶项可忽略;Wherein, a dd , a dq , a qd , a qq are the derivatives of the d-axis flux and the q-axis flux at the points i d0 and i q0 to the d-axis current and the q-axis current, respectively, which are called incremental inductance; HOT represents a high-order term. The amplitude of the small signal disturbance current excited by the disturbance voltage signal injected by the present invention is small (preferably less than 5% of the rated current of the motor). Since the amplitude of the disturbance current is small, the high-order term in formula (3) can be ignored;
公式(3)中的增量电感可通过公式(4)进行表示:The incremental inductance in formula (3) can be expressed by formula (4):
其中,和/>分别表示d轴增量自感和q轴增量自感,/>和/>表示d、q轴增量互感;基于磁路等效定理,两个增量互感相等,即/> in, and/> They represent the d-axis incremental self-inductance and the q-axis incremental self-inductance respectively,/> and/> represents the incremental mutual inductance of the d and q axes; based on the magnetic circuit equivalence theorem, the two incremental mutual inductances are equal, that is,/>
对公式(3)求导,可得:By taking the derivative of formula (3), we can get:
基于公式(2)~(5),考虑小信号下的永磁同步电机的方程可表示为(6):Based on formulas (2) to (5), the equation of the permanent magnet synchronous motor under small signal can be expressed as (6):
通过滤波等手段,将基频的电压电流大信号和扰动的小信号分离后,可以分别得到大信号模型(7)和小信号模型(8)的方程。By separating the large fundamental frequency voltage and current signals and the small disturbance signals through filtering and other means, the equations of the large signal model (7) and the small signal model (8) can be obtained respectively.
由于上述公式(7)和(8)考虑了注入的小信号扰动电压对电机状态的影响,因此,上述公式(7)和(8)所表示的电机模型可以更准确的描述永磁同步电机内部的状态。Since the above formulas (7) and (8) take into account the influence of the injected small signal disturbance voltage on the motor state, the motor model represented by the above formulas (7) and (8) can more accurately describe the internal state of the permanent magnet synchronous motor.
本发明基于上述公式(7)和(8)所示的模型,进行全参数观测器的设计,具体过程如下:The present invention designs a full parameter observer based on the model shown in the above formulas (7) and (8), and the specific process is as follows:
对公式(7)进行变形,得到永磁同步电机的状态方程如下:By transforming formula (7), the state equation of the permanent magnet synchronous motor is obtained as follows:
其中,X表示状态变量,表示的一阶导数;Y表示电机输出,I表示单位矩阵;由于状态方程中同时存在电感矩阵L和电感的逆矩阵L-1,为后续观测器的设计带来困难;为了便于观测器的设计,本发明进一步对上述公式(9)进行改写,形成便于设计观测器的形式,具体地,定义新的状态变量X*=LX,可以得到新的状态方程如公式(10)所示:Where X represents the state variable, represents the first-order derivative; Y represents the motor output, and I represents the unit matrix; since the state equation contains both the inductance matrix L and the inverse matrix L -1 of the inductance, it is difficult to design the subsequent observer; in order to facilitate the design of the observer, the present invention further rewrites the above formula (9) to form a form that is convenient for designing the observer. Specifically, by defining a new state variable X*=LX, a new state equation can be obtained as shown in formula (10):
公式(10)所示的状态方程中,电感矩阵L消除,仅存在电感矩阵的逆矩阵L-1。In the state equation shown in formula (10), the inductance matrix L is eliminated, and only the inverse matrix L -1 of the inductance matrix exists.
定义待观测变量矩阵为θ=[Rs Tdd Tdq Tqq]T,θ包含了永磁同步电机中部分待辨识的电阻参数和电感参数,可以看做是扩展的状态变量;由于电机中电阻参数和电感参数是随时间缓变的,可以认为dθ/dt≈0。基于此,可以得到扩展变量后的状态方程为:Define the observed variable matrix as θ = [R s T dd T dq T qq ] T , θ includes some resistance parameters and inductance parameters to be identified in the permanent magnet synchronous motor, which can be regarded as an extended state variable; since the resistance parameters and inductance parameters in the motor change slowly over time, it can be considered that dθ/dt≈0. Based on this, the state equation after the extended variables can be obtained as:
其中,表示参数θ的一阶导数,/>表示状态变量X*的一阶导数;f代表状态变量X*的状态方程,h代表输出变量Y的输出方程。in, represents the first-order derivative of parameter θ,/> represents the first-order derivative of the state variable X*; f represents the state equation of the state variable X*, and h represents the output equation of the output variable Y.
将上述公式(11)所示的状态方程进行离散化处理,得到如下离散化的状态方程:The state equation shown in the above formula (11) is discretized to obtain the following discretized state equation:
其中,k表示离散序列中的数据点序号,Ts表示采样时间间隔,f*和h*分别为f和h的离散化。Where k represents the data point number in the discrete sequence, Ts represents the sampling time interval, and f* and h* are the discretizations of f and h, respectively.
根据(12)所示的离散化的状态方程,在本发明的一个实施例中,构建了基于卡尔曼滤波的全参数观测器,该观测器如图1所示,包括两个卡尔曼滤波器,即参数扩展卡尔曼滤波器和状态扩展卡尔曼滤波器;According to the discretized state equation shown in (12), in one embodiment of the present invention, a full parameter observer based on Kalman filtering is constructed. The observer is shown in FIG1 and includes two Kalman filters, namely, a parameter extended Kalman filter and a state extended Kalman filter;
参数扩展卡尔曼滤波器包括:参数先验预测模块和参数后验估计模块;状态扩展卡尔曼滤波器包括:状态先验预测模块和状态后验估计模块;如图1所示,各模块的功能即模块间的连接关系为:The parameter extended Kalman filter includes: a parameter prior prediction module and a parameter posterior estimation module; the state extended Kalman filter includes: a state prior prediction module and a state posterior estimation module; as shown in Figure 1, the functions of each module, that is, the connection relationship between the modules is:
参数先验预测模块,其第一输入端连接至参数后验估计模块的输出端,其用于对当前周期的参数进行先验预测,得到当前周期的参数先验预测值 The parameter a priori prediction module has a first input terminal connected to the output terminal of the parameter posterior estimation module, which is used to make a priori prediction of the parameters of the current cycle to obtain the a priori prediction value of the parameters of the current cycle.
状态先验预测模块,其第一输入端连接至状态后验估计的输出端,其第二输入端连接至参数先验预测模块的输出端,其用于对当前周期的状态进行先验预测,得到当前周期的状态先验预测值 The state prior prediction module has a first input terminal connected to the output terminal of the state posterior estimation, and a second input terminal connected to the output terminal of the parameter prior prediction module, which is used to perform a priori prediction on the state of the current cycle to obtain the a priori prediction value of the state of the current cycle.
参数后验估计模块,其第一输入端连接至参数先验预测模块的输出端,其第二输入端连接至状态先验预测模块的输出端,其用于对当前周期的参数进行后验估计,得到当前周期的参数后验估计值 A parameter posterior estimation module, whose first input end is connected to the output end of the parameter a priori prediction module, and whose second input end is connected to the output end of the state a priori prediction module, is used to perform a posteriori estimation on the parameters of the current cycle to obtain the a posteriori estimation value of the parameters of the current cycle
状态后验估计模块,其第一输入端连接至状态先验预测模块的输出端,其第二输入端连接至参数先验预测模块的输出端,其用于对当前周期的状态进行后验估计,得到当前周期的状态后验估计值 A state posterior estimation module, whose first input end is connected to the output end of the state a priori prediction module, and whose second input end is connected to the output end of the parameter a priori prediction module, is used to perform a posteriori estimation on the state of the current cycle to obtain a posteriori estimation value of the state of the current cycle.
其中,表示上一周期的状态后验估计值,Uk-1表示上一周期注入的小信号电压;f*()表示电机的离散状态方程。in, represents the state posterior estimation value of the previous cycle, U k-1 represents the small signal voltage injected in the previous cycle; f * () represents the discrete state equation of the motor.
在图1所示的观测器中,在同一个观测周期中,状态先验预测依赖于参数先验预测的结果,参数后验估计依赖于状态先验预测的结果,并且状态后验估计也依赖于参数先验预测的结果,关于状态的扩展卡尔曼滤波和关于参数的扩展卡尔曼滤波同步进行,因此,本实施例所提供的基于卡尔曼滤波的全参数观测器,是一种基于并行扩展卡尔曼滤波的全参数观测器。In the observer shown in Figure 1, in the same observation cycle, the state prior prediction depends on the result of the parameter prior prediction, the parameter posterior estimation depends on the result of the state prior prediction, and the state posterior estimation also depends on the result of the parameter prior prediction. The extended Kalman filtering on the state and the extended Kalman filtering on the parameter are performed synchronously. Therefore, the full-parameter observer based on Kalman filtering provided in this embodiment is a full-parameter observer based on parallel extended Kalman filtering.
本实施例中,各模块进行信号处理的计算表达式具体如下:In this embodiment, the calculation expressions for signal processing performed by each module are specifically as follows:
参数先验预测:Parameter prior prediction:
其中,表示上一周期的参数后验估计值,/>为本周期的参数先验预测值;/>表示当前周期的参数先验预测协方差矩阵,/>表示上一周期的参数后验估计协方差矩阵,Qp表示参数先验预测中的系统噪声协方差矩阵;in, represents the posterior estimate of the parameters of the previous cycle,/> is the prior prediction value of the parameters of this cycle;/> Represents the parameter prior prediction covariance matrix of the current period,/> represents the covariance matrix of the posterior estimation of the parameters in the previous cycle, Qp represents the system noise covariance matrix in the prior prediction of the parameters;
状态先验估计:State prior estimate:
其中,表示当前周期的参数先验估计协方差矩阵,/>表示上一周期的状态后验估计协方差矩阵,Qx表示状态先验预测中的系统噪声协方差矩阵;Fx,k-1表示离散状态方程f*()对电机状态X*的导数在上一周期的取值;in, Represents the parameter prior estimation covariance matrix of the current period,/> represents the state posterior estimation covariance matrix of the previous cycle, Q x represents the system noise covariance matrix in the state prior prediction; F x,k-1 represents the value of the derivative of the discrete state equation f * () with respect to the motor state X* in the previous cycle;
参数后验估计:Posterior estimate of parameters:
其中,表示所述电机在当前周期的输出,h*()表示电机的离散输出方程;/>表示当前周期的参数后验估计协方差矩阵;Kθ,k表示当前周期参数的卡尔曼增益,Hθ,k表示离散输出方程对电机参数θ的导数在当前周期的取值;M表示系统的测量噪声协方差矩阵;in, represents the output of the motor in the current cycle, and h * () represents the discrete output equation of the motor; /> represents the posterior estimation covariance matrix of the parameters in the current cycle; K θ,k represents the Kalman gain of the parameters in the current cycle; H θ,k represents the value of the derivative of the discrete output equation with respect to the motor parameter θ in the current cycle; M represents the measurement noise covariance matrix of the system;
Hθ,k的计算式如下The calculation formula of H θ,k is as follows
其中in
其中,分别为本周期参数先验预测向量/>中的第一,第二,第三,第四个元素。同理,/>分别为上一个周期状态后验估计向量/>第一,第二个元素。in, They are the prior prediction vectors of the parameters of this cycle/> The first, second, third, and fourth elements in . Similarly, /> are the posterior estimation vectors of the state in the previous cycle respectively/> First, second element.
需要说明的是,Kx,k-1和/>需要通过上一步迭代得到,当k=0时,这三个量的初始值均可取为零矩阵。It should be noted, K x,k-1 and/> It needs to be obtained through the iteration of the previous step. When k=0, the initial values of these three quantities can all be taken as zero matrices.
状态后验估计:State posterior estimate:
其中,表示当前周期的状态后验估计协方差矩阵,Kx,k表示当前周期状态的卡尔曼增益,Hx,k表示离散输出方程对电机状态X*的导数在当前周期的取值。in, represents the posterior estimation covariance matrix of the state of the current cycle, K x,k represents the Kalman gain of the state of the current cycle, and H x,k represents the value of the derivative of the discrete output equation with respect to the motor state X* in the current cycle.
在以上公式(13)~(18)中,参数先验预测中的系统噪声协方差矩阵Qp和状态先验预测中的系统噪声协方差矩阵Qx的取值主要影响系统参数观测的收敛速度,可选地,本实施例中,Qp的取值为参数估计量的0.1倍,即:In the above formulas (13) to (18), the values of the system noise covariance matrix Qp in the parameter prior prediction and the system noise covariance matrix Qx in the state prior prediction mainly affect the convergence speed of the system parameter observation. Optionally, in this embodiment, the value of Qp is 0.1 times the parameter estimate, that is:
QP=0.1·diag([Rs Tdd Tdq Tqq]) (19)Q P = 0.1·diag([R s T dd T dq T qq ]) (19)
M主要取决于实际电驱系统中电流采样的噪声。M mainly depends on the noise of current sampling in the actual electric drive system.
本实施例所设计的基于卡尔曼滤波的全参数观测器,其中所使用的离散化的电机状态模型f*(),充分考虑了永磁同步电机高耦合强非线性的特性,以及在注入高频扰动电压信号的情况下,所注入的信号对电机状态的影响,因此,该电机状态模型f*()能够更为准确地反映电机运行过程中的状态,也不受电机转速的限制,在全工况下均可实现对电机参数的准确观测;此外,本实施例中,设计了两个卡尔曼滤波器分别用于对电机状态和电机参数的观测,并且两个卡尔曼滤波器的先验预测结果会发生相互调用,在状态观测和参数观测的相互促进之下,能够进一步提高参数观测的准确度,进而提高后续电机参数辨识的准确度。The full-parameter observer based on Kalman filtering designed in this embodiment, in which the discretized motor state model f * () is used, fully considers the high-coupling and strong nonlinear characteristics of the permanent magnet synchronous motor, as well as the influence of the injected signal on the motor state when a high-frequency disturbance voltage signal is injected. Therefore, the motor state model f * () can more accurately reflect the state of the motor during operation, is not limited by the motor speed, and can achieve accurate observation of the motor parameters under all working conditions. In addition, in this embodiment, two Kalman filters are designed for observing the motor state and motor parameters respectively, and the prior prediction results of the two Kalman filters will be called by each other. Under the mutual promotion of state observation and parameter observation, the accuracy of parameter observation can be further improved, thereby improving the accuracy of subsequent motor parameter identification.
基于上述实施例所提供的基于卡尔曼滤波的全参数观测器,在本发明的另一个实施例中,提供了一种永磁同步电机全参数辨识方法,所辨识的参数包括:电机定子绕组电阻Rs、d轴增量自感q轴增量自感/>以及d、q轴增量互感/>d轴磁链ψd0和q轴磁链ψq0。Based on the full parameter observer based on Kalman filtering provided in the above embodiment, in another embodiment of the present invention, a method for identifying full parameters of a permanent magnet synchronous motor is provided, and the identified parameters include: motor stator winding resistance R s , d-axis incremental self-inductance Q-axis incremental self-inductance/> And the incremental mutual inductance of d and q axes/> The d-axis magnetic flux is ψ d0 and the q-axis magnetic flux is ψ q0 .
如图2、图3所示,本实施例包括:As shown in FIG. 2 and FIG. 3 , this embodiment includes:
小信号扰动电压注入步骤:在电机运行过程中,在电机的电流环输出的d、q轴指令电压内分别注入频率为ωh的d轴小信号扰动电压udh和q轴小信号扰动电压uqh;为了避免在电机的ABC三相中产生奇数次谐波,本实施例中,ωh≠6nωe,ωe表示电机基频,n为正整数ωe表示电机基频;Small signal disturbance voltage injection step: during the operation of the motor, a d-axis small signal disturbance voltage u dh and a q-axis small signal disturbance voltage u qh with a frequency of ω h are respectively injected into the d-axis and q-axis command voltages output by the current loop of the motor; in order to avoid generating odd harmonics in the ABC three-phase of the motor, in this embodiment, ω h ≠ 6nω e , ω e represents the motor fundamental frequency, and n is a positive integer ω e represents the motor fundamental frequency;
全参数辨识步骤,包括:The full parameter identification steps include:
(S1)对电机运行状态下的三相电流进行采样,并变换到同步转速为电机基频ωe的dq轴旋转坐标系,得到d轴电流id和q轴电流iq;(S1) sampling the three-phase current of the motor in the running state, and transforming it to a dq-axis rotating coordinate system whose synchronous speed is the motor fundamental frequency ω e , to obtain the d-axis current i d and the q-axis current i q ;
(S2)从d轴电流id和q轴电流iq中分别提取频率为ωh的成分,得到在d轴小信号扰动电压udh和q轴小信号扰动电压uqh激励下的d轴小信号扰动电流idh和q轴小信号扰动电流iqh;(S2) extracting the components with frequency ωh from the d -axis current id and the q-axis current iq respectively, and obtaining the d-axis small-signal disturbance current idh and the q-axis small-signal disturbance current iqh under the excitation of the d-axis small-signal disturbance voltage udh and the q-axis small-signal disturbance voltage uqh ;
具体地,可通过一个频率为ωh的带通滤波器提取d轴小信号扰动电流idh和q轴小信号扰动电流iqh;Specifically, the d-axis small-signal disturbance current i dh and the q-axis small-signal disturbance current i qh can be extracted through a bandpass filter with a frequency of ω h ;
(S3)将d轴小信号扰动电流idh和q轴小信号扰动电流iqh输入至基于卡尔曼滤波的全参数观测器,获得基于卡尔曼滤波的全参数观测器输出的参数后验估计值θ=[Rs Tdd TdqTqq]T,以计算电机定子绕组电阻Rs、d轴增量自感q轴增量自感/>以及d、q轴增量互感 (S3) Input the d-axis small signal disturbance current i dh and the q-axis small signal disturbance current i qh into the full parameter observer based on Kalman filtering, and obtain the parameter posterior estimation value θ = [R s T dd T dq T qq ] T output by the full parameter observer based on Kalman filtering to calculate the motor stator winding resistance R s and the d-axis incremental self-inductance Q-axis incremental self-inductance/> And the incremental mutual inductance of d and q axes
由于上述实施例所提供的观测器在全工况条件下都能够准确观测得到电机的参数后验估计值θ,因此,本实施例能够在全工况条件下实现对电机的电阻参数和电感参数的准确辨识;Since the observer provided in the above embodiment can accurately observe and obtain the a posteriori estimated value θ of the motor parameter under all operating conditions, the present embodiment can accurately identify the resistance parameter and inductance parameter of the motor under all operating conditions;
(S4)基于(S3)计算的参数,计算d轴磁链ψd0和q轴磁链ψq0;(S4) Based on the parameters calculated in (S3), calculate the d-axis magnetic flux ψ d0 and the q-axis magnetic flux ψ q0 ;
为了保证对d轴磁链ψd0和q轴磁链ψq0的准确辨识,本实施例中,在基于观测器输出的参数辨识得到电阻参数和电感参数之后,将这些参数代入到上述公式(6)中,可以得到d轴磁链ψd0和q轴磁链ψq0的计算式如下:In order to ensure accurate identification of the d-axis flux ψ d0 and the q-axis flux ψ q0 , in this embodiment, after obtaining the resistance parameters and the inductance parameters based on the parameter identification of the observer output, these parameters are substituted into the above formula (6), and the calculation formulas of the d-axis flux ψ d0 and the q-axis flux ψ q0 can be obtained as follows:
其中,ud0和uq0分别表示d轴基频信号电压和q轴基频信号电压,id0和iq0分别表示d轴基频信号电流和q轴基频信号电流;Wherein, u d0 and u q0 represent the d-axis fundamental frequency signal voltage and the q-axis fundamental frequency signal voltage, respectively, i d0 and i q0 represent the d-axis fundamental frequency signal current and the q-axis fundamental frequency signal current, respectively;
由于上述公式(6)充分考虑了注入的小信号扰动电压的影响,因此,本实施例能够准确辨识得到d轴磁链ψd0和q轴磁链ψq0。Since the above formula (6) fully considers the influence of the injected small signal disturbance voltage, the present embodiment can accurately identify the d-axis flux ψ d0 and the q-axis flux ψ q0 .
本实施例中,在步骤(S1)和(S2)之间还包括:In this embodiment, between steps (S1) and (S2), the following steps are also included:
滤除d轴电流id和q轴电流iq中频率为ωh的成分,得到电机运行状态下的d轴直流电流id0和q轴直流电流iq0;具体地,可利用一个频率为ωh的带阻滤波器滤除d轴电流id和q轴电流iq中频率为ωh的成分;Filter out the components with a frequency of ω h in the d-axis current i d and the q-axis current i q to obtain the d-axis DC current i d0 and the q-axis DC current i q0 in the motor running state; specifically, a band-stop filter with a frequency of ω h can be used to filter out the components with a frequency of ω h in the d-axis current i d and the q-axis current i q ;
将d轴直流电流id0和q轴直流电流iq0输入电流环;Input the d-axis DC current i d0 and the q-axis DC current i q0 into the current loop;
本实施例对电流环注入小信号扰动电压后,通过对电机三相电流进行采样和坐标变换后,得到的d轴电流id和q轴电流iq,包含两个部分:电机运行下产生转矩的直流电流id0和iq0,频率为ωh的小信号电流idh和iqh,本实施例将d、q轴电流输入电流环之前,先通过滤波滤除d、q轴电流中频率为ωh的成分,能够防止电流环输出指令电压产生一个与旋转电压信号相差180°的抑制电压信号,从而避免对注入的旋转高频电压对电机控制部分产生影响,保证电机的正常运行,同时避免电流环产生的抑制信号干扰电机参数辨识,保证了电机参数辨识的准确性。After injecting a small signal disturbance voltage into the current loop in this embodiment, the d-axis current i d and the q-axis current i q are obtained by sampling and coordinate transformation of the three-phase current of the motor, which include two parts: the DC currents i d0 and i q0 that generate torque when the motor is running, and the small signal currents i dh and i qh with a frequency of ω h . Before the d- and q-axis currents are input into the current loop in this embodiment, the components with a frequency of ω h in the d- and q-axis currents are first filtered out by filtering, which can prevent the current loop output command voltage from generating a suppression voltage signal that differs by 180° from the rotating voltage signal, thereby avoiding the impact of the injected rotating high-frequency voltage on the motor control part, ensuring the normal operation of the motor, and at the same time avoiding the suppression signal generated by the current loop from interfering with the motor parameter identification, thereby ensuring the accuracy of the motor parameter identification.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It will be easily understood by those skilled in the art that the above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373246.8A CN114744938B (en) | 2022-04-11 | 2022-04-11 | A full parameter observer and full parameter identification method based on Kalman filtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373246.8A CN114744938B (en) | 2022-04-11 | 2022-04-11 | A full parameter observer and full parameter identification method based on Kalman filtering |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114744938A CN114744938A (en) | 2022-07-12 |
CN114744938B true CN114744938B (en) | 2024-06-04 |
Family
ID=82281895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210373246.8A Active CN114744938B (en) | 2022-04-11 | 2022-04-11 | A full parameter observer and full parameter identification method based on Kalman filtering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114744938B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103956956A (en) * | 2014-05-13 | 2014-07-30 | 北京理工大学 | A State Estimation Method for Brushless DC Motor Based on Extended Kalman Filter |
FR3028362A1 (en) * | 2014-11-10 | 2016-05-13 | Renault Sa | METHOD AND SYSTEM FOR CONTROLLING A SYNCHRONOUS ELECTRIC MACHINE WITH PERMANENT MAGNETS. |
CN106291381A (en) * | 2016-08-16 | 2017-01-04 | 北京理工大学 | A kind of Combined estimator electrokinetic cell system state-of-charge and the method for health status |
CN106487297A (en) * | 2016-11-24 | 2017-03-08 | 北京邮电大学 | A kind of PMSM parameter identification method based on covariance matching Unscented kalman filtering algorithm |
CN107408912A (en) * | 2015-03-24 | 2017-11-28 | 乌本产权有限公司 | For the method for the synchronous generator for controlling the wind energy plant without transmission device |
CN109787524A (en) * | 2019-02-18 | 2019-05-21 | 北京理工大学 | An online parameter identification method for permanent magnet synchronous motor |
JP2019103228A (en) * | 2017-12-01 | 2019-06-24 | 株式会社明電舎 | Estimation device, estimation method and inverter system |
CN112713834A (en) * | 2020-12-17 | 2021-04-27 | 华中科技大学 | Permanent magnet synchronous motor position sensorless control method and system |
CN113783488A (en) * | 2021-08-04 | 2021-12-10 | 华中科技大学 | Permanent magnet synchronous motor full parameter identification method and permanent magnet synchronous motor system |
CN114006557A (en) * | 2021-09-30 | 2022-02-01 | 湖南科技大学 | Mechanical parameter identification method of permanent magnet synchronous motor based on extended sliding mode observer |
-
2022
- 2022-04-11 CN CN202210373246.8A patent/CN114744938B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103956956A (en) * | 2014-05-13 | 2014-07-30 | 北京理工大学 | A State Estimation Method for Brushless DC Motor Based on Extended Kalman Filter |
FR3028362A1 (en) * | 2014-11-10 | 2016-05-13 | Renault Sa | METHOD AND SYSTEM FOR CONTROLLING A SYNCHRONOUS ELECTRIC MACHINE WITH PERMANENT MAGNETS. |
CN107408912A (en) * | 2015-03-24 | 2017-11-28 | 乌本产权有限公司 | For the method for the synchronous generator for controlling the wind energy plant without transmission device |
CN106291381A (en) * | 2016-08-16 | 2017-01-04 | 北京理工大学 | A kind of Combined estimator electrokinetic cell system state-of-charge and the method for health status |
CN106487297A (en) * | 2016-11-24 | 2017-03-08 | 北京邮电大学 | A kind of PMSM parameter identification method based on covariance matching Unscented kalman filtering algorithm |
JP2019103228A (en) * | 2017-12-01 | 2019-06-24 | 株式会社明電舎 | Estimation device, estimation method and inverter system |
CN109787524A (en) * | 2019-02-18 | 2019-05-21 | 北京理工大学 | An online parameter identification method for permanent magnet synchronous motor |
CN112713834A (en) * | 2020-12-17 | 2021-04-27 | 华中科技大学 | Permanent magnet synchronous motor position sensorless control method and system |
CN113783488A (en) * | 2021-08-04 | 2021-12-10 | 华中科技大学 | Permanent magnet synchronous motor full parameter identification method and permanent magnet synchronous motor system |
CN114006557A (en) * | 2021-09-30 | 2022-02-01 | 湖南科技大学 | Mechanical parameter identification method of permanent magnet synchronous motor based on extended sliding mode observer |
Non-Patent Citations (2)
Title |
---|
基于扩展卡尔曼滤波的永磁同步电动机参数辨识;王磊;李宏;武明珠;解佳鹏;;微特电机;20120728(第07期);全文 * |
扩展卡尔曼滤波在电主轴参数辨识中的应用;张翊诚;崔红娟;唐小琦;金宏星;;电力电子技术;20090120(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114744938A (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104811115B (en) | Quasi-proportional resonance control-based permanent magnet synchronous motor parameter identification system and method | |
CN109495048A (en) | Permanent magnet synchronous motor Speed Sensorless Control Method based on MRAC observer | |
US12301140B2 (en) | System and methods for high performance filtering techniques for sensorless direct position and speed estimation | |
CN113783488B (en) | Permanent magnet synchronous motor full-parameter identification method and permanent magnet synchronous motor system | |
CN110518852A (en) | Permanent magnet synchronous motor current harmonics suppressing method based on harmonic injection | |
CN115173774B (en) | A permanent magnet synchronous motor position sensorless control method and system | |
CN116232154B (en) | Motor parameter estimation and control method and system based on complex vector discrete filter | |
Abdelsalam et al. | Improved sensorless operation of a CSI-based induction motor drive: Long feeder case | |
CN113422550B (en) | Low carrier ratio control method for high-speed motor based on complex vector decoupling and delay compensation | |
CN111865182B (en) | Harmonic suppression control method for high-speed PMSM based on LC filter and adaptive notch filter | |
Pengcheng et al. | Offline parameter identification strategy of permanent magnet synchronous motor considering the inverter nonlinearities | |
CN114744938B (en) | A full parameter observer and full parameter identification method based on Kalman filtering | |
CN107482978B (en) | A kind of permanent magnet synchronous motor on-line parameter discrimination method based on finite time algorithm | |
CN118523678A (en) | Motor control method and system considering cross coupling inductance | |
Chen et al. | Harmonic current suppression for high-speed permanent magnet synchronous motor with sensorless control | |
CN115580197B (en) | Closed-loop position-free control strategy for high-speed permanent magnet synchronous motor considering LCL filter | |
CN116388633A (en) | Permanent magnet synchronous motor sensorless control method based on vector magnetic circuit | |
CN117220565B (en) | A method for estimating the temperature of permanent magnet rotor of permanent magnet synchronous motor | |
Yu et al. | Decoupling Control for PMSM Based on Data-Driven Control | |
CN116683816B (en) | Motor current harmonic suppression system based on dead beat predictive control | |
CN119995430A (en) | Permanent magnet synchronous motor multi-parameter identification method based on harmonic coupling model | |
Li et al. | Modified Virtual Signal Injection Control of MTPA for IPMSM Considering Switching Operating Conditions | |
CN118889907A (en) | An improved anti-disturbance current loop decoupling control method for permanent magnet synchronous motor | |
CN118739944A (en) | Rotor position estimation method for permanent magnet assisted synchronous reluctance motor based on effective flux error compensation | |
Yuhao et al. | SynRM Sensorless Torque Estimation Based on Filter Free High Frequency Voltage Injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |