CN114731948A - 一种基于抗倒伏与抗旱性的水稻育种方法 - Google Patents

一种基于抗倒伏与抗旱性的水稻育种方法 Download PDF

Info

Publication number
CN114731948A
CN114731948A CN202210367454.7A CN202210367454A CN114731948A CN 114731948 A CN114731948 A CN 114731948A CN 202210367454 A CN202210367454 A CN 202210367454A CN 114731948 A CN114731948 A CN 114731948A
Authority
CN
China
Prior art keywords
rice
lodging
angle
calculating
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210367454.7A
Other languages
English (en)
Inventor
樊友鑫
范思静
王亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jinpeiyin Technology Co ltd
Original Assignee
Anhui Jinpeiyin Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jinpeiyin Technology Co ltd filed Critical Anhui Jinpeiyin Technology Co ltd
Priority to CN202210367454.7A priority Critical patent/CN114731948A/zh
Publication of CN114731948A publication Critical patent/CN114731948A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1225Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold or salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及水稻育种,具体涉及一种基于抗倒伏与抗旱性的水稻育种方法,测定种植水稻的初始直立角度,并监测种植区域的降水量及风力强度;计算经历恶劣天气环境后种植水稻的倒伏角度,并计算歪斜度;确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,筛选低于平均倒伏等级的水稻作为抗倒伏水稻;利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,提高水稻的抗旱性;本发明提供的技术方案能够有效克服现有技术所存在的水稻抗倒伏与抗旱性较差的缺陷。

Description

一种基于抗倒伏与抗旱性的水稻育种方法
技术领域
本发明涉及水稻育种,具体涉及一种基于抗倒伏与抗旱性的水稻育种方法。
背景技术
水稻所结子实即稻谷,稻谷脱去颖壳后称糙米,糙米碾去米糠层即可得到大米。世界上近一半人口以大米为主食,水稻除可食用外,还可以作为酿酒、制糖的工业原料,稻壳和稻秆可以用作牲畜饲料。中国水稻主产区主要是东北地区、长江流域、珠江流域,水稻属于直接经济作物。
水稻易倒伏是生产过程中普遍存在的问题,尤其是在大风大雨的恶劣天气环境下,更容易导致水稻茎秆倒伏,由此造成水稻出现严重的减产现象。据研究,因倒伏引起的水稻减产幅度大约10%~30%,有的甚至绝产。水稻出现倒伏后会严重影响光合作用能力,以及有机物质的运输、贮藏和积累,从而导致水稻产量下降。水稻如果在中后期出现倒伏,遇到连续阴雨天气,就会引起谷粒霉变和发芽,对大米质量造成不良影响。水稻出现倒伏不仅会给水稻产量和品质造成影响,还会影响到收获,增加收获难度。因此,水稻倒伏问题是制约水稻高产稳产的重要因素,需要我们采取措施解决。
此外,由于农业可耕地面积减少与人口膨胀,大米需求量不断增加,同时区域性和季节性干旱频发以及农业水资源匮乏等问题,使得水稻生产面临严峻挑战,而研究水稻节水抗旱技术、发展抗旱水稻成为水稻生产可持续发展的重要途径。
发明内容
(一)解决的技术问题
针对现有技术所存在的上述缺点,本发明提供了一种基于抗倒伏与抗旱性的水稻育种方法,能够有效克服现有技术所存在的水稻抗倒伏与抗旱性较差的缺陷。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种基于抗倒伏与抗旱性的水稻育种方法,包括以下步骤:
S1、测定种植水稻的初始直立角度,并监测种植区域的降水量及风力强度;
S2、计算经历恶劣天气环境后种植水稻的倒伏角度,并计算歪斜度;
S3、确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,筛选低于平均倒伏等级的水稻作为抗倒伏水稻;
S4、利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,提高水稻的抗旱性。
优选地,S1中测定种植水稻的初始直立角度,包括:
根据种植水稻高度将角度测量仪的水平尺固定于直立尺上适当高度H,记录水稻在水平尺上的投影长度S,利用反正切函数公式arctan(H/S)计算得到初始直立角度a。
优选地,S1中监测种植区域的降水量,包括:
利用降水量监测设备、气象站、多普勒天气雷达分别采集种植区域在设定时间段内的第一降水量p1、第二降水量p2、第三降水量p3
确定第一降水量p1、第二降水量p2、第三降水量p3分别对应的第一权重w1、第二权重w2、第三权重w3,依据各降水量数据及对应权重确定种植区域的实际降水量。
优选地,S2中计算经历恶劣天气环境后种植水稻的倒伏角度,并计算歪斜度,包括:
S21、获取种植水稻的初始直立角度a;
S22、通过角度测量仪测定经历恶劣天气环境后种植水稻的倾斜角度b;
S23、计算倒伏角度L=初始直立角度a-倾斜角度b;
S24、计算歪斜度C=倒伏角度L/初始直立角度a;
S25、重复S21-S24,计算经历恶劣天气环境后种植水稻在东、南、西、北四个方向上的歪斜度C。
优选地,S3中确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,包括:
S31、根据东、南、西、北四个方向上的歪斜度C确定经历恶劣天气环境后单株水稻的倒伏等级Q;
S32、在种植区域内对具有不同倒伏等级Q的水稻数量N进行统计;
S33、计算种植区域内所有水稻的平均倒伏等级
Figure BDA0003587713710000031
其中n为倒伏等级Q的种类数量。
优选地,S4中利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,包括:
利用CRISPR/Cas9系统实现,CRISPR/Cas9系统使用的向导RNA的靶序列为D11蛋白的CDS反义互补链的第132-154位。
优选地,所述D11蛋白的编码基因的抑制因子为抑制D11蛋白表达的干扰RNA,所述干扰RNA使D11蛋白的编码基因丧失生物学功能。
(三)有益效果
与现有技术相比,本发明所提供的一种基于抗倒伏与抗旱性的水稻育种方法,通过计算经历恶劣天气环境后种植水稻的倒伏角度以及歪斜度,确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,从而能够基于倒伏等级优选出抗倒伏水稻,并利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,通过降低D11蛋白编码基因的表达,有效提高水稻的抗旱性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的流程示意图;
图2为本发明中计算种植区域内所有水稻平均倒伏等级的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于抗倒伏与抗旱性的水稻育种方法,如图1和图2所示,①测定种植水稻的初始直立角度,并监测种植区域的降水量及风力强度。
其中,测定种植水稻的初始直立角度,包括:
根据种植水稻高度将角度测量仪的水平尺固定于直立尺上适当高度H,记录水稻在水平尺上的投影长度S,利用反正切函数公式arctan(H/S)计算得到初始直立角度a。
其中,监测种植区域的降水量,包括:
利用降水量监测设备、气象站、多普勒天气雷达分别采集种植区域在设定时间段内的第一降水量p1、第二降水量p2、第三降水量p3
确定第一降水量p1、第二降水量p2、第三降水量p3分别对应的第一权重w1、第二权重w2、第三权重w3,依据各降水量数据及对应权重确定种植区域的实际降水量。
本申请技术方案中,通过加权平均准确确定种植区域的实际降水量,进而能够对种植区域天气环境的恶劣情况进行评估。
②计算经历恶劣天气环境后种植水稻的倒伏角度,并计算歪斜度,具体包括:
S21、获取种植水稻的初始直立角度a;
S22、通过角度测量仪测定经历恶劣天气环境后种植水稻的倾斜角度b;
S23、计算倒伏角度L=初始直立角度a-倾斜角度b;
S24、计算歪斜度C=倒伏角度L/初始直立角度a;
S25、重复S21-S24,计算经历恶劣天气环境后种植水稻在东、南、西、北四个方向上的歪斜度C。
③确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,筛选低于平均倒伏等级的水稻作为抗倒伏水稻。
其中,确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,包括:
S31、根据东、南、西、北四个方向上的歪斜度C确定经历恶劣天气环境后单株水稻的倒伏等级Q(通过东、南、西、北四个方向上的歪斜度C与倒伏等级Q之间的映射关系表,确定单株水稻的倒伏等级Q);
S32、在种植区域内对具有不同倒伏等级Q的水稻数量N进行统计;
S33、计算种植区域内所有水稻的平均倒伏等级
Figure BDA0003587713710000061
其中n为倒伏等级Q的种类数量。
本申请技术方案中,通过计算经历恶劣天气环境后种植水稻的倒伏角度以及歪斜度,确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,从而能够基于倒伏等级优选出抗倒伏水稻。
④利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,提高水稻的抗旱性。
其中,利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,包括:
利用CRISPR/Cas9系统实现,CRISPR/Cas9系统使用的向导RNA的靶序列为D11蛋白的CDS反义互补链的第132-154位。
D11蛋白的编码基因的抑制因子为抑制D11蛋白表达的干扰RNA,干扰RNA使D11蛋白的编码基因丧失生物学功能。
本申请技术方案中,基于D11蛋白编码基因提供的基因靶点,利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,通过降低D11蛋白编码基因的表达,有效提高水稻的抗旱性。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种基于抗倒伏与抗旱性的水稻育种方法,其特征在于:包括以下步骤:
S1、测定种植水稻的初始直立角度,并监测种植区域的降水量及风力强度;
S2、计算经历恶劣天气环境后种植水稻的倒伏角度,并计算歪斜度;
S3、确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,筛选低于平均倒伏等级的水稻作为抗倒伏水稻;
S4、利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,提高水稻的抗旱性。
2.根据权利要求1所述的基于抗倒伏与抗旱性的水稻育种方法,其特征在于:S1中测定种植水稻的初始直立角度,包括:
根据种植水稻高度将角度测量仪的水平尺固定于直立尺上适当高度H,记录水稻在水平尺上的投影长度S,利用反正切函数公式arctan(H/S)计算得到初始直立角度a。
3.根据权利要求1所述的基于抗倒伏与抗旱性的水稻育种方法,其特征在于:S1中监测种植区域的降水量,包括:
利用降水量监测设备、气象站、多普勒天气雷达分别采集种植区域在设定时间段内的第一降水量p1、第二降水量p2、第三降水量p3
确定第一降水量p1、第二降水量p2、第三降水量p3分别对应的第一权重w1、第二权重w2、第三权重w3,依据各降水量数据及对应权重确定种植区域的实际降水量。
4.根据权利要求1所述的基于抗倒伏与抗旱性的水稻育种方法,其特征在于:S2中计算经历恶劣天气环境后种植水稻的倒伏角度,并计算歪斜度,包括:
S21、获取种植水稻的初始直立角度a;
S22、通过角度测量仪测定经历恶劣天气环境后种植水稻的倾斜角度b;
S23、计算倒伏角度L=初始直立角度a-倾斜角度b;
S24、计算歪斜度C=倒伏角度L/初始直立角度a;
S25、重复S21-S24,计算经历恶劣天气环境后种植水稻在东、南、西、北四个方向上的歪斜度C。
5.根据权利要求4所述的基于抗倒伏与抗旱性的水稻育种方法,其特征在于:S3中确定经历恶劣天气环境后单株水稻的倒伏等级,并计算种植区域内所有水稻的平均倒伏等级,包括:
S31、根据东、南、西、北四个方向上的歪斜度C确定经历恶劣天气环境后单株水稻的倒伏等级Q;
S32、在种植区域内对具有不同倒伏等级Q的水稻数量N进行统计;
S33、计算种植区域内所有水稻的平均倒伏等级
Figure FDA0003587713700000021
其中n为倒伏等级Q的种类数量。
6.根据权利要求1所述的基于抗倒伏与抗旱性的水稻育种方法,其特征在于:S4中利用D11蛋白的编码基因的抑制因子抑制抗倒伏水稻中D11蛋白的表达,包括:
利用CRISPR/Cas9系统实现,CRISPR/Cas9系统使用的向导RNA的靶序列为D11蛋白的CDS反义互补链的第132-154位。
7.根据权利要求6所述的基于抗倒伏与抗旱性的水稻育种方法,其特征在于:所述D11蛋白的编码基因的抑制因子为抑制D11蛋白表达的干扰RNA,所述干扰RNA使D11蛋白的编码基因丧失生物学功能。
CN202210367454.7A 2022-04-08 2022-04-08 一种基于抗倒伏与抗旱性的水稻育种方法 Pending CN114731948A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210367454.7A CN114731948A (zh) 2022-04-08 2022-04-08 一种基于抗倒伏与抗旱性的水稻育种方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210367454.7A CN114731948A (zh) 2022-04-08 2022-04-08 一种基于抗倒伏与抗旱性的水稻育种方法

Publications (1)

Publication Number Publication Date
CN114731948A true CN114731948A (zh) 2022-07-12

Family

ID=82280517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210367454.7A Pending CN114731948A (zh) 2022-04-08 2022-04-08 一种基于抗倒伏与抗旱性的水稻育种方法

Country Status (1)

Country Link
CN (1) CN114731948A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116724A (zh) * 2020-01-20 2020-05-08 安徽省农业科学院水稻研究所 水稻d11基因在调控植物抗旱性中的应用
CN111887112A (zh) * 2020-07-14 2020-11-06 怀化职业技术学院 一种利用抗倒伏指数辅助水稻育种的方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116724A (zh) * 2020-01-20 2020-05-08 安徽省农业科学院水稻研究所 水稻d11基因在调控植物抗旱性中的应用
CN111887112A (zh) * 2020-07-14 2020-11-06 怀化职业技术学院 一种利用抗倒伏指数辅助水稻育种的方法及系统

Similar Documents

Publication Publication Date Title
Kidron Altitude dependent dew and fog in the Negev Desert, Israel
Yuan et al. Variety distribution pattern and climatic potential productivity of spring maize in Northeast China under climate change
Homma et al. Toposequential variation in soil fertility and rice productivity of rainfed lowland paddy fields in mini-watershed (Nong) in Northeast Thailand
Liu et al. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China
Trnka et al. Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019.
Yitbarek et al. Physical land suitability evaluation for rainfed production of cotton, maize, upland rice and sorghum in Abobo Area, western Ethiopia
Mathewos et al. Parametric land suitability assessment for rainfed agriculture: The case of bilate alaba sub-watershed, Southern Ethiopia
Mistry et al. Development of yield forecast model using multiple regression analysis and impact of climatic parameters on spring wheat
Yu et al. Dynamic agricultural supply response under economic transformation
CN114731948A (zh) 一种基于抗倒伏与抗旱性的水稻育种方法
CN113170669B (zh) 一种高节水指数小麦材料的预鉴选方法
Moot et al. Natural resources for Canterbury agriculture
Satyanarayana et al. Breeding strategies for lodging resistance in rice
CN115049126A (zh) 基于温度效应和历史阈值的蒸散量预测方法
Itoh et al. Effects of soil type, vertical root distribution and precipitation on grain yield of winter wheat
Jóvér et al. Spatial decision support for crop structure adjustment–a case study for selection of potential areas for sorghum (Sorghum bicolor (L.) Moench) production
Kowshika et al. Performance of rainfed chilli crop in Tamil Nadu under climate change in RCP4. 5
Gross Assessment of future agricultural land potential using gis and regional climate projections for Hawaiʻi island--an application to macadamia nut and coffee
Kashiwar et al. Evaluation of long term rainfall variability of Bhandara (Maharashtra), India using GIS
Zhang et al. ANALYSIS OF DROUGHT-FLOOD ABRUPT ALTERNATION OF TOBACCO BASED ON PRECIPITATION AND SOIL PONDING IN SIUWEN CHINA.
Waqas et al. Effects of deficit irrigation on potato physical and chemical characteristics under different planting patterns
Wang et al. Water use of some recent bread and durum wheat cultivars in western Canada
Feizi et al. Saffron yield variability by climatic factors in the northeast of Iran
Wang et al. Temporal and spatial variation of morpho-physiological characteristics of spring maize under mulched drip irrigation in northeastern China
Reddy Agroclimatic classification of the semi-arid tropics III. Characteristics of variables relevant to crop production potential

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination