CN114724644B - Method and equipment for predicting gasoline octane number based on intermolecular interaction - Google Patents
Method and equipment for predicting gasoline octane number based on intermolecular interaction Download PDFInfo
- Publication number
- CN114724644B CN114724644B CN202210300866.9A CN202210300866A CN114724644B CN 114724644 B CN114724644 B CN 114724644B CN 202210300866 A CN202210300866 A CN 202210300866A CN 114724644 B CN114724644 B CN 114724644B
- Authority
- CN
- China
- Prior art keywords
- gasoline
- octane number
- interaction
- groups
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 239000003502 gasoline Substances 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 73
- 230000009878 intermolecular interaction Effects 0.000 title claims abstract description 16
- 230000003993 interaction Effects 0.000 claims abstract description 97
- 239000000203 mixture Substances 0.000 claims abstract description 57
- 238000002156 mixing Methods 0.000 claims abstract description 54
- 230000004001 molecular interaction Effects 0.000 claims abstract description 51
- 238000010276 construction Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 73
- 150000001336 alkenes Chemical class 0.000 claims description 20
- 230000002068 genetic effect Effects 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 10
- 238000011160 research Methods 0.000 claims description 9
- 150000001924 cycloalkanes Chemical class 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 8
- 238000005315 distribution function Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 16
- 238000004088 simulation Methods 0.000 abstract description 8
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000002699 waste material Substances 0.000 abstract description 3
- 239000003208 petroleum Substances 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 21
- 238000010586 diagram Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 7
- 230000006399 behavior Effects 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 3
- 238000013213 extrapolation Methods 0.000 description 3
- 239000002735 gasoline substitute Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 238000001833 catalytic reforming Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000003442 catalytic alkylation reaction Methods 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/90—Programming languages; Computing architectures; Database systems; Data warehousing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本申请提供一种基于分子间相互作用的汽油辛烷值预测方法及设备,涉及汽油辛烷值预测领域。该方法包括:基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式;基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数;基于分子相互作用函数,得到预测汽油辛烷值的混合方程。本申请的方法,实现对汽油混合物从分子层面进行模型构建,从而避免在模拟过程中忽略汽油不同类型分子间的相互作用关系,使得模拟过程更加贴近真实情况,模拟后得到的数据误差小,结果更加可靠,有利于从理论上指导不同牌号商品汽油的配方调和过程,避免调和过程中石油原材料的浪费。
The application provides a gasoline octane number prediction method and equipment based on intermolecular interactions, and relates to the field of gasoline octane number prediction. The method includes: based on the interaction between six groups of gasoline molecules, constructing any two groups of interaction equations; based on any two groups of interaction equations, constructing a nonlinear molecular interaction function between gasoline molecules ; Based on the molecular interaction function, a mixture equation for predicting gasoline octane number is obtained. The method of this application realizes the model construction of the gasoline mixture from the molecular level, thereby avoiding ignoring the interaction relationship between different types of gasoline molecules during the simulation process, making the simulation process closer to the real situation, and the data obtained after the simulation have small errors, and the results It is more reliable, and it is beneficial to theoretically guide the blending process of different grades of commercial gasoline, and avoid the waste of petroleum raw materials in the blending process.
Description
技术领域technical field
本申请涉及汽油辛烷值预测,尤其涉及一种基于分子间相互作用的汽油辛烷值预测方法及设备。The present application relates to gasoline octane number prediction, in particular to a gasoline octane number prediction method and equipment based on intermolecular interactions.
背景技术Background technique
汽油是最重要的石油化工产品之一。成品油是通过多种组分油调和而来的,包括催化裂化、加氢、烷基化、重整、直馏汽油等。不同种类的汽油物流组成和性质差别很大。炼厂调和配方的优化需要准确预测每个“调和组分”和成品油的宏观性质。在所有涉及的宏观性质中,辛烷值的预测是长期以来最困难的。准确预测辛烷值要解决两个方面的问题。一方面,由于辛烷值对分子结构高度敏感,甲基位置的变化也会导致辛烷值的显著差异,分子燃烧速度的大小依赖于分子的热稳定性,而它又与分子的结构高度相关,因此,辛烷值与汽油的分子组成紧密相关,想要准确预测辛烷值,需要建立分子结构与辛烷值之间的定量关系,从而了解不同结构对辛烷值的贡献。另一方面,辛烷值在混合过程中会呈现强烈的非线性,既有协同作用,又存在拮抗作用,由于辛烷值高度的非线性,还需要探究不同种类汽油组分之间的相互作用关系并确定其混合规律,其混合规律可以帮助我们充分利用各组分的协同作用来提高汽油的质量。Gasoline is one of the most important petrochemical products. Refined oil is blended from various component oils, including catalytic cracking, hydrogenation, alkylation, reforming, and straight-run gasoline. The composition and properties of different types of gasoline streams vary widely. Optimization of refinery blending recipes requires accurate prediction of the macroscopic properties of each "blending component" and refined oil. Of all the macroscopic properties involved, octane prediction is by far the most difficult. Accurately predicting octane ratings requires addressing two issues. On the one hand, because the octane number is highly sensitive to the molecular structure, the change of the methyl position will also lead to a significant difference in the octane number, and the molecular burning speed depends on the thermal stability of the molecule, which in turn is highly related to the molecular structure , Therefore, the octane number is closely related to the molecular composition of gasoline. To accurately predict the octane number, it is necessary to establish a quantitative relationship between the molecular structure and the octane number, so as to understand the contribution of different structures to the octane number. On the other hand, the octane number will show a strong nonlinearity in the mixing process, which has both synergistic and antagonistic effects. Due to the high degree of nonlinearity of the octane number, it is necessary to explore the interaction between different types of gasoline components relationship and determine its mixing law, which can help us make full use of the synergistic effect of each component to improve the quality of gasoline.
研究人员已经开发了多种汽油混合物辛烷值预测方法,主要分为基于宏观性质混合的、基于光谱技术的和基于汽油分子集总的方法。由于辛烷值是通过将测试燃料的行为与由其液体体积分数定义的正庚烷和异辛烷混合物的行为进行比较来确定的。研究者们采用几种化合物的组合(正庚烷、异辛烷和甲苯)来替代并模拟实际的汽油燃料,同时对其混合行为进行详细的描述。Researchers have developed a variety of octane prediction methods for gasoline mixtures, which are mainly divided into methods based on macroscopic property mixing, spectral techniques, and gasoline molecular lumping. Since the octane number is determined by comparing the behavior of the test fuel to that of a mixture of n-heptane and isooctane defined by its liquid volume fraction. The researchers used a combination of several compounds (n-heptane, isooctane, and toluene) to substitute and simulate actual gasoline fuel, while describing their mixing behavior in detail.
但是实际汽油的分子组成和混合效果极其复杂,由汽油替代混合物开发的辛烷值预测模型在应用到汽油调合时会出现较大的误差。因此,上述方法具有共同的缺点:忽略汽油分子层次的信息,没有探究汽油不同类型分子间的相互作用关系。However, the molecular composition and mixing effect of actual gasoline are extremely complex, and the octane number prediction model developed from gasoline substitute mixtures will have large errors when applied to gasoline blending. Therefore, the above methods have common shortcomings: they ignore the information at the molecular level of gasoline, and do not explore the interaction relationship between different types of gasoline molecules.
发明内容Contents of the invention
本申请提供一种基于分子间相互作用的汽油辛烷值预测方法及设备,用以解决汽油替代混合物开发的辛烷值预测模型忽略汽油分子层次的信息,没有探究汽油不同类型分子间的相互作用关系的问题。This application provides a gasoline octane number prediction method and equipment based on intermolecular interactions to solve the problem that the octane number prediction model developed for gasoline substitute mixtures ignores information at the molecular level of gasoline and does not explore the interactions between different types of gasoline molecules relationship problem.
第一方面,本申请提供一种基于分子间相互作用的汽油辛烷值预测方法,包括:In the first aspect, the application provides a method for predicting gasoline octane number based on intermolecular interactions, including:
基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式,其中,所述六大族类的相互作用包括链烷烃和烯烃、链烷烃和芳香烃、烯烃和环烷烃、环烷烃和芳香烃、烯烃和芳香烃以及含氧化合物和烃类之间的相互作用;Based on the interactions of the six major groups of gasoline molecules, the interaction equations of any two groups are constructed, wherein the interactions of the six major groups include paraffins and alkenes, paraffins and aromatics, alkenes and cycloalkanes, Interactions between naphthenes and aromatics, olefins and aromatics, and oxygenates and hydrocarbons;
基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数;Based on the interaction equations of any two families, a nonlinear molecular interaction function between gasoline molecules is constructed;
基于分子相互作用函数,得到预测汽油辛烷值的混合方程。Based on the molecular interaction function, a mixing equation for predicting gasoline octane number is obtained.
在一种可能的设计中,所述基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式,包括基于瑞利分布函数构建由两个参数调整曲线变化的任一两族的相互作用关系等式:In a possible design, based on the interactions between the six groups of gasoline molecules, construct any two groups of interaction equations, including constructing any one of the two parameter adjustment curves based on the Rayleigh distribution function. The interaction equation of the two families:
其中,ΔONij为i和j两个族类的相互作用函数;kij_a和kij_b是二元交互作用参数;vi和vj分别对应i和j两个族类的体积分数。 Among them, ΔON ij is the interaction function of two groups i and j; kij_a and kij_b are binary interaction parameters; v i and v j correspond to the volume fractions of two groups i and j, respectively.
在一种可能的设计中,所述基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数:In a possible design, the non-linear molecular interaction function between gasoline molecules is constructed based on any two families of interaction equations:
ONNonLinear=∑i∑jΔONij,其中,ONNonLinear为非线性的分子相互作用函数;ΔONij为i和j两个族类的相互作用函数。ON NonLinear = ∑ i ∑ j ΔON ij , wherein, ON NonLinear is a nonlinear molecular interaction function; ΔON ij is an interaction function of two groups i and j.
在一种可能的设计中,所述基于分子相互作用函数,得到预测汽油辛烷值的混合方程之前,还包括:获取并基于三元混合物的辛烷值,构建线性混合函数,其中,所述三元混合物的辛烷值为已知辛烷值数据的三元混合物。In a possible design, before obtaining the mixing equation for predicting the gasoline octane number based on the molecular interaction function, it also includes: obtaining and constructing a linear mixing function based on the octane number of the ternary mixture, wherein the Ternary mixture octane number Ternary mixture for which octane data is known.
在一种可能的设计中,所述线性混合函数为:In one possible design, the linear mixing function is:
ONLinear=∑iviONi,其中,ONLinear为线性的分子相互作用函数;vi是分子i的体积分数;ONi是分子i的辛烷值。ON Linear =∑ i v i ON i , wherein, ON Linear is a linear molecular interaction function; v i is the volume fraction of molecule i; ON i is the octane number of molecule i.
在一种可能的设计中,所述基于分子相互作用函数,得到预测汽油辛烷值的混合方程之前,还包括:将构建的线性混合函数和分子相互作用函数相加,得到预测汽油辛烷值的混合方程:In a possible design, before obtaining the mixing equation for predicting the gasoline octane number based on the molecular interaction function, it also includes: adding the constructed linear mixing function and the molecular interaction function to obtain the predicted gasoline octane number The mixing equation for :
ON=ONLinear+ONNonLinear,其中,ON为混合后的分子相互作用函数;ONLinear为线性的分子相互作用函数;ONNonLinear为非线性的分子相互作用函数。ON=ON Linear +ON NonLinear , wherein, ON is a mixed molecular interaction function; ON Linear is a linear molecular interaction function; ON NonLinear is a nonlinear molecular interaction function.
在一种可能的设计中,所述二元交互作用参数的取值方法为:采用遗传算法进行拟合得到参数,然后将遗传算法输出的参数作为初始值输入到局部优化算法中进行优化输出。In a possible design, the value selection method of the binary interaction parameters is as follows: the genetic algorithm is used to perform fitting to obtain the parameters, and then the parameters output by the genetic algorithm are input as initial values into the local optimization algorithm for optimized output.
在一种可能的设计中,所述局部优化算法采用序列二次规划算法,所述序列二次规划算法的上限和下限分别设置为原参数的120%和80%。In a possible design, the local optimization algorithm adopts a sequential quadratic programming algorithm, and the upper limit and lower limit of the sequential quadratic programming algorithm are respectively set to 120% and 80% of the original parameters.
第二方面,本申请提供一种电子设备,包括:处理器,以及与所述处理器通信连接的存储器;In a second aspect, the present application provides an electronic device, including: a processor, and a memory communicatively connected to the processor;
所述存储器存储计算机执行指令;the memory stores computer-executable instructions;
所述处理器执行所述存储器存储的计算机执行指令,以实现基于分子间相互作用的汽油辛烷值预测方法。The processor executes the computer-executed instructions stored in the memory, so as to realize the gasoline octane number prediction method based on intermolecular interactions.
第三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现基于分子间相互作用的汽油辛烷值预测方法。In a third aspect, the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium. Alkane Number Prediction Method.
本申请提供的基于分子间相互作用的汽油辛烷值预测方法及设备,通过基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式,基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数,基于分子相互作用函数,得到预测汽油辛烷值的混合方程,实现对汽油混合物从分子层面进行模型构建,从而避免在模拟过程中忽略汽油不同类型分子间的相互作用关系,使得模拟过程更加贴近真实情况,模拟后得到的数据误差小,结果更加可靠,有利于从理论上指导不同牌号商品汽油的配方调和过程,避免调和过程中石油原材料的浪费。The gasoline octane number prediction method and equipment based on intermolecular interactions provided by this application construct the interaction equations of any two groups based on the interactions between the six groups of gasoline molecules, and based on the interaction between any two groups Equation of action relationship, construct nonlinear molecular interaction function between gasoline molecules, and obtain the mixing equation for predicting gasoline octane number based on the molecular interaction function, realize the model construction of gasoline mixture from the molecular level, so as to avoid the Neglecting the interaction relationship between different types of gasoline molecules makes the simulation process closer to the real situation. The error of the data obtained after the simulation is small, and the results are more reliable. Raw material waste.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the application and together with the description serve to explain the principles of the application.
图1为本申请基于分子间相互作用的汽油辛烷值预测方法流程图;Fig. 1 is the flow chart of the gasoline octane number prediction method based on intermolecular interaction of the present application;
图2为本申请拟合汽油混合过程中发生的正、负效应和线性混合示意图;Fig. 2 is the positive and negative effect and the linear mixing schematic diagram that occur in the application fitting gasoline mixing process;
图3为本申请辛烷值混合规则示意图;Fig. 3 is the schematic diagram of octane number mixing rule of the present application;
图4为本申请研究法辛烷值数据的分布情况以及实际汽油和三元混合物的预测值和实验值的对比图;Fig. 4 is the distribution situation of the application's research method octane number data and the comparison chart of the predicted value and experimental value of actual gasoline and ternary mixture;
图5为本申请马达法辛烷值实验数据的分布情况以及实际汽油和三元混合物的预测值和实验值的对比图;Fig. 5 is the distribution situation of the application motor method octane number experiment data and the contrast figure of the predicted value and the experimental value of actual gasoline and ternary mixture;
图6为本申请三元混合物的实验、线性和非线性混合值之间的比较结果示意图;Fig. 6 is the comparative result schematic diagram between the experiment of ternary mixture of the present application, linear and nonlinear mixing value;
图7为本申请链烷烃与不同类型烃类混合后法辛烷值随体积分数的变化趋势示意图;Figure 7 is a schematic diagram of the variation trend of the legal octane number with the volume fraction after the paraffins of the present application are mixed with different types of hydrocarbons;
图8为本申请不同汽油物流法辛烷值和马达法辛烷值的实验值和预测值的比较示意图;Fig. 8 is the comparison schematic diagram of the experimental value and predicted value of different gasoline stream method octane number and motor method octane number of the present application;
图9为本申请电子设备结构示意图。FIG. 9 is a schematic structural diagram of an electronic device of the present application.
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。By means of the above drawings, specific embodiments of the present application have been shown, which will be described in more detail hereinafter. These drawings and text descriptions are not intended to limit the scope of the concept of the application in any way, but to illustrate the concept of the application for those skilled in the art by referring to specific embodiments.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with this application. Rather, they are merely examples of apparatuses and methods consistent with aspects of the present application as recited in the appended claims.
首先对本申请所涉及的名词进行解释:First, the nouns involved in this application are explained:
三元混合物:是指从API Research Project 45中搜集的汽油替代混合物的统称,由48%体积分数的2,2,4-三甲基戊烷、32%的正庚烷和20%的其他化合物构成,其中,其他化合物包括240种不同类型的烃类化合物。Ternary mixture: refers to the general term for the gasoline replacement mixture collected from API Research Project 45, consisting of 48% volume fraction of 2,2,4-trimethylpentane, 32% n-heptane and 20% other compounds Composition, among others, includes 240 different types of hydrocarbons.
API Research Project 45:是指一种包含分子组成、质量分数以及辛烷值的数据手册。API Research Project 45: refers to a data booklet that includes molecular composition, mass fraction, and octane number.
遗传算法:是指在辛烷值预测方法中的一种通用算法,通过输入分子组成、质量分数以及辛烷值后,能够输出交互作用参数。Genetic Algorithm: It refers to a general algorithm in octane number prediction method, which can output interaction parameters after inputting molecular composition, mass fraction and octane number.
序列二次规划算法:是指解决目标函数或约束条件中包含非线性函数的规划问题,本申请中用于进一步优化遗传算法输出的交互作用参数。Sequential quadratic programming algorithm: refers to solving the programming problem that contains nonlinear functions in the objective function or constraints, and is used in this application to further optimize the interaction parameters output by the genetic algorithm.
本申请主要应用于模拟不同牌号商品汽油调和过程的辛烷值预测模型中。现有汽油中所含的化合物已经能够通过气相色谱技术进行分析,获取分子定性和定量的信息,但准确预测汽油辛烷值仍然十分困难,主要原因在于汽油混合时同时存在线性和非线性行为,线性行为相对容易通过几种主要化合物进行模拟,但非线性行为不能简单通过以往几种化合物的组合(正庚烷、异辛烷和甲苯)模拟汽油燃料分析得到,会产生较大误差,这主要是由于非线性的本质是汽油混合时不同类型分子相互作用(协同和拮抗作用)的结果,因此,如何探究并确定汽油中不同类型分子之间的相互作用关系至关重要,这就需要开发一种相互作用函数来准确描述分子间的非线性行为,使模型能够具有较好的预测和泛化性能。This application is mainly used in an octane number prediction model for simulating the blending process of different grades of commercial gasoline. The compounds contained in the existing gasoline can be analyzed by gas chromatography to obtain molecular qualitative and quantitative information, but it is still very difficult to accurately predict the gasoline octane number. The main reason is that there are both linear and nonlinear behaviors when gasoline is mixed. The linear behavior is relatively easy to simulate through several main compounds, but the nonlinear behavior cannot be simply obtained by simulating gasoline fuel analysis through the combination of several compounds (n-heptane, isooctane and toluene) in the past, which will cause large errors. Because the nonlinear nature is the result of different types of molecular interactions (synergism and antagonism) when gasoline is mixed, how to explore and determine the interaction relationship between different types of molecules in gasoline is very important, which requires the development of a An interaction function is used to accurately describe the nonlinear behavior between molecules, so that the model can have better prediction and generalization performance.
本申请提供的汽油辛烷值预测方法,旨在解决现有技术的如上技术问题。The method for predicting gasoline octane number provided by this application aims to solve the above technical problems in the prior art.
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。The technical solution of the present application and how the technical solution of the present application solves the above technical problems will be described in detail below with specific embodiments. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. Embodiments of the present application will be described below in conjunction with the accompanying drawings.
图1为本申请基于分子间相互作用的汽油辛烷值预测方法流程图。如图1所示,该方法包括:Fig. 1 is a flow chart of the method for predicting gasoline octane number based on intermolecular interactions of the present application. As shown in Figure 1, the method includes:
S101、基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式,其中,六大族类的相互作用包括链烷烃和烯烃、链烷烃和芳香烃、烯烃和环烷烃、环烷烃和芳香烃、烯烃和芳香烃以及含氧化合物和烃类之间的相互作用。S101. Based on the interaction of the six major groups of gasoline molecules, construct the interaction equation of any two groups, wherein the interaction of the six major groups includes paraffins and alkenes, paraffins and aromatics, alkenes and cycloalkanes, Interactions between naphthenes and aromatics, olefins and aromatics, and oxygenates and hydrocarbons.
汽油分子间六大族类的相互作用是混合规则的核心部分。首先,汽油分子被分成P/I/O/N/A/OXY六大族类,而分子相互作用是由六对相互作用组成,包括链烷烃和烯烃、链烷烃和芳香烃、烯烃和环烷烃、环烷烃和芳香烃、烯烃和芳香烃以及含氧化合物和烃类之间的相互作用,因此,需要用两个相互作用的族类参数来调控分子间相互作用的曲线变化关系,这里的两个相互作用的族类参数为上述六对相互作用关系之一。The interaction of the six major families of gasoline molecules is the core part of the mixing rules. First of all, gasoline molecules are divided into six groups: P/I/O/N/A/OXY, and molecular interactions are composed of six pairs of interactions, including paraffins and alkenes, paraffins and aromatics, alkenes and cycloalkanes, The interactions between cycloalkanes and aromatic hydrocarbons, alkenes and aromatic hydrocarbons, and oxygen-containing compounds and hydrocarbons, therefore, two interaction family parameters are needed to regulate the curve change relationship of intermolecular interactions, here the two The family parameter of the interaction is one of the above six pairs of interaction relations.
图2为本申请拟合汽油混合过程中发生的正、负效应和线性混合示意图。采用二元交互作用参数作为控制曲线形状变化的控制量,拟合汽油混合过程中发生的正、负效应或线性混合。当二元交互作用参数为正数时,表明相互作用对混合物的辛烷值产生有利影响,此时,随着两个族类的相互作用函数的增大,变化曲线会逐渐突出,如图2b所示;相反,当二元交互作用参数为负数时,表明相互作用对混合物的辛烷值产生不利影响,此时,随着两个族类的相互作用函数的增大,变化曲线会逐渐凹陷,如图2c所示;特殊的,当二元交互作用参数为0时,表明相互作用对混合物的辛烷值没有贡献,如图2a所示。Figure 2 is a schematic diagram of the positive and negative effects and linear mixing that occur during the fitting of gasoline mixing in the present application. The binary interaction parameter is used as the control quantity to control the shape change of the curve, and the positive and negative effects or linear mixing occurring in the gasoline mixing process are fitted. When the binary interaction parameter is a positive number, it indicates that the interaction has a favorable effect on the octane number of the mixture. At this time, as the interaction function of the two groups increases, the change curve will gradually become prominent, as shown in Figure 2b ; on the contrary, when the binary interaction parameter is negative, it indicates that the interaction has an adverse effect on the octane number of the mixture. At this time, as the interaction function of the two groups increases, the change curve will gradually sag , as shown in Figure 2c; in particular, when the binary interaction parameter is 0, it indicates that the interaction has no contribution to the octane number of the mixture, as shown in Figure 2a.
S102、基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数。S102. Based on the interaction equations of any two families, construct a non-linear molecular interaction function between gasoline molecules.
将步骤S101中得到的所有任一两族的相互作用关系等式进行加和,即为所有汽油分子间非线性的分子相互作用函数。The sum of all the interaction relation equations of any two families obtained in step S101 is the non-linear molecular interaction function between all gasoline molecules.
S103、基于分子相互作用函数,得到预测汽油辛烷值的混合方程。S103. Obtain a mixing equation for predicting the gasoline octane number based on the molecular interaction function.
将步骤S102中得到的非线性的分子相互作用函数与预先解算出的线性的分子相互作用函数相加即为预测的汽油辛烷值,其中,线性的分子相互作用函数为通过已知汽油燃料混合物的辛烷值确定,即加和求解汽油燃料中所有分子辛烷值的线性体积混合值。Adding the nonlinear molecular interaction function obtained in step S102 to the linear molecular interaction function calculated in advance is the predicted gasoline octane number, wherein the linear molecular interaction function is obtained through the known gasoline fuel mixture The octane number is determined by summing and solving for a linear volumetric mixture of all molecular octane numbers in the gasoline fuel.
本实施例通过基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式,基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数,基于分子相互作用函数,得到预测汽油辛烷值的混合方程,实现对汽油混合物从分子层面进行模型构建,从而避免在模拟过程中忽略汽油不同类型分子间的相互作用关系,使得模拟过程更加贴近真实情况,模拟后得到的数据误差小,结果更加可靠,有利于从理论上指导不同牌号商品汽油的配方调和过程,避免调和过程中石油原材料的浪费。In this example, based on the interaction of the six major groups of gasoline molecules, the interaction equations of any two groups are constructed, and the nonlinear molecular interaction functions between gasoline molecules are constructed based on the interaction equations of any two groups. , based on the molecular interaction function, the mixture equation for predicting the octane number of gasoline is obtained, and the gasoline mixture is modeled at the molecular level, so as to avoid ignoring the interaction relationship between different types of gasoline molecules during the simulation process, making the simulation process closer to In the real situation, the error of the data obtained after the simulation is small, and the results are more reliable, which is conducive to theoretically guiding the blending process of different brands of commercial gasoline and avoiding the waste of petroleum raw materials in the blending process.
下面采用一种可能的实施例进行进一步陈述,用来说明具体如何实现基于分子间相互作用的汽油辛烷值预测方法。The following uses a possible embodiment to make a further statement to illustrate how to realize the gasoline octane number prediction method based on intermolecular interactions.
图3为本申请辛烷值混合规则示意图。如图3所示,预测汽油辛烷值的混合方程包括两部分,即线性部分和非线性部分。Fig. 3 is a schematic diagram of the octane number mixing rule of the present application. As shown in Fig. 3, the mixing equation for predicting gasoline octane number includes two parts, namely, a linear part and a nonlinear part.
通过分析三元混合物的辛烷值,研究不同类型分子之间的相互作用关系,从而确定汽油分子间的相互作用关系。具体过程为:By analyzing the octane number of the ternary mixture, the interaction relationship between different types of molecules is studied, so as to determine the interaction relationship between gasoline molecules. The specific process is:
从API Research Project 45中搜集了三元混合物的辛烷值实验数据,其中三元混合物是由48%体积分数的2,2,4-三甲基戊烷、32%的正庚烷和20%的其他化合物构成。将2,2,4-三甲基戊烷和正庚烷作为一个整体来研究它们与其他化合物之间的相互作用关系。然后计算它们与链烷烃、烯烃、环烷烃和芳香烃的线性混合值,并与实验辛烷值进行比较。发现链烷烃与链烷烃、链烷烃和环烷烃之间几乎没有相互作用,链烷烃与烯烃、链烷烃与芳烃之间存在协同效应。由于数据库中没有烯烃、环烷烃和芳香烃之间的辛烷值实验数据,因此无法研究它们之间的相互作用关系,因此,需要在这里先假设烯烃与环烷烃、烯烃与芳香烃、环烷烃与芳香烃存在相互作用。此外,生产的汽油总是含有少量的含氧添加剂,含氧化合物和烃类之间可能存在协同或拮抗作用,因此增加了它们之间的交互作用参数。The octane number experimental data of the ternary mixture was collected from
具体的,线性部分是汽油燃料中存在的所有分子的辛烷值的线性体积混合值,其计算公式为:Specifically, the linear portion is the linear volumetric blend of the octane ratings of all molecules present in the gasoline fuel, calculated as:
ONLinear=∑iviONi,ON Linear =∑ i v i ON i ,
其中,ONLinear为线性的分子相互作用函数;vi是分子i的体积分数;ONi是分子i的辛烷值。混合物中所含分子的ONi可以是实验值,或者是用预开发的结构性质关联模型得到的计算值。Among them, ON Linear is a linear molecular interaction function; v i is the volume fraction of molecule i; ON i is the octane number of molecule i. The ON i of the molecules contained in the mixture can be either experimental or calculated using a pre-developed structure-property correlation model.
汽油分子被分成P/I/O/N/A/OXY六大族类,而分子相互作用是由六对相互作用组成,包括链烷烃和烯烃、链烷烃和芳香烃、烯烃和环烷烃、环烷烃和芳香烃、烯烃和芳香烃以及含氧化合物和烃类之间的相互作用。Gasoline molecules are divided into six categories: P/I/O/N/A/OXY, and molecular interactions are composed of six pairs of interactions, including alkanes and alkenes, alkanes and aromatics, alkenes and naphthenes, naphthenes Interactions between aromatics, olefins and aromatics, and oxygenates and hydrocarbons.
具体的,非线性部分是通过拟合所有族类的相互作用函数后得到的汽油分子间非线性等式:Specifically, the nonlinear part is the gasoline intermolecular nonlinear equation obtained by fitting the interaction functions of all families:
ONNonLinear=∑i∑j ΔONij,ON NonLinear = ∑ i ∑ j ΔON ij ,
其中,ONNonLinear为非线性的分子相互作用函数;ΔONij为i和j两个族类的相互作用函数。Among them, ON NonLinear is a nonlinear molecular interaction function; ΔON ij is an interaction function of two classes i and j.
进一步的,参考瑞利分布函数构建两个族类的相互作用关系,公式如下:Further, referring to the Rayleigh distribution function to construct the interaction relationship between the two families, the formula is as follows:
其中,kij_a和kij_b是二元交互作用参数;vi和vj分别对应i和j两个族类的体积分数。Among them, kij_a and kij_b are binary interaction parameters; v i and v j correspond to the volume fractions of the two families i and j, respectively.
进一步的,二元交互作用参数的取值方法为:采用遗传算法进行拟合得到参数,然后将遗传算法输出的参数作为初始值输入到局部优化算法中进行优化输出。Further, the value method of binary interaction parameters is as follows: the genetic algorithm is used for fitting to obtain the parameters, and then the parameters output by the genetic algorithm are input into the local optimization algorithm as initial values to optimize the output.
在一种可能的设计中,局部优化算法采用序列二次规划算法,序列二次规划算法的上限和下限分别设置为原参数的120%和80%。遗传算法虽然拥有较好的全局搜索能力,但在庞大的搜索空间中也难以获得最优解,因此,将遗传算法输出的参数作为初始值输入到序列二次规划算法(SQP)中。SQP优化算法需要一个合理的上限和下限,经过反复试验,确定上限和下限分别为原参数乘以120%和80%,将二元交互作用参数在特定空间中不断优化,寻求更好的解。In a possible design, the local optimization algorithm adopts the sequential quadratic programming algorithm, and the upper limit and lower limit of the sequential quadratic programming algorithm are set to 120% and 80% of the original parameters, respectively. Although the genetic algorithm has a good global search ability, it is difficult to obtain the optimal solution in a huge search space. Therefore, the parameters output by the genetic algorithm are input into the sequential quadratic programming algorithm (SQP) as initial values. The SQP optimization algorithm needs a reasonable upper limit and lower limit. After trial and error, the upper limit and lower limit are determined to be the original parameters multiplied by 120% and 80%, respectively, and the binary interaction parameters are continuously optimized in a specific space to seek a better solution.
二元交互作用参数kij_a和kij_b控制着曲线变化的形状。如果kij_a大于0,则相互作用对混合物的辛烷值产生有利影响。而且,随着ΔONij的增大,变化曲线会逐渐凸出。相反,如果kij_a小于0,则相互作用会对混合物的辛烷值产生不利影响。特殊的情况是kij_a等于0,表明相互作用对混合物的辛烷值没有贡献。The binary interaction parameters kij_a and kij_b control the shape of the curve change. If k ij_a is greater than 0, the interaction has a favorable effect on the octane number of the mixture. Moreover, with the increase of ΔON ij , the change curve will gradually protrude. Conversely, if kij_a is less than 0, the interaction can adversely affect the octane rating of the mixture. The special case is that kij_a is equal to 0, indicating that the interaction does not contribute to the octane number of the mixture.
因此,最终得到预测辛烷值混合规则的混合方程为:Therefore, the final mixing equation for the predicted octane mixing rule is:
ON=ONLinear+ONNonLinear=∑iviONi+∑i∑jΔONij,ON=ON Linear +ON NonLinear =∑ i v i ON i +∑ i ∑ j ΔON ij ,
其中,ON为混合后的分子相互作用函数。Among them, ON is the molecular interaction function after mixing.
通过验证实验检验构建的混合方程是否满足设计需求。在一具体验证实验中,收集已知的231组汽油分子组成数据和相对应的法辛烷值RON数据(马达法辛烷值MON为170组),其中汽油分子定性和定量的数据是通过气相色谱分析检测的。此外,从API ResearchProject 45中搜集了248种三元混合物(马达法辛烷值MON为244)的法辛烷值RON,从文献中收集了90组汽油替代混合物的数据(马达法辛烷值MON为50)。因此,建立的数据库包含569RON和464 MON实验数据。将建立的数据库带入由混合方程构建的模型中,计算辛烷值的预测值,并将预测值与实验值相对比,验证上述混合方程的预测能力和外推性能是否可靠。The verification experiment is used to verify whether the constructed hybrid equation meets the design requirements. In a specific verification experiment, 231 groups of known gasoline molecular composition data and corresponding RON data (motor octane number MON is 170 groups) were collected, and the qualitative and quantitative data of gasoline molecules were obtained by gas phase detected by chromatography. In addition, the legal octane number RON of 248 ternary mixtures (motor octane number MON is 244) was collected from
混合方程函数总共需要拟合12个参数。表1和表2分别列出了优化的RON和MON的12个参数的具体数值。The mixed equation function needs to fit a total of 12 parameters. Table 1 and Table 2 list the specific values of the optimized 12 parameters of RON and MON respectively.
表1采用遗传算法和SQP算法优化的研究法辛烷值二元交互参数矩阵Table 1. Octane number binary interactive parameter matrix of research method optimized by genetic algorithm and SQP algorithm
表2优化的马达法辛烷值二元交互参数矩阵Table 2 Optimized binary interaction parameter matrix of motor octane number
图4为本申请研究法辛烷值数据的分布情况以及实际汽油和三元混合物的预测值和实验值的对比图。其中,图4a为法辛烷值实验数据的分布情况图,图4b为实际汽油法辛烷值的预测值和实验值的对比图,图4c为三元混合物法辛烷值的预测值和实验值的对比图。如图4b和4c所示,可以发现,实际汽油的平均绝对误差小于1个单位,说明该模型具有良好的训练效果,但是,三元混合物的平均绝对误差达到了3.64个单位,较大的误差是可以接受的,因为三元混合物仅训练了二元交互作用参数的作用。Fig. 4 is the distribution of the octane number data of the research method of the present application and the comparison chart of the predicted value and the experimental value of the actual gasoline and the ternary mixture. Wherein, Fig. 4a is the distribution diagram of the experimental data of the octane number of the method, Fig. 4b is a comparison chart of the predicted value and the experimental value of the octane number of the actual gasoline method, and Fig. 4c is the predicted value and the experimental value of the octane number of the ternary mixture method Value comparison chart. As shown in Figures 4b and 4c, it can be found that the average absolute error of the actual gasoline is less than 1 unit, indicating that the model has a good training effect, but the average absolute error of the ternary mixture reaches 3.64 units, a larger error is acceptable because the ternary mixture only trains the effect of the binary interaction parameter.
与图4相对应的,图5为本申请马达法辛烷值实验数据的分布情况以及实际汽油和三元混合物的预测值和实验值的对比图。其中,图5a为马达法辛烷值实验数据的分布情况图,图5b为实际汽油马达法辛烷值的预测值和实验值的对比图,图5c为三元混合物马达法辛烷值的预测值和实验值的对比图。与上述法辛烷值实验数据误差接近,因此具有相同的结论。Corresponding to Fig. 4, Fig. 5 is a comparison chart of the distribution of the experimental data of the octane number of the motor method of the present application and the predicted value and the experimental value of the actual gasoline and the ternary mixture. Among them, Figure 5a is the distribution diagram of the experimental data of the motor octane number, Figure 5b is a comparison chart of the predicted value and the experimental value of the actual gasoline motor octane number, and Figure 5c is the prediction of the motor octane number of the ternary mixture The comparison chart of the value and the experimental value. The error is close to the experimental data of the above-mentioned French octane number, so it has the same conclusion.
更进一步的,采用以下三种不同的方式对模型的预测能力和外推性能进行验证。Furthermore, the prediction ability and extrapolation performance of the model are verified in the following three different ways.
图6为本申请三元混合物的实验、线性和非线性混合值之间的比较结果示意图。如图6所示,该模型很好地拟合了三元混合物的辛烷值,但有些分子的误差较大。因为该模型训练的是P/I/O/N/A/OXY族类之间的二元交互作用参数,而不是每个分子。Fig. 6 is a schematic diagram showing the comparison results between experiments and linear and nonlinear mixing values of the ternary mixtures of the present application. As shown in Figure 6, the model fits the octane numbers of the ternary mixtures well, but some molecules have large errors. Because the model is trained on binary interaction parameters between P/I/O/N/A/OXY families, not per molecule.
图7为本申请链烷烃(2,2,4-三甲基戊烷和正庚烷)与不同类型烃类混合后法辛烷值随体积分数的变化趋势示意图。采用随体积分数增加辛烷值的变化曲线来验证模型是否过拟合。如图7所示,每个烃类分子在只有一个实验点的情况下,模型依旧能够预测混合物辛烷值随体积分数的变化趋势,证明了模型没有过拟合和强大的预测能力。Fig. 7 is a schematic diagram of the change trend of the legal octane number with the volume fraction after the paraffins (2,2,4-trimethylpentane and n-heptane) of the present application are mixed with different types of hydrocarbons. The change curve of octane number with increasing volume fraction was used to verify whether the model was overfitting. As shown in Figure 7, when there is only one experimental point for each hydrocarbon molecule, the model can still predict the change trend of the octane number of the mixture with the volume fraction, which proves that the model has no overfitting and strong predictive ability.
图8为本申请不同汽油物流法辛烷值和马达法辛烷值的实验值和预测值的比较示意图。为了验证对不在训练集中的汽油燃料的预测能力,选择了不同的工艺物流进行验证,包括直馏、烷基化、加氢、催化裂化、重整和混合汽油。如图8所示,预测的辛烷值与实验值基本一致,研究法辛烷值平均绝对误差小于0.6个单位,马达法辛烷值的平均绝对误差小于0.8个单位,证明了模型没有过拟合,满足预测需求。Fig. 8 is a schematic diagram of comparison of experimental and predicted values of gasoline stream octane numbers and motor octane numbers of different gasoline streams in the present application. To verify the predictive ability for gasoline fuels not in the training set, different process streams were selected for validation, including straight-run, alkylation, hydrotreating, catalytic cracking, reforming and blending gasoline. As shown in Figure 8, the predicted octane number is basically consistent with the experimental value, the average absolute error of the octane number of the research method is less than 0.6 units, and the average absolute error of the octane number of the motor method is less than 0.8 units, which proves that the model is not overfitting Combined to meet the forecast demand.
本实施例首先通过三元混合物辛烷值实验数据来研究不同类型分子间的相互作用关系,然后基于上述关系构建混合方程,用混合方程中的分子相互作用函数来详细描述分子之间的非线性行为,并结合遗传算法和序列二次规划算法拟合分子相互作用函数中的二元交互作用参数,最后通过多组数据库验证用上述混合方程构建的模型是否满足实际汽油的预测能力和外推性能。In this example, first, the interaction relationship between different types of molecules is studied through the experimental data of the octane number of the ternary mixture, and then the mixing equation is constructed based on the above relationship, and the molecular interaction function in the mixing equation is used to describe the nonlinearity between the molecules in detail Behavior, combined with genetic algorithm and sequence quadratic programming algorithm to fit the binary interaction parameters in the molecular interaction function, and finally through multiple sets of databases to verify whether the model constructed with the above mixed equation meets the prediction ability and extrapolation performance of actual gasoline .
图9为本申请电子设备结构示意图。如图9所示,本实施例提供了一种电子设备,包括存储器902和处理器901,存储器902用于存储程序,存储器902可通过总线903与处理器901连接。存储器902可以是非易失存储器,例如硬盘驱动器和闪存,存储器902中存储有软件程序和设备驱动程序。软件程序能够执行本发明实施例提供的上述方法的各种功能;设备驱动程序可以是网络和接口驱动程序。处理器901用于执行软件程序,该软件程序被执行时,能够实现本发明实施例的基于分子间相互作用的汽油辛烷值预测方法:FIG. 9 is a schematic structural diagram of an electronic device of the present application. As shown in FIG. 9 , this embodiment provides an electronic device, including a
具体地,处理器901基于汽油分子间六大族类的相互作用,构建任一两族的相互作用关系等式,包括:基于瑞利分布函数构建由两个参数调整曲线变化的任一两族的相互作用关系等式:Specifically, the
其中,ΔONij为i和j两个族类的相互作用函数;kij_a和kij_b是二元交互作用参数;vi和vj分别对应i和j两个族类的体积分数。 Among them, ΔON ij is the interaction function of two groups i and j; kij_a and kij_b are binary interaction parameters; v i and v j correspond to the volume fractions of two groups i and j, respectively.
具体的,二元交互作用参数的取值方法为:采用遗传算法进行拟合得到参数,然后将遗传算法输出的参数作为初始值输入到局部优化算法中进行优化输出,其中,局部优化算法采用序列二次规划算法,序列二次规划算法的上限和下限分别设置为原参数的120%和80%,使模型能够具有较好的预测和泛化性能。Specifically, the value method of binary interaction parameters is as follows: use the genetic algorithm to perform fitting to obtain the parameters, and then input the parameters output by the genetic algorithm as initial values into the local optimization algorithm to optimize the output, wherein the local optimization algorithm uses the sequence The upper and lower limits of the quadratic programming algorithm and the sequence quadratic programming algorithm are set to 120% and 80% of the original parameters respectively, so that the model can have better prediction and generalization performance.
处理器901基于任一两族的相互作用关系等式,构建汽油分子间非线性的分子相互作用函数:
ONNonLinear=∑i∑jΔONij,其中,ONNonLinear为非线性的分子相互作用函数;ΔONij为i和j两个族类的相互作用函数。ON NonLinear = ∑ i ∑ j ΔON ij , wherein, ON NonLinear is a nonlinear molecular interaction function; ΔON ij is an interaction function of two groups i and j.
处理器901基于分子相互作用函数,得到预测汽油辛烷值的混合方程之前,还包括:获取并基于三元混合物的辛烷值,构建线性混合函数,其中,三元混合物的辛烷值为已知辛烷值数据的三元混合物。Before the
具体的,线性混合函数为:Specifically, the linear mixing function is:
ONLinear=∑iviONi,其中,ONLinear为线性的分子相互作用函数;vi是分子i的体积分数;ONi是分子i的辛烷值。ON Linear =∑ i v i ON i , wherein, ON Linear is a linear molecular interaction function; v i is the volume fraction of molecule i; ON i is the octane number of molecule i.
处理器901基于分子相互作用函数,得到预测汽油辛烷值的混合方程之前,还包括:将构建的线性混合函数和分子相互作用函数相加,得到预测汽油辛烷值的混合方程:Before the
ON=ONLinear+ONNonLinear,其中,ON为混合后的分子相互作用函数;ONLinear为线性的分子相互作用函数;ONNonLinear为非线性的分子相互作用函数。ON=ON Linear +ON NonLinear , wherein, ON is a mixed molecular interaction function; ON Linear is a linear molecular interaction function; ON NonLinear is a nonlinear molecular interaction function.
本实施例提供的电子设备,可用于执行上述基于分子间相互作用的汽油辛烷值预测方法,其实现原理和技术效果类似,本实施例此处不再赘述。The electronic equipment provided in this embodiment can be used to implement the above-mentioned method for predicting gasoline octane number based on intermolecular interactions, and its implementation principle and technical effect are similar, so this embodiment will not repeat them here.
本发明实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现本发明实施例提供的基于分子间相互作用的汽油辛烷值预测方法。The embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium. When the computer program is executed by a processor, the gasoline octane number based on the intermolecular interaction provided by the embodiment of the present invention is realized. method of prediction.
本实施例提供的计算机可读存储介质,可用于执行上述基于分子间相互作用的汽油辛烷值预测方法,其实现原理和技术效果类似,本实施例此处不再赘述。The computer-readable storage medium provided in this embodiment can be used to implement the above method for predicting gasoline octane number based on intermolecular interactions, and its implementation principle and technical effect are similar, so this embodiment will not repeat them here.
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals should further realize that the units and algorithm steps described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software, or a combination of the two. In order to clearly illustrate the relationship between hardware and software Interchangeability. In the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。Other embodiments of the present application will be readily apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any modification, use or adaptation of the application, these modifications, uses or adaptations follow the general principles of the application and include common knowledge or conventional technical means in the technical field not disclosed in the application . The specification and examples are to be considered exemplary only, with a true scope and spirit of the application indicated by the following claims.
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。It should be understood that the present application is not limited to the precise constructions which have been described above and shown in the accompanying drawings, and various modifications and changes may be made without departing from the scope thereof. The scope of the application is limited only by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210300866.9A CN114724644B (en) | 2022-03-25 | 2022-03-25 | Method and equipment for predicting gasoline octane number based on intermolecular interaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210300866.9A CN114724644B (en) | 2022-03-25 | 2022-03-25 | Method and equipment for predicting gasoline octane number based on intermolecular interaction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114724644A CN114724644A (en) | 2022-07-08 |
CN114724644B true CN114724644B (en) | 2023-04-07 |
Family
ID=82239651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210300866.9A Active CN114724644B (en) | 2022-03-25 | 2022-03-25 | Method and equipment for predicting gasoline octane number based on intermolecular interaction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114724644B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1584555A (en) * | 2004-06-01 | 2005-02-23 | 浙江大学 | Petroleum products quality rapid measuring instrument based on low-resolution Raman spectra |
CN113705021A (en) * | 2021-09-15 | 2021-11-26 | 西南石油大学 | Method for predicting gasoline octane number |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103955778B (en) * | 2014-05-15 | 2017-07-07 | 南京富岛信息工程有限公司 | A kind of high-performance gasoline concoction nonlinear optimization method |
CN107085059B (en) * | 2017-05-14 | 2020-04-03 | 杭州辛孚能源科技有限公司 | Method and device for measuring gasoline octane number |
CN108956814B (en) * | 2018-07-03 | 2020-07-03 | 中国石油大学(北京) | Method for directly constructing gasoline molecular composition model and property prediction method |
US11119088B2 (en) * | 2019-03-15 | 2021-09-14 | Chevron U.S.A. Inc. | System and method for calculating the research octane number and the motor octane number for a liquid blended fuel |
CN111429973B (en) * | 2019-06-19 | 2024-10-25 | 中控技术股份有限公司 | Real-time calculation method for molecular information in gasoline product |
-
2022
- 2022-03-25 CN CN202210300866.9A patent/CN114724644B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1584555A (en) * | 2004-06-01 | 2005-02-23 | 浙江大学 | Petroleum products quality rapid measuring instrument based on low-resolution Raman spectra |
CN113705021A (en) * | 2021-09-15 | 2021-11-26 | 西南石油大学 | Method for predicting gasoline octane number |
Also Published As
Publication number | Publication date |
---|---|
CN114724644A (en) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111899793B (en) | Real-time optimization method, device and system for molecular-level device and storage medium | |
Li et al. | Data‐driven mathematical modeling and global optimization framework for entire petrochemical planning operations | |
JP5460319B2 (en) | Predict stream composition and properties in near real time | |
WO2021249330A1 (en) | Method, apparatus and system for whole-process optimization of molecular-level oil refinery processing, and storage medium | |
Kuzhagaliyeva et al. | Artificial intelligence-driven design of fuel mixtures | |
Liu et al. | Petroleum refinery process modeling: integrated optimization tools and applications | |
Guerra et al. | Improvements in petroleum refinery planning: 1. Formulation of process models | |
Siamizade | Global optimization of refinery-wide production planning with highly nonlinear unit models | |
Albahri | Molecularly explicit characterization model (MECM) for light petroleum fractions | |
Gordillo et al. | Customizing CO2 allocation using a new non-iterative method to reflect operational constraints in complex EU refineries | |
Menezes et al. | Nonlinear production planning of oil-refinery units for the future fuel market in Brazil: Process design scenario-based model | |
Liu | Molecular characterisation and modelling for refining processes | |
Clark et al. | Quantification of gasoline-ethanol blend emissions effects | |
Carlson et al. | Economic analysis of the benefits to petroleum refiners for low carbon boosted spark ignition biofuels | |
CN114724644B (en) | Method and equipment for predicting gasoline octane number based on intermolecular interaction | |
Naji et al. | Optimization of blending operation for the Iraqi oils | |
CN112662423B (en) | Process simulation method for catalytic gasoline hydro-upgrading process | |
Fu et al. | Comparison of methods for computing crude distillation product properties in production planning and scheduling | |
Stratiev et al. | Evaluation of accuracy of literature gasoline blending models to predict octane numbers of gasoline blends | |
Hu | A general framework for incorporating molecular modelling into overall refinery optimisation | |
CN116013425B (en) | Molecular level refining process model construction method and device and storage medium | |
Wu et al. | Molecular management for refining operations | |
Twu et al. | A generalized interaction method for the prediction of octane numbers for gasoline blends | |
Zhu | Molecular analysis for process synthesis | |
Gong | Molecular Characterisation and Modelling of Hydroprocesses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |