CN114723960B - 一种增强银行账号安全的附加验证方法及系统 - Google Patents

一种增强银行账号安全的附加验证方法及系统 Download PDF

Info

Publication number
CN114723960B
CN114723960B CN202210340316.XA CN202210340316A CN114723960B CN 114723960 B CN114723960 B CN 114723960B CN 202210340316 A CN202210340316 A CN 202210340316A CN 114723960 B CN114723960 B CN 114723960B
Authority
CN
China
Prior art keywords
pixel
value
sample
level
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210340316.XA
Other languages
English (en)
Other versions
CN114723960A (zh
Inventor
吴金彪
杨成林
汪晓东
龚潇雨
廖四发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Sanxiang Bank Co Ltd
Original Assignee
Hunan Sanxiang Bank Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Sanxiang Bank Co Ltd filed Critical Hunan Sanxiang Bank Co Ltd
Priority to CN202210340316.XA priority Critical patent/CN114723960B/zh
Publication of CN114723960A publication Critical patent/CN114723960A/zh
Application granted granted Critical
Publication of CN114723960B publication Critical patent/CN114723960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4014Identity check for transactions

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Accounting & Taxation (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种增强银行账号安全的附加验证方法,包括:获取样本图像,并对样本图像的像素进行编码得到编码像素;根据编码像素的第一位取值将样本图像的像素分为高位阶样本和低位阶样本;初始化神经网络模型,并基于预设编码结构生成与高位阶样本和低位阶样本的数量比例对应数量的初始种群;计算种群中每个个体的适应度值;根据适应度值对初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练神经网络模型;响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断验证图像是否为干扰图像,若否,则基于操作请求执行相应的操作。从而高效、快速生成扰动图像达到检测深度神经网络安全漏洞的目的。

Description

一种增强银行账号安全的附加验证方法及系统
技术领域
本发明属于信息安全领域,具体涉及一种增强银行账号安全的附加验证方法及系统。
背景技术
随着信息化的高速发展,信息安全越来越受到重视,尤其是银行领域,一旦由于验证识别漏洞导致用户数据遭到泄露,将面临极大的系统性风险。
目前,在用户对账户进行操作时,通常除了输入密码等固定信息之后,还需要进行附加验证,例如通过采集用户实时图像画面,判断画面的真实性或者准确性,此时后台服务器通过神经网络模型进行比对判断,然而由于神经网络算法在某些场景下进行图像识别时,算法或者样本的特性会使得图像分类产生错误,从而导致错误识别,使与识别结果不相关的图像被误认为是正确的结果,从而导致验证风险。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种增强银行账号安全的附加验证方法及系统。本发明要解决的技术问题通过以下技术方案实现:
一种增强银行账号安全的附加验证方法,包括:
获取样本图像,并对所述样本图像的像素进行编码得到编码像素,其中,所述编码像素由预设编码结构表示,所述预设编码结构由像素R通道位阶等级、像素位置坐标和像素RGB通道值的二进制表示,所述像素R通道位阶等级由像素R通道像素灰阶值确定;
根据所述编码像素的第一位取值将所述样本图像的像素分为高位阶样本和低位阶样本;
初始化神经网络模型,并基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群;
计算所述种群中每个个体的适应度值;
根据所述适应度值对所述初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练所述神经网络模型;
响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断所述验证图像是否为干扰图像,若否,则基于所述操作请求执行相应的操作。
在一个具体实施方式中,所述像素R通道位阶等级的计算公式为:
,其中,Ra表示像素的R通道像素灰阶值,Rmax表示样本图像中R通道像素灰阶的最大值,Rmin表示样本图像中R通道像素灰阶的最小值,Rgamma表示样本图像的灰阶分辨率,α表示位阶等级参数。
在一个具体实施方式中,根据所述编码像素的第一位取值将所述样本图像分为高位阶样本和低位阶样本,包括:
将所述编码像素的第一位取值为1的像素作为高位阶样本,将所述预设编码结构第一位取值为0的像素作为低位阶样本。
在一个具体实施方式中,基于所述预设编码结构生成与所述高平滑样本和低平滑样本的数量比例对应数量的初始种群包括:
根据预设编码结构得到初始化概率模型,所述初始化概率模型包括高概率模型和低概率模型,其中所述高概率模型的概率取值为0.55-0.65,所述低概率模型的概率取值为0.35-0.45;
依次选取随机数r分别与所述高概率模型和低概率模型中的每个概率值进行比较,将概率值大于r的数值置1,将将概率值小于r的位数值置0,依次得到若干与该比例相应的高概率初始种群个体和低概率初始种群个体得到种群个体,其中 r∈(0,1)。
在一个具体实施方式中,计算所述种群中每个个体的适应度值,包括:
将所述种群中每个像素个体依次作为扰动像素,生成对应的对抗样本,将所述对抗样本输入神经网络模型中进行识别,得到与该对抗样本对应的分类置信度,将所述分类置信度作为所述种群中对应像素个体的适应度值。
本发明同时提供一种增强银行账号安全的附加验证系统,包括:
样本获取模块,用于获取样本图像,并对所述样本图像的像素进行编码得到编码像素,以及根据所述编码像素的第一位取值将所述样本图像的像素分为高位阶样本和低位阶样本,其中,所述编码像素由预设编码结构表示,所述预设编码结构由像素R通道位阶等级、像素位置坐标和像素RGB通道值的二进制表示,所述像素R通道位阶等级由像素R通道像素灰阶值确定;
初始化模块,用于初始化神经网络模型,并基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群;
适应度计算模块,用于计算所述种群中每个个体的适应度值;
迭代训练模块,用于根据所述适应度值对所述初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练所述神经网络模型;
附加验证模块,用于响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断所述验证图像是否为干扰图像,若否,则基于所述操作请求执行相应的操作。
在一个具体实施方式中,所述像素R通道位阶等级的计算公式为:
,其中,Ra表示像素的R通道像素灰阶值,Rmax表示样本图像中R通道像素灰阶的最大值,Rmin表示样本图像中R通道像素灰阶的最小值,Rgamma表示样本图像的灰阶分辨率,α表示位阶等级参数。
在一个具体实施方式中,所述样本获取模块具体用于,将所述编码像素的第一位取值为1的像素作为高位阶样本,将所述预设编码结构第一位取值为0的像素作为低位阶样本。
在一个具体实施方式中,所述初始化模块包括:
概率模型初始化单元,用于根据预设编码结构得到初始化概率模型,所述初始化概率模型包括高概率模型和低概率模型,其中所述高概率模型的概率取值为0.55-0.65,所述低概率模型的概率取值为0.35-0.45;
种群初始化单元,用于依次选取随机数r分别与所述高概率模型和低概率模型中的每个概率值进行比较,将概率值大于r的数值置1,将将概率值小于r的位数值置0,依次得到若干与该比例相应的高概率初始种群个体和低概率初始种群个体得到种群个体,其中 r∈(0,1)。
在一个具体实施方式中,所述适应度计算模块具体用于将所述种群中每个像素个体依次作为扰动像素,生成对应的对抗样本,将所述对抗样本输入神经网络模型中进行识别,得到与该对抗样本对应的分类置信度,将所述分类置信度作为所述种群中对应像素个体的适应度值。
本发明的有益效果:
本发明的增强银行账号安全的附加验证方法考虑到图像识别中的扰动干扰,对概率模型进行区分,能够根据不同的识别场景进行种群的筛选,从而保证了种群演化的多样性,有利于寻找最优扰动方案以提高扰动攻击的成功率,从而提高神经网络模型的安全性和识别准确率,以实现高效、快速生成扰动图像达到检测深度神经网络安全漏洞的目的。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种增强银行账号安全的附加验证方法流程示意图;
图2是本发明实施例提供的一种增强银行账号安全的附加验证系统模块框图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图1,图1是本发明实施例提供的一种增强银行账号安全的附加验证方法流程示意图,包括:
S1、获取样本图像,并对所述样本图像的像素进行编码得到编码像素,其中,所述编码像素由预设编码结构表示,所述预设编码结构由像素R通道位阶等级、像素位置坐标和像素RGB通道值的二进制表示,所述像素R通道位阶等级由像素R通道像素灰阶值确定;
本示例可以选择目前主流的数据集CIFAR-10,该数据集包括60000张32×32的彩色图像,其中训练集50000张,测试集10000张,其中没有任何的重叠情况,也不会在同一张照片中出现两类事物。这些数据集可供神经网络模型训练,训练好图像分类的网络模型后便从数据集中选取部分标记过的数据集。
本实施例的编码像素的格式为(k,x,y,r,g,b),其中k表示像素R通道位阶等级,取值为0-3,即00、01、10、11;xy表示像素位置坐标,由于CIFAR-10数据集图像为32×32的彩色图像,因此xy取值均为0-31,即00000-11111,其中坐标定义根据情况自行设置,例如将左上角第一颗像素的位置坐标定义为(00000,00000),右下角最后一颗像素定义为(11111,11111),,rgb表示像素RGB通道值,在不进行灰阶压缩的情况下,每个通道的灰阶值主流为0-255,即00000000-11111111。
在此需要对像素R通道位阶等级进行说明,在遗传算法的初始种群选取时,一般都采用无差别的随机方式生成,由于不同的样本图像其图像的灰度特征均具有差异,本示例选择R通道的灰度特征表示样本图像的整体灰阶特征,例如灰阶整体偏大或者整体偏小,并根据偏大偏小的比例侧重性的进行后续的初始种群选择,具体的,像素R通道位阶等级的计算公式为:
其中,Ra表示像素的R通道像素灰阶值,Rmax表示样本图像中R通道像素灰阶的最大值,Rmin表示样本图像中R通道像素灰阶的最小值,Rgamma表示样本图像的灰阶分辨率,α表示位阶等级参数,该参数根据实际情况进行选择,具体与灰阶分辨率相关,在主流灰阶分辨率为255的情况下,优选的α为0.35-0.4。
例如样本图像中坐标(8,12)(由于CIFAR-10数据集图像为32×32,因此坐标范围0-31,二进制表示为01000,01100)位置处的像素的处的像素灰阶值为(28,156,44),则Ra为28,该样本图像的Rmax为236,Rmin为8,Rgamma为255,α为0.38,则得到K为1,即01。最终得到的编码为(0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,0,1,1,0,0),优选的,为方便进行计算,在初始化种群结束后,可将编码中不影响遗传结果的前两位去掉。
S2、根据所述编码像素的第一位取值将所述样本图像的像素分为高位阶样本和低位阶样本;具体的,将所述编码像素的第一位取值为1的像素作为高位阶样本,将所述预设编码结构第一位取值为0的像素作为低位阶样本。
参见上述示例,其编码像素的第一位取值为0,因此将该像素作为低位阶样本,依次对所有的编码像素进行分类,并得到高位阶样本和低位阶样本的比例,该比例之后用于遗传算法中的种群初始化。
S3、初始化神经网络模型,并基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群;
在进行种群初始化时,例如可以采用比例选择方法,其基本思想是:每个个体被选中的概率与其适应度大小成正比,而利用分布估计算法演化出最佳扰动像素的过程就需要这一特征,即将尽可能优秀的 x,y,r,g,b值(即像素个体)保留下来,由于使用的是二进制编码,即用轮盘赌去选择该像素点的34位编码分别为0还是1。
优选的,基于所述预设编码结构生成与所述高平滑样本和低平滑样本的数量比例对应数量的初始种群包括:
根据预设编码结构得到初始化概率模型,所述初始化概率模型包括高概率模型和低概率模型,其中所述高概率模型的概率取值为0.55-0.65,所述低概率模型的概率取值为0.35-0.45;
依次选取随机数r分别与所述高概率模型和低概率模型中的每个概率值进行比较,将概率值大于r的数值置1,将将概率值小于r的位数值置0,依次得到若干与该比例相应的高概率初始种群个体和低概率初始种群个体得到种群个体,其中 r∈(0,1)。
利用轮盘赌法,选取随机数 r并将其与初始的高概率模型和低概率模型中的概率值进行比较,例如初始的高概率模型为 P=( p 1, p 2 ,..., p i ,....), p i 为第 i位二进制值取1的概率,该高概率模型中的 p i 取值为0.6,即表示为,P=(0.6,0.6,0.6,0.6,…),选取随机数 r并将其与高概率模型中的 p i 比较,若 r< p i ,则返回1,否则,则返回0,依次选取随机数r得到种群中一个个体的编码;按照该方法与低概率模型中的 p i 比较,最终得到与S2中比例关系一致的初始种群。
S4、计算所述种群中每个个体的适应度值;具体为,将所述种群中每个像素个体依次作为扰动像素,生成对应的对抗样本,将所述对抗样本输入神经网络模型中进行识别,得到与该对抗样本对应的分类置信度,将所述分类置信度作为所述种群中对应像素个体的适应度值。
计算像素个体的适应度的函数是利用神经网络模型识别图像进行分类的置信度,神经网络模型需要对某扰动图像进行特定分类,只有对目标类识别的置信度低,才代表该扰动像素个体适应度值较高。
S5、根据所述适应度值对所述初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练所述神经网络模型;在本实施例中,若最小的适应度值小于0.5,则判断该适应度值满足扰动成功的条件,若不满足,则更新高概率模型和低概率模型并生成新的种群,新的种群可以根据前一次种群中适应度值由小到大进行排序,选择前一半的像素个体,通过交叉变异操作产生新的种群。
S6、响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断所述验证图像是否为干扰图像,若否,则基于所述操作请求执行相应的操作。
本实施例的增强银行账号安全的附加验证方法考虑到图像识别中的扰动干扰,对概率模型进行区分,能够根据不同的识别场景进行种群的筛选,从而保证了种群演化的多样性,有利于寻找最优扰动方案以提高扰动攻击的成功率,从而提高神经网络模型的安全性和识别准确率,以实现高效、快速生成扰动图像达到检测深度神经网络安全漏洞的目的。
请继续参见图2,本发明同时提供一种增强银行账号安全的附加验证系统,包括:
样本获取模块21,用于获取样本图像,并对所述样本图像的像素进行编码得到编码像素,以及根据所述编码像素的第一位取值将所述样本图像的像素分为高位阶样本和低位阶样本,其中,所述编码像素由预设编码结构表示,所述预设编码结构由像素R通道位阶等级、像素位置坐标和像素RGB通道值的二进制表示,所述像素R通道位阶等级由像素R通道像素灰阶值确定;
初始化模块22,用于初始化神经网络模型,并基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群;
适应度计算模块23,用于计算所述种群中每个个体的适应度值;
迭代训练模块24,用于根据所述适应度值对所述初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练所述神经网络模型;
附加验证模块25,用于响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断所述验证图像是否为干扰图像,若否,则基于所述操作请求执行相应的操作。
在一个具体实施方式中,所述像素R通道位阶等级的计算公式为:
,其中,Ra表示像素的R通道像素灰阶值,Rmax表示样本图像中R通道像素灰阶的最大值,Rmin表示样本图像中R通道像素灰阶的最小值,Rgamma表示样本图像的灰阶分辨率,α表示位阶等级参数。
在一个具体实施方式中,所述样本获取模块具体用于,将所述编码像素的第一位取值为1的像素作为高位阶样本,将所述预设编码结构第一位取值为0的像素作为低位阶样本。
在一个具体实施方式中,所述初始化模块包括:
概率模型初始化单元,用于根据预设编码结构得到初始化概率模型,所述初始化概率模型包括高概率模型和低概率模型,其中所述高概率模型的概率取值为0.55-0.65,所述低概率模型的概率取值为0.35-0.45;
种群初始化单元,用于依次选取随机数r分别与所述高概率模型和低概率模型中的每个概率值进行比较,将概率值大于r的数值置1,将将概率值小于r的位数值置0,依次得到若干与该比例相应的高概率初始种群个体和低概率初始种群个体得到种群个体,其中 r∈(0,1)。
在一个具体实施方式中,所述适应度计算模块具体用于将所述种群中每个像素个体依次作为扰动像素,生成对应的对抗样本,将所述对抗样本输入神经网络模型中进行识别,得到与该对抗样本对应的分类置信度,将所述分类置信度作为所述种群中对应像素个体的适应度值。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、系统(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本申请是参照本申请实施例的方法、系统(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种增强银行账号安全的附加验证方法,其特征在于,包括:
获取样本图像,并对所述样本图像的像素进行编码得到编码像素,其中,所述编码像素由预设编码结构表示,所述预设编码结构由像素R通道位阶等级、像素位置坐标和像素RGB通道值的二进制表示,所述像素R通道位阶等级由像素R通道像素灰阶值确定;
根据所述编码像素的第一位取值将所述样本图像的像素分为高位阶样本和低位阶样本;
初始化神经网络模型,并基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群;
计算所述种群中每个个体的适应度值;
根据所述适应度值对所述初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练所述神经网络模型;
响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断所述验证图像是否为干扰图像,若否,则基于所述操作请求执行相应的操作;
所述像素R通道位阶等级的计算公式为:
其中,Ra表示像素的R通道像素灰阶值,Rmax表示样本图像中R通道像素灰阶的最大值,Rmin表示样本图像中R通道像素灰阶的最小值,Rgamma表示样本图像的灰阶分辨率,α表示位阶等级参数。
2.根据权利要求1所述的增强银行账号安全的附加验证方法,其特征在于,根据所述编码像素的第一位取值将所述样本图像分为高位阶样本和低位阶样本,包括:
将所述编码像素的第一位取值为1的像素作为高位阶样本,将所述预设编码结构第一位取值为0的像素作为低位阶样本。
3.根据权利要求1所述的增强银行账号安全的附加验证方法,其特征在于,基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群包括:
根据预设编码结构得到初始化概率模型,所述初始化概率模型包括高概率模型和低概率模型,其中所述高概率模型的概率取值为0.55-0.65,所述低概率模型的概率取值为0.35-0.45;
依次选取随机数r分别与所述高概率模型和低概率模型中的每个概率值进行比较,将概率值大于r的数值置1,将概率值小于r的位数值置0,依次得到若干与该比例相应的高概率初始种群个体和低概率初始种群个体得到种群个体,其中r∈(0,1)。
4.根据权利要求1所述的增强银行账号安全的附加验证方法,其特征在于,计算所述种群中每个个体的适应度值,包括:
将所述种群中每个像素个体依次作为扰动像素,生成对应的对抗样本,将所述对抗样本输入神经网络模型中进行识别,得到与该对抗样本对应的分类置信度,将所述分类置信度作为所述种群中对应像素个体的适应度值。
5.一种增强银行账号安全的附加验证系统,其特征在于,包括:
样本获取模块,用于获取样本图像,并对所述样本图像的像素进行编码得到编码像素,以及根据所述编码像素的第一位取值将所述样本图像的像素分为高位阶样本和低位阶样本,其中,所述编码像素由预设编码结构表示,所述预设编码结构由像素R通道位阶等级、像素位置坐标和像素RGB通道值的二进制表示,所述像素R通道位阶等级由像素R通道像素灰阶值确定;
初始化模块,用于初始化神经网络模型,并基于所述预设编码结构生成与所述高位阶样本和低位阶样本的数量比例对应数量的初始种群;
适应度计算模块,用于计算所述种群中每个个体的适应度值;
迭代训练模块,用于根据所述适应度值对所述初始种群进行迭代优化,当满足扰动条件时,输出适应度值最小的个体作为扰动个体训练所述神经网络模型;
附加验证模块,用于响应于接收到账号的操作请求以及验证图像,根据训练好的神经网络模型判断所述验证图像是否为干扰图像,若否,则基于所述操作请求执行相应的操作;
所述像素R通道位阶等级的计算公式为:
其中,Ra表示像素的R通道像素灰阶值,Rmax表示样本图像中R通道像素灰阶的最大值,Rmin表示样本图像中R通道像素灰阶的最小值,Rgamma表示样本图像的灰阶分辨率,α表示位阶等级参数。
6.根据权利要求5所述的增强银行账号安全的附加验证系统,其特征在于,所述样本获取模块具体用于,将所述编码像素的第一位取值为1的像素作为高位阶样本,将所述预设编码结构第一位取值为0的像素作为低位阶样本。
7.根据权利要求5所述的增强银行账号安全的附加验证系统,其特征在于,所述初始化模块包括:
概率模型初始化单元,用于根据预设编码结构得到初始化概率模型,所述初始化概率模型包括高概率模型和低概率模型,其中所述高概率模型的概率取值为0.55-0.65,所述低概率模型的概率取值为0.35-0.45;
种群初始化单元,用于依次选取随机数r分别与所述高概率模型和低概率模型中的每个概率值进行比较,将概率值大于r的数值置1,将概率值小于r的位数值置0,依次得到若干与该比例相应的高概率初始种群个体和低概率初始种群个体得到种群个体,其中r∈(0,1)。
8.根据权利要求5所述的增强银行账号安全的附加验证系统,其特征在于,所述适应度计算模块具体用于将所述种群中每个像素个体依次作为扰动像素,生成对应的对抗样本,将所述对抗样本输入神经网络模型中进行识别,得到与该对抗样本对应的分类置信度,将所述分类置信度作为所述种群中对应像素个体的适应度值。
CN202210340316.XA 2022-04-02 2022-04-02 一种增强银行账号安全的附加验证方法及系统 Active CN114723960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210340316.XA CN114723960B (zh) 2022-04-02 2022-04-02 一种增强银行账号安全的附加验证方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210340316.XA CN114723960B (zh) 2022-04-02 2022-04-02 一种增强银行账号安全的附加验证方法及系统

Publications (2)

Publication Number Publication Date
CN114723960A CN114723960A (zh) 2022-07-08
CN114723960B true CN114723960B (zh) 2023-04-28

Family

ID=82241452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210340316.XA Active CN114723960B (zh) 2022-04-02 2022-04-02 一种增强银行账号安全的附加验证方法及系统

Country Status (1)

Country Link
CN (1) CN114723960B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201603489D0 (en) * 2013-03-14 2016-04-13 Applied Neural Technologies Ltd A method, apparatus and system of encoding content and an image
CN105809719A (zh) * 2016-03-14 2016-07-27 西南交通大学 一种基于像素多编码表匹配的对象跟踪方法
CN110738503A (zh) * 2019-10-21 2020-01-31 支付宝(杭州)信息技术有限公司 身份验证方法以及装置
CN110929798A (zh) * 2019-11-29 2020-03-27 重庆邮电大学 基于结构优化稀疏卷积神经网络的图像分类方法及介质
CN113160028A (zh) * 2021-02-24 2021-07-23 陕西师范大学 基于彩色字符画的信息隐藏及恢复方法、设备及存储介质
WO2021191405A1 (en) * 2020-03-26 2021-09-30 Another Brain Anomaly detection based on an autoencoder and clustering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032496A (ja) * 2001-07-12 2003-01-31 Sanyo Electric Co Ltd 画像符号化装置および方法
US10546242B2 (en) * 2017-03-03 2020-01-28 General Electric Company Image analysis neural network systems
CN109359469A (zh) * 2018-10-16 2019-02-19 上海电力学院 一种工业控制系统的信息安全风险评估方法
CN110991549A (zh) * 2019-12-13 2020-04-10 成都网域复兴科技有限公司 一种针对图像数据的对抗样本生成方法及系统
CN112149492B (zh) * 2020-07-06 2022-08-30 北京航空航天大学 一种基于强化遗传学习的遥感图像精确云检测方法
CN113139618B (zh) * 2021-05-12 2022-10-14 电子科技大学 一种基于集成防御的鲁棒性增强的分类方法及装置
CN113505864A (zh) * 2021-09-10 2021-10-15 南京理工大学 群智能单像素生成扰动与攻击方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201603489D0 (en) * 2013-03-14 2016-04-13 Applied Neural Technologies Ltd A method, apparatus and system of encoding content and an image
CN105809719A (zh) * 2016-03-14 2016-07-27 西南交通大学 一种基于像素多编码表匹配的对象跟踪方法
CN110738503A (zh) * 2019-10-21 2020-01-31 支付宝(杭州)信息技术有限公司 身份验证方法以及装置
CN110929798A (zh) * 2019-11-29 2020-03-27 重庆邮电大学 基于结构优化稀疏卷积神经网络的图像分类方法及介质
WO2021191405A1 (en) * 2020-03-26 2021-09-30 Another Brain Anomaly detection based on an autoencoder and clustering
CN113160028A (zh) * 2021-02-24 2021-07-23 陕西师范大学 基于彩色字符画的信息隐藏及恢复方法、设备及存储介质

Also Published As

Publication number Publication date
CN114723960A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US20210019605A1 (en) Digital watermarking of machine learning models
CN111783875A (zh) 基于聚类分析的异常用户检测方法、装置、设备及介质
WO2020015480A1 (zh) 检测数据模型安全性的方法及装置
CN111783505A (zh) 伪造人脸的识别方法、装置和计算机可读存储介质
WO2021144943A1 (ja) 制御方法、情報処理装置および制御プログラム
Hu et al. A spatial image steganography method based on nonnegative matrix factorization
CN114187483A (zh) 生成对抗样本的方法、检测器的训练方法及相关设备
JP7298825B2 (ja) 学習支援装置、学習装置、学習支援方法及び学習支援プログラム
CN115392937A (zh) 一种用户欺诈风险识别方法、装置、电子设备及存储介质
CN115577357A (zh) 一种基于堆叠集成技术的Android恶意软件检测方法
CN115619616A (zh) 基于水印扰动的对抗样本生成方法、装置、设备及介质
Pan et al. Seek-and-hide: adversarial steganography via deep reinforcement learning
CN111444802A (zh) 一种人脸识别方法、装置及智能终端
Wang et al. A posterior evaluation algorithm of steganalysis accuracy inspired by residual co-occurrence probability
Iqbal et al. Improving classification on images by extracting and transferring knowledge in genetic programming
CN114723960B (zh) 一种增强银行账号安全的附加验证方法及系统
CN112560034A (zh) 基于反馈式深度对抗网络的恶意代码样本合成方法及装置
TWI803243B (zh) 圖像擴增方法、電腦設備及儲存介質
CN116629423A (zh) 用户行为预测方法、装置、设备及存储介质
CN116012841A (zh) 一种基于深度学习的开集图像场景匹配方法及装置
CN113723071B (zh) 电子档案校验方法、系统、存储介质及设备
CN112749978B (zh) 检测方法、装置、设备、存储介质以及程序产品
CN110414845B (zh) 针对目标交易的风险评估方法及装置
CN111598075A (zh) 图片生成方法、设备及可读存储介质
CN113762382B (zh) 模型的训练及场景识别方法、装置、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant