CN114716617B - A highly hydrophilic PVDF material and its preparation method - Google Patents
A highly hydrophilic PVDF material and its preparation method Download PDFInfo
- Publication number
- CN114716617B CN114716617B CN202210472687.3A CN202210472687A CN114716617B CN 114716617 B CN114716617 B CN 114716617B CN 202210472687 A CN202210472687 A CN 202210472687A CN 114716617 B CN114716617 B CN 114716617B
- Authority
- CN
- China
- Prior art keywords
- pvdf
- mah
- anthracene
- hydrophilicity
- reaction product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002033 PVDF binder Substances 0.000 title claims abstract description 76
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 76
- 239000000463 material Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title abstract description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000007795 chemical reaction product Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- -1 anthracene free radical Chemical class 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000003381 stabilizer Substances 0.000 claims description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 239000003999 initiator Substances 0.000 claims description 6
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 4
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 4
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 3
- SKXCTCCZTWNYMD-UHFFFAOYSA-N 1,2-bis(ethenyl)anthracene Chemical compound C1=CC=CC2=CC3=C(C=C)C(C=C)=CC=C3C=C21 SKXCTCCZTWNYMD-UHFFFAOYSA-N 0.000 claims description 2
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 claims description 2
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 claims description 2
- 238000000746 purification Methods 0.000 claims description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 claims description 2
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000001556 precipitation Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 9
- 150000008064 anhydrides Chemical group 0.000 abstract description 3
- 239000000178 monomer Substances 0.000 abstract description 2
- 230000009257 reactivity Effects 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 13
- 230000003993 interaction Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OGOYZCQQQFAGRI-UHFFFAOYSA-N 9-ethenylanthracene Chemical compound C1=CC=C2C(C=C)=C(C=CC=C3)C3=CC2=C1 OGOYZCQQQFAGRI-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920006113 non-polar polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F259/00—Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
- C08F259/08—Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Graft Or Block Polymers (AREA)
Abstract
本发明公开了一种高亲水性PVDF材料及其制备方法,是由马来酸酐(MAH)高温熔融接枝聚偏氟乙烯(PVDF)制备而成。本发明引入MAH对PVDF进行接枝改,利用MAH单体上酸酐基团的反应性以及MAH的极性,可以有效的增强PVDF的亲水性以及与其它聚合物的混溶性,这使得扩大PVDF的应用成为可能。The invention discloses a highly hydrophilic PVDF material and a preparation method thereof. It is prepared by high-temperature melt-grafting of maleic anhydride (MAH) to polyvinylidene fluoride (PVDF). The present invention introduces MAH to graft and modify PVDF, and utilizes the reactivity of the anhydride group on the MAH monomer and the polarity of MAH to effectively enhance the hydrophilicity of PVDF and its miscibility with other polymers, which enables the expansion of PVDF applications are possible.
Description
技术领域Technical field
本发明涉及高分子复合材料接枝技术领域,具体涉及一种高亲水性PVDF材料及其制备方法和应用。The invention relates to the technical field of polymer composite material grafting, and specifically relates to a highly hydrophilic PVDF material and its preparation method and application.
背景技术Background technique
聚偏氟乙烯(PVDF)是一种重要的半结晶氟聚合物。由于具有优异的耐热性、耐候性、加工性和耐辐照性,PVDF引起了学术界和工业界广泛关注。PVDF由-(CH2-CF2)-重复单元组成,相对密度1.75-1.78g/cm3,长期使用温度为-40~150℃,通过将PVDF与其它聚合物共混来获得高性能PVDF复合材料是一种经济且简单的策略。然而,由于PVDF与这些聚合物之间的混溶性差,整体改进受到限制。Polyvinylidene fluoride (PVDF) is an important semi-crystalline fluoropolymer. Due to its excellent heat resistance, weather resistance, processability and radiation resistance, PVDF has attracted widespread attention from academia and industry. PVDF is composed of -(CH2-CF2)-repeating units, with a relative density of 1.75-1.78g/cm 3 and a long-term use temperature of -40~150°C. High-performance PVDF composite materials can be obtained by blending PVDF with other polymers. An economical and simple strategy. However, overall improvements are limited due to poor miscibility between PVDF and these polymers.
此外PVDF膜表面能非常低,导致膜具有强的疏水性同时PVDF对金属基材的附着力很差,因此这不仅限制了PVDF在膜方面的应用也限制了PVDF涂料的发展。马来酸酐(MAH)是一种极性化合物,含有许多官能团,尤其是不饱和双键,通过添加一些试剂或通过辐照很容易与其它聚合物发生聚合反应。酸酐基团还可以与羟基、羧基、胺基及其它官能团进行反应。因此,对一些非极性聚合物进行MAH官能化,有利于增加其与极性聚合物的相容性,提高材料的附着力以及填料与聚合物的相互作用。显然,使用MAH改性PVDF是一种制备高亲水性PVDF材料的有效策略,同时改性后的PVDF与其它聚合物的混溶性也可得到相应提高,然而在过去的几十年鲜有采用MAH改性PVDF的报道。In addition, the surface energy of PVDF membrane is very low, resulting in strong hydrophobicity of the membrane and poor adhesion of PVDF to metal substrates. Therefore, this not only limits the application of PVDF in membranes but also limits the development of PVDF coatings. Maleic anhydride (MAH) is a polar compound containing many functional groups, especially unsaturated double bonds, and can easily polymerize with other polymers by adding some reagents or by irradiation. Anhydride groups can also react with hydroxyl, carboxyl, amine and other functional groups. Therefore, MAH functionalization of some non-polar polymers is beneficial to increase their compatibility with polar polymers, improve material adhesion and filler-polymer interaction. Obviously, using MAH to modify PVDF is an effective strategy to prepare highly hydrophilic PVDF materials. At the same time, the miscibility of modified PVDF with other polymers can also be improved accordingly. However, it has rarely been used in the past few decades. Report on MAH modified PVDF.
发明内容Contents of the invention
基于上述现有技术所存在的问题,本发明提供一种高亲水性PVDF材料及其制备方法,旨在以反应性基团的MAH对PVDF进行接枝,从而提高PVDF的亲水性以及与其它聚合物的混溶性。Based on the problems existing in the above-mentioned prior art, the present invention provides a highly hydrophilic PVDF material and a preparation method thereof, aiming to graft PVDF with MAH of reactive groups, thereby improving the hydrophilicity of PVDF and its interaction with Miscibility with other polymers.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种高亲水性PVDF材料的制备方法,其特点在于:所述高亲水性PVDF材料是由马来酸酐MAH高温熔融接枝聚偏氟乙烯PVDF制备而成,具体包括如下步骤:A method for preparing a highly hydrophilic PVDF material, which is characterized in that the highly hydrophilic PVDF material is prepared by high-temperature melt grafting of maleic anhydride MAH to polyvinylidene fluoride PVDF, which specifically includes the following steps:
S1、将MAH和PVDF在烘箱中烘干;S1. Dry MAH and PVDF in the oven;
S2、打开转矩流变仪并设定所需参数(反应温度和转速);待转矩流变仪的参数达到设定值后,将烘干后的MAH和PVDF置于转矩流变仪中,并向其中加入引发剂以及蒽类自由基稳定剂,进行反应;反应结束后,关闭转矩流变仪,取出反应产物并冷却;S2. Open the torque rheometer and set the required parameters (reaction temperature and rotation speed); after the parameters of the torque rheometer reach the set value, place the dried MAH and PVDF in the torque rheometer. in, and add initiator and anthracene free radical stabilizer to it to carry out the reaction; after the reaction is completed, turn off the torque rheometer, take out the reaction product and cool it;
S3、将冷却后的反应产物破碎成粉末并进行纯化,即获得目标产物高亲水性PVDF材料。S3. Crush the cooled reaction product into powder and purify it to obtain the target product of highly hydrophilic PVDF material.
进一步地,所述PVDF的分子量为80000-200000,所述PVDF为颗粒或粉末。Further, the molecular weight of the PVDF is 80,000-200,000, and the PVDF is in the form of particles or powder.
进一步地,步骤S1中的烘干温度为50-80℃、烘干时间为12-24h。Further, the drying temperature in step S1 is 50-80°C, and the drying time is 12-24 hours.
进一步地,步骤S2中的反应温度为190-210℃、反应时间为5-7min,转矩流变仪的转速为40-60rpm。Further, the reaction temperature in step S2 is 190-210°C, the reaction time is 5-7 min, and the rotation speed of the torque rheometer is 40-60 rpm.
进一步地,步骤S2中,所述引发剂为过氧化苯甲酰(BPO)、过氧化二异丙苯(DCP)、过氧化苯甲酰叔丁酯(BPB)和过氧化甲乙酮中的至少一种,所述蒽类自由基稳定剂为二乙烯基蒽、九乙基蒽和二苯乙烯基蒽中的至少一种。Further, in step S2, the initiator is at least one of benzoyl peroxide (BPO), dicumyl peroxide (DCP), benzoyl tert-butyl peroxide (BPB) and methyl ethyl ketone peroxide. species, the anthracene free radical stabilizer is at least one of divinylanthracene, nonaethylanthracene and distyrylanthracene.
进一步地,步骤S2中,PVDF与MAH的质量比为90~97%:10%~3%,所述引发剂占PVDF和MAH总质量的0.1%~0.5%,所述蒽类自由基稳定剂占PVDF和MAH总质量的0.1%~0.5%。Further, in step S2, the mass ratio of PVDF to MAH is 90 to 97%: 10% to 3%, the initiator accounts for 0.1% to 0.5% of the total mass of PVDF and MAH, and the anthracene free radical stabilizer Accounting for 0.1% to 0.5% of the total mass of PVDF and MAH.
进一步地,步骤S3中所述的破碎为深冷粉碎,所用设备为深冷粉碎机,因为反应的生成物为塑性材料,常规破碎机无法对其进行充分破碎。Furthermore, the crushing described in step S3 is cryogenic crushing, and the equipment used is a cryogenic crusher. Because the reaction product is a plastic material, conventional crushers cannot fully crush it.
进一步地,步骤S3中所述纯化的方法为:将反应产物加入N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)或N,N-二甲基乙酰胺(DMAC)中,在油浴锅中40~60℃的条件下搅拌2h,使反应产物溶解;然后将溶液倒入过量的乙醇中析出,静置、抽滤,用丙酮充分洗涤,干燥。Further, the purification method described in step S3 is: adding N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) or N,N-dimethylacetamide (DMAC) to the reaction product. ) in an oil bath at 40-60°C for 2 hours to dissolve the reaction product; then pour the solution into excess ethanol to precipitate, let it stand, filter with suction, wash thoroughly with acetone, and dry.
本发明的有益效果体现在:The beneficial effects of the present invention are reflected in:
本发明通过在蒽类自由基稳定剂的作用下引入MAH对PVDF进行接枝改,利用MAH单体上酸酐基团的反应性以及MAH的极性,可以有效的增强PVDF的亲水性以及与其它聚合物的混溶性,这使得扩大PVDF的应用成为可能。The present invention grafts PVDF by introducing MAH under the action of anthracene free radical stabilizer, and utilizes the reactivity of the anhydride group on the MAH monomer and the polarity of MAH to effectively enhance the hydrophilicity of PVDF and its interaction with The miscibility of other polymers makes it possible to expand the application of PVDF.
附图说明Description of the drawings
图1为本发明实施例1与对比例1所得产物的水接触角图,其中(a)为纯PVDF,(b)为对比例1所得PVDF/MAH,(c)为实施例1所得PVDF-g-MAH;Figure 1 is a water contact angle diagram of the products obtained in Example 1 and Comparative Example 1 of the present invention, in which (a) is pure PVDF, (b) is PVDF/MAH obtained in Comparative Example 1, (c) is PVDF- obtained in Example 1 g-MAH;
图2为本发明实施例1与对比例1所得产物的拉伸测试图;Figure 2 is a tensile test chart of the products obtained in Example 1 and Comparative Example 1 of the present invention;
图3为本发明实施例1与对比例1所得产物的XRD图;Figure 3 is an XRD pattern of the product obtained in Example 1 and Comparative Example 1 of the present invention;
图4为本发明实施例1与对比例1所得产物的傅里叶红外光谱图。Figure 4 is the Fourier transform infrared spectrum of the products obtained in Example 1 and Comparative Example 1 of the present invention.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The following is a detailed description of the embodiments of the present invention. This embodiment is implemented based on the technical solution of the present invention and provides detailed implementation modes and specific operating processes. However, the protection scope of the present invention is not limited to the following implementations. example.
实施例1Example 1
本实施例按如下步骤制备PVDF-g-MAH材料In this example, the PVDF-g-MAH material is prepared according to the following steps:
S1、将MAH和PVDF(分子量为150000,颗粒)在烘箱中80℃烘干20h,以去除材料中多余的水分。S1. Dry MAH and PVDF (molecular weight 150,000, particles) in an oven at 80°C for 20 hours to remove excess moisture in the material.
S2、打开转矩流变仪并设定所需参数(反应温度200℃和转速50rpm);待转矩流变仪的参数达到设定值后,将烘干后的MAH(2g)和PVDF(20g)置于转矩流变仪中,并向其中加入DCP(0.05g)、BPO(0.05g)以及9-乙烯基蒽(0.05g),在200℃的条件下反应6min;反应结束后,关闭转矩流变仪,取出反应产物并冷却。S2. Open the torque rheometer and set the required parameters (reaction temperature 200°C and rotation speed 50rpm); after the parameters of the torque rheometer reach the set value, combine the dried MAH (2g) and PVDF ( 20g) was placed in a torque rheometer, and DCP (0.05g), BPO (0.05g) and 9-vinylanthracene (0.05g) were added to it, and the reaction was carried out at 200°C for 6 minutes; after the reaction was completed, Turn off the torque rheometer, take out the reaction product and cool it.
(3)将冷却后的反应产物放入深冷破碎机中进行充分的破碎,制成粉末;将粉末加入圆底烧瓶中,在油浴锅中50℃的条件下搅拌2h,使反应产物溶解;然后将溶液倒入过量的乙醇中析出,静置、抽滤,用丙酮充分洗涤,干燥,即获得目标产物高亲水性PVDF材料,记为PVDF-g-MAH。(3) Put the cooled reaction product into a cryogenic crusher for full crushing to make powder; add the powder into a round-bottomed flask and stir it in an oil bath at 50°C for 2 hours to dissolve the reaction product ; Then pour the solution into excess ethanol to precipitate, let it stand, filter with suction, wash thoroughly with acetone, and dry to obtain the target product highly hydrophilic PVDF material, recorded as PVDF-g-MAH.
对比例1Comparative example 1
本对比例按如下步骤制备MAH与PVDF共混材料:In this comparative example, the MAH and PVDF blend material was prepared according to the following steps:
S1、将MAH和PVDF(分子量为150000,颗粒)在烘箱中80℃烘干20h,以去除材料中多余的水分。S1. Dry MAH and PVDF (molecular weight 150,000, particles) in an oven at 80°C for 20 hours to remove excess moisture in the material.
S2、打开转矩流变仪并设定所需参数(反应温度200℃和转速50rpm);待转矩流变仪的参数达到设定值后,将烘干后的MAH(2g)和PVDF(20g)置于转矩流变仪中,200℃反应6min;反应结束后,关闭转矩流变仪,取出反应产物并冷却。S2. Open the torque rheometer and set the required parameters (reaction temperature 200°C and rotation speed 50rpm); after the parameters of the torque rheometer reach the set value, combine the dried MAH (2g) and PVDF ( 20g) was placed in a torque rheometer and reacted at 200°C for 6 minutes; after the reaction, turn off the torque rheometer, take out the reaction product and cool it.
(3)将冷却后的反应产物放入深冷破碎机中进行充分的破碎,制成粉末;将粉末加入圆底烧瓶中,在油浴锅中50℃的条件下搅拌2h,使反应产物溶解;然后将溶液倒入过量的乙醇中析出,静置、抽滤,用丙酮充分洗涤,干燥,即获得MAH与PVDF共混材料,记为PVDF/MAH。(3) Put the cooled reaction product into a cryogenic crusher for full crushing to make powder; add the powder into a round-bottomed flask and stir it in an oil bath at 50°C for 2 hours to dissolve the reaction product ; Then pour the solution into excess ethanol to precipitate, let it stand, filter with suction, wash thoroughly with acetone, and dry to obtain a blend material of MAH and PVDF, recorded as PVDF/MAH.
图1为实施例1与对比例1所得产物的水接触角图,其中(a)为纯PVDF,(b)为对比例1所得PVDF/MAH,(c)为实施例1所得PVDF-g-MAH。从图中可以看出PVDF-g-MAH的亲水性远好于PVDF/MAH,这说明MAH接枝PVDF可以明显的提高PVDF的亲水性。Figure 1 is a water contact angle diagram of the products obtained in Example 1 and Comparative Example 1, in which (a) is pure PVDF, (b) is PVDF/MAH obtained in Comparative Example 1, (c) is PVDF-g- obtained in Example 1 MAH. It can be seen from the figure that the hydrophilicity of PVDF-g-MAH is much better than that of PVDF/MAH, which shows that grafting MAH to PVDF can significantly improve the hydrophilicity of PVDF.
对实施例1与对比例1所得样品进行拉伸测试,结果如图2所示。可以看出实施例1所得PVDF-g-MAH的断裂伸长率为502.1MPa,对比例1所得PVDF/MAH的断裂伸长率为353.4MPa。可以看出与直接共混相比,接枝过后材料的断裂伸长率有着明显增加。A tensile test was performed on the samples obtained in Example 1 and Comparative Example 1, and the results are shown in Figure 2. It can be seen that the elongation at break of PVDF-g-MAH obtained in Example 1 is 502.1MPa, and the elongation at break of PVDF/MAH obtained in Comparative Example 1 is 353.4MPa. It can be seen that compared with direct blending, the elongation at break of the grafted material is significantly increased.
图3为实施例1与对比例1所得产物的XRD图,从图中可以看出MAH接枝对PVDF的晶型没有影响,而PVDF与MAH的共混物中PVDF的晶型受到了一定的影响,但没有出现MAH的晶型。Figure 3 is the XRD pattern of the product obtained in Example 1 and Comparative Example 1. It can be seen from the figure that MAH grafting has no effect on the crystal form of PVDF, while the crystal form of PVDF in the blend of PVDF and MAH is affected to a certain extent. influence, but no crystalline form of MAH appears.
图4为实施例1与对比例1所得产物的傅里叶红外光谱图,从图中可以看出与PVDF/MAH相比,PVDF-g-MAH在1783cm-1和1850cm-1左右处有明显的吸收峰,此为MAH的特征吸收峰,进一步表明MAH成功接枝在PVDF上。Figure 4 is the Fourier transform infrared spectrum of the product obtained in Example 1 and Comparative Example 1. It can be seen from the figure that compared with PVDF/MAH, PVDF-g-MAH has obvious differences at around 1783cm -1 and 1850cm -1 The absorption peak, which is the characteristic absorption peak of MAH, further indicates that MAH is successfully grafted on PVDF.
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。The above are only exemplary embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection scope of the present invention. within.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210472687.3A CN114716617B (en) | 2022-04-29 | 2022-04-29 | A highly hydrophilic PVDF material and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210472687.3A CN114716617B (en) | 2022-04-29 | 2022-04-29 | A highly hydrophilic PVDF material and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114716617A CN114716617A (en) | 2022-07-08 |
CN114716617B true CN114716617B (en) | 2023-10-17 |
Family
ID=82244783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210472687.3A Active CN114716617B (en) | 2022-04-29 | 2022-04-29 | A highly hydrophilic PVDF material and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114716617B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117344405A (en) * | 2023-10-31 | 2024-01-05 | 南通新帝克单丝科技股份有限公司 | Polyvinylidene fluoride/polyamide composite monofilament and preparation method thereof |
CN119060386A (en) * | 2024-11-04 | 2024-12-03 | 浙江科赛新材料科技有限公司 | Low surface resistivity and high flexibility polytetrafluoroethylene film and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173447A (en) * | 1993-10-28 | 1995-07-11 | Asahi Glass Co Ltd | Adhesive fluoropolymer and laminate using the same |
CN106674406A (en) * | 2016-12-31 | 2017-05-17 | 山东华夏神舟新材料有限公司 | Preparation method and modification method of flexible low-melting point vinylidene fluoride copolymer |
CN107213803A (en) * | 2017-05-08 | 2017-09-29 | 武汉理工大学 | A kind of Kynoar film surface grafting coats composite modifying method |
CN110975649A (en) * | 2019-11-19 | 2020-04-10 | 江苏大孚膜科技有限公司 | Modified polyvinylidene fluoride ultrafiltration membrane and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2864542B1 (en) * | 2003-12-29 | 2007-02-23 | Arkema | METHOD OF GRAFTING FLUORINATED POLYMER AND MULTILAYER STRUCTURES COMPRISING THE GRAFT POLYMER |
-
2022
- 2022-04-29 CN CN202210472687.3A patent/CN114716617B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173447A (en) * | 1993-10-28 | 1995-07-11 | Asahi Glass Co Ltd | Adhesive fluoropolymer and laminate using the same |
CN106674406A (en) * | 2016-12-31 | 2017-05-17 | 山东华夏神舟新材料有限公司 | Preparation method and modification method of flexible low-melting point vinylidene fluoride copolymer |
CN107213803A (en) * | 2017-05-08 | 2017-09-29 | 武汉理工大学 | A kind of Kynoar film surface grafting coats composite modifying method |
CN110975649A (en) * | 2019-11-19 | 2020-04-10 | 江苏大孚膜科技有限公司 | Modified polyvinylidene fluoride ultrafiltration membrane and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114716617A (en) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114716617B (en) | A highly hydrophilic PVDF material and its preparation method | |
JP7447015B2 (en) | Polar monomer-grafted polypropylene resin, its manufacturing method and application | |
CN105542482A (en) | Method for modifying water resistance and flexibility of polyvinyl alcohol membrane through poly(p-dioxanone) and poly(lactic acid-glycolic acid) | |
CN108395658B (en) | PVDF-based composite dielectric with self-crosslinking properties and preparation method thereof | |
CN105542483A (en) | Method for modifying water resistance and flexibility of polyvinyl alcohol membrane through poly(trimethylene carbonate) and poly(p-dioxanone) | |
CN112851937B (en) | Preparation method of dispersible polypyrrole copolymer | |
CN1948380A (en) | Ultrahigh molecular weight polyethylene composite material possessing high binding ability | |
CN105542207A (en) | Method for improving water resistance and flexibility of polyvinyl alcohol film through polypropylene glycol and polypeptide-polyvinylpyrrolidone | |
CN100453574C (en) | Preparation method of ethylene-octene-maleic anhydride dibutyl ester graft copolymer | |
CN118702951A (en) | A method for preparing a thin film for photovoltaic capacitors | |
CN105647200A (en) | Method for improving water resistance and flexibility of polyvinyl alcohol film by polycaprolactone and poly(lactic acid-glycolic acid) | |
CN117946338A (en) | A PVDF material with high compatibility and adhesion and preparation method thereof | |
CN109679577A (en) | A kind of graft type polyethylene copolymer Epoxy resin hot melt adhesive and preparation method thereof | |
CN1160390C (en) | Preparation method of polyethylene-maleic anhydride graft copolymer by solvothermal synthesis | |
CN116606519A (en) | PVDF composite material with high adhesive force and preparation method thereof | |
CN1528798A (en) | Solvothermal Synthesis Method of Maleic Anhydride Grafted Styrene-Butadiene-Styrene | |
CN101812212B (en) | Modified polypropylene resin and preparation method thereof | |
CN117362528A (en) | Preparation process of high-molecular polymer material | |
CN105542209A (en) | Method for modifying water resistance and flexibility of polyvinyl alcohol membrane through polypeptide and poly(p-dioxanone) | |
CN105670309A (en) | Method for improving water resistance and flexibility of polyvinyl alcohol membrane through polypeptide and polycaprolactone | |
CN120173174A (en) | Modified chlorinated polypropylene and preparation method thereof | |
CN118515969A (en) | High impact toughness polyamide 6 composite material and preparation method thereof | |
CN119391077A (en) | A biaxially stretched composite material and its application | |
Naghash et al. | Synthesis and characterization of a novel silane-based vinylic monomer and its application in the multilayer core-shell latex | |
CN119823311A (en) | Fluorine-containing chain extender, composition for preparing PLA (polylactic acid) foaming material, PLA foaming material and preparation method of PLA foaming material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |