CN114716011A - 一种自强化固态碳源释放的高效脱氮装置及方法 - Google Patents

一种自强化固态碳源释放的高效脱氮装置及方法 Download PDF

Info

Publication number
CN114716011A
CN114716011A CN202210312979.0A CN202210312979A CN114716011A CN 114716011 A CN114716011 A CN 114716011A CN 202210312979 A CN202210312979 A CN 202210312979A CN 114716011 A CN114716011 A CN 114716011A
Authority
CN
China
Prior art keywords
short
carbon source
zone
gas
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210312979.0A
Other languages
English (en)
Other versions
CN114716011B (zh
Inventor
张萌
孙盼
胡勤海
郑平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210312979.0A priority Critical patent/CN114716011B/zh
Publication of CN114716011A publication Critical patent/CN114716011A/zh
Application granted granted Critical
Publication of CN114716011B publication Critical patent/CN114716011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种自强化固态碳源释放的高效脱氮装置及方法,装置包括由下至上依次连通的布水排泥装置、反应装置和三相分离装置;反应装置内部由下至上依次设有厌氧氨氧化区,内三相分离区、内布水区和短程反硝化区。废水经过厌氧氨氧化区去除氨氮和亚硝氮,随后在内三相分离区分离,气体经集气装置积累后在短程反硝化区脉冲释气,液体通过内布水区进入短程反硝化区;短程反硝化区设有固态碳源,脉冲释气产生的动力可促进流态扰动和固态碳源释放;废水通过短程反硝化区将硝氮转化为亚硝氮并回流至厌氧氨氧化区。本发明充分利用各反应特性,采用自产气扰动强化固态碳源释放效率,提高短程反硝化和厌氧氨氧化工艺功能协同,实现高效经济生物脱氮。

Description

一种自强化固态碳源释放的高效脱氮装置及方法
技术领域
本发明属于污水处理领域,具体涉及一种自强化固态碳源释放的高效脱氮装置及方法。
背景技术
厌氧氨氧化是一种新型脱氮工艺,指在厌氧条件下以氨为电子供体将亚硝酸盐还原成氮气的自养生物过程。相较于传统硝化-反硝化工艺,基于厌氧氨氧化的新型脱氮工艺可显著降低由于曝气而消耗的能耗,节省有机碳源,削减剩余污泥产量,降低温室气体排放,具有绿色高效、节能降耗的优点,是废水生物脱氮的升级技术。厌氧氨氧化过程需要亚硝酸盐作为反应基质,而含氮废水中氮素通常以氨氮和硝氮的形式存在,因此如何提供稳定的亚硝酸盐成为厌氧氨氧化过程亟需突破的关键问题。
短程反硝化是反硝化过程的第一步反应,是硝酸盐在电子受体(通常为有机物)作用下还原成亚硝酸盐的生物过程。短程反硝化可为厌氧氨氧化提供反应所需的亚硝酸盐,同时厌氧氨氧化中产生的硝酸盐又可以作为短程反硝化的反应物,实现协同脱氮。短程反硝化过程所需的有机碳源,通常以液体形式提供,但液态碳源存在成本高、碳源投加调控难等问题,如若投加量少,硝酸盐无法完全还原为亚硝酸盐;若投加量多,发生全程反硝化,且出水有机物浓度超标。
固态碳源是一类具有大分子结构、有机物释放速率较缓慢的固体类碳源,通常需要在在水相中解聚后才能为微生物所利用。利用固态碳源的缓释性,为短程反硝化过程提供有机物作为电子供体的同时可控制水体中有机物含量。常见的固态碳源有PHB、PCL、PLA等人工合成高聚物和玉米芯、稻杆、稻壳等天然物质,若使用农业废弃物作为固态碳源,碳源成本几乎为零,实现以废治废。但固态碳源在利用过程中存在碳源释放效率偏低的问题,因此,本发明拟采用厌氧氨氧化过程产生的氮气,通过结构设计使其收集并脉冲式释放,产生扰动流态,强化固态碳源释放效率,提高短程反硝化反应效率和亚硝酸盐积累率,从而有望增强短程反硝化-厌氧氨氧化耦合工艺的总体脱氮效率,实现经济高效生物脱氮,具有广阔的应用前景。
发明内容
本发明的目的是克服现有技术的不足,提供一种自强化固态碳源释放的高效脱氮装置及方法。
本发明所采用的具体技术方案如下:
第一方面,本发明提供了一种自强化固态碳源释放的高效脱氮装置,包括由下至上依次连通的布水排泥装置、反应装置和三相分离装置;
所述布水排泥装置为下部逐渐缩小且具有内腔的结构,底部开设排泥口,内腔中设有用于均匀分布污水的第一布水器,第一布水器通过进水管与外部连通;
所述反应装置内部包括由下至上依次连通的厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区;所述厌氧氨氧化区用于接种厌氧氨氧化污泥,底部与布水排泥装置连通;所述内三相分离区中设有三相分离器,三相分离器上方依次设有分离挡板和喇叭状的第一集气罩,分离挡板和第一集气罩均用于阻挡厌氧氨氧化污泥;第一集气罩顶部连接有漏斗状的内排气板,两者内腔连接处形成第一排气口,第一排气口处设有能向上移动的重力球;初始状态下,重力球能封堵第一排气口;厌氧氨氧化区产生的气体能向上顶开重力球,并仅能通过第一排气口进入内布水区;所述内布水区中设有第二布水器,第二布水器上方设有承托层,承托层能将所在处反应装置的内腔横截面完全覆盖;所述承托层具有若干空隙,在用于阻挡短程反硝化区中的短程反硝化污泥向下移动的同时,能对短程反硝化区均匀布水;所述短程反硝化区用于接种短程反硝化污泥,内部设有可拆卸更换的固态碳源装置;固态碳源装置为网状结构,内部装有用于为短程反硝化污泥提供碳源的固态碳源,内腔顶部由下至上逐渐缩小;
所述三相分离装置与短程反硝化区相连通,内部设有竖向的气体收集管,气体收集管顶部设有能与外界连通的第二排气口;三相分离装置上部侧壁开设排水口,底部通过回流管与进水管相连通,用于将分离的液体部分回流。
作为优选,沿水流方向,所述反应装置侧壁开设有若干取水口。
作为优选,所述分离挡板位于第一集气罩下方,为固定于反应装置内壁的环形结构;第一集气罩位于反应装置的1/3~2/5高度处,为由下至上内径逐渐缩小的喇叭状结构,沿水平方向的倾斜角度为50~60°;内排气板为由下至上内径逐渐增大的漏斗状结构,沿水平方向的倾斜角度为70~80°;第一集气罩、内排气板与反应装置均同轴设置。
作为优选,位于所述短程反硝化区的反应装置内壁固定有碳源固定环,碳源固定环用于放置固定固态碳源装置。
作为优选,所述固态碳源装置为上部长于下部的梭形结构,上部与下部的高度比为(3~2):1,最大直径为短程反硝化区直径的1/2~2/3,高度为短程反硝化区高度的3/5~2/3;固态碳源装置设于短程反硝化区至上部1/6~1/5高度至下部4/5~5/6高度之间,且位于第一排气口正上方。
作为优选,所述气体收集管与三相分离装置同轴设置,底部设有第二集气罩,第二集气罩为内径由下至上逐渐缩小的喇叭状结构。
作为优选,所述厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区的体积之比为10:(5~10):(1~2):10。
作为优选,所述第二布水器位于整个反应装置2/3~3/5高度处,回流管与三相分离装置的连通处位于三相分离装置底部的1/5~1/4处。
作为优选,所述承托层包括底板和无机颗粒物;底板固定于反应装置内腔中,其上均匀布设有若干无机颗粒物,共同构成多孔隙结构。
第二方面,本发明提供了一种根据第一方面任一所述自强化固态碳源释放的高效脱氮装置的污水处理方法,具体如下:
在厌氧氨氧化区和短程反硝化区中分别接种厌氧氨氧化污泥和短程反硝化污泥;将含有氨氮和硝氮的污水通过进水管进入布水排泥装置,经第一布水器均匀布水后向上进入反应装置;在反应装置中,污水首先进入厌氧氨氧化区,微生物通过厌氧氨氧化反应将污水中的氨氮和短程反硝化区产生并回流的亚硝氮转化成氮气;经厌氧氨氧化反应后的固液气混合物进入内三相分离区;厌氧氨氧化产生的氮气在喇叭状的第一集气罩内积累,第一集气罩中的气压逐渐增大,当气压产生的推力大于第一内排气口处重力球的重力时,气体脉冲释放至短程反硝化区;释气结束后,由于重力作用,重力球回落并重新封堵第一排气口;重力球在气体的作用下上下循环往复移动,以实现自动脉冲释气;固液混合物通过分离挡板和第一集气罩的阻挡作用,在重力作用下静置沉降实现固液分离,厌氧氨氧化污泥重新回落至厌氧氨氧化区;经厌氧氨氧化反应后的污水通过第二布水器的均匀布水作用,经承托层进入短程反硝化区;固态碳源装置能够缓释有机物,为微生物提供碳源;第一集气罩内的气体经第一内排气口进入短程反硝化区,脉冲气体产生的动力可强化流体对固态碳源装置中固态碳源的搅动,提高有机物释放效率性能;通过固态碳源装置顶部内腔的特殊结构,可实现在污水流动方向上有机物释放效率由高到低,既可满足短程反硝化微生物有机物需求,又可降低出水有机物浓度防止超标;微生物通过短程反硝化反应将污水中的硝氮转换成亚硝氮;
经短程反硝化区处理后的产物进入三相分离装置,气体由气体收集管收集后经第二排气口排出;固液混合物经沉降后实现固液分离,固体污泥重新回落至反应装置中,液体一部分通过回流管进入进水管实现污水回流,另一部分经过排水口排出。
本发明相对于现有技术而言,具有以下有益效果:
1)反应装置通过上部为短程反硝化区、下部为厌氧氨氧化区的设置,充分利用厌氧氨氧化反应产生的气体作为推动力,强化流态和固态碳源扰动,增强其有机物释放效能;
2)在短程反硝化区采用固态碳源作为电子供体,可有效控制碳源缓释速率,有利于实现稳定的短程反硝化,为厌氧氨氧化提供亚硝酸盐作为反应基质;
3)通过下宽上窄梭子形固态碳源装置的设计,在短程反硝化区可实现下部固态碳源高效释放,提高短程反硝化反应速率与亚硝酸盐积累率,同时在上部降低出水有机物浓度,提高达标性能;
4)本装置中固态碳源具有可维护性,满足反应器长期运行的需求;
5)固态碳源的使用可提高碳源利用率,具有经济性、可持续性。
附图说明
图1是装置的结构剖面图;
图2是图1中的a-a截面图(a)、b-b截面图(b)、c-c截面图(c);
图中:布水排泥装置I、反应装置II、三相分离装置III、排泥口1、进水管2、第一布水器3、取水口4、分离挡板5、第一集气罩6、第一排气口7、重力球8、内排气板9、第二布水器10、承托层11、碳源固定环12、固态碳源装置13、回流管14、第二集气罩15、气体收集管16、沉淀区17、排水口18、第二排气口19。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
如图1所示,为本发明提供的一种自强化固态碳源释放的高效脱氮装置,该高效脱氮装置包括由下至上依次连通的布水排泥装置I、反应装置II和三相分离装置III。下面将对各装置的结构和连接方式进行具体说明。
布水排泥装置I为下部逐渐缩小且具有内腔的结构,底部开设排泥口1,内腔中设有第一布水器3,第一布水器3用于均匀分布污水,第一布水器3通过进水管2与外部连通。
反应装置II内部包括由下至上依次连通的厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区。厌氧氨氧化区用于接种厌氧氨氧化污泥,底部与布水排泥装置I连通,顶部与内三相分离区的底部连通。内三相分离区中设有三相分离器,三相分离器上方设有分离挡板5,分离挡板5用于初步拦截厌氧氨氧化区中的厌氧氨氧化污泥。在实际应用时,分离挡板5可以设置为固定于反应装置II内壁的环形结构,板面与水流方向垂直,进而实现厌氧氨氧化污泥的初步拦截。分离挡板5上方设有喇叭状的第一集气罩6,第一集气罩6用于聚集厌氧氨氧化区产生的气体,同时还能够进一步拦截厌氧氨氧化污泥。在实际应用时,第一集气罩6可以设置于反应装置II的1/3~2/5高度处,为由下至上内径逐渐缩小的喇叭状结构,沿水平方向的倾斜角度为50~60°。第一集气罩6中间具有通孔,其顶部连接有漏斗状的内排气板9;内排气板9中间具有通孔,为由下至上内径逐渐增大的漏斗状结构;第一集气罩6和内排气板9两者内腔连接处形成第一排气口7,第一排气口7处设有能向上移动的重力球8。初始状态下,重力球8能封堵第一排气口7。厌氧氨氧化区产生的气体能向上顶开重力球8,并仅能通过第一排气口7进入内布水区。
在实际应用时,重力球尺寸应略大于第一排气口的直径,当第一集气罩内气压积累到一定程度时,重力球被气体顶起,第一排气口开始释气。内排气板9沿水平方向的倾斜角度可以设置为70~80°,第一集气罩6、内排气板9与反应装置II均同轴设置。第一集气罩6、内排气板9与反应装置II内壁共同围成厌氧氨氧化沉淀区。
如图2所示,内布水区中设有第二布水器10,第二布水器10能够使经过厌氧氨氧化区处理后的污水均匀进入上方的短程反硝化区。在实际应用时,第二布水器10可以设置于整个反应装置II的2/3~3/5高度处。第二布水器10上方设有承托层11,承托层11能将所在处反应装置II的内腔横截面完全覆盖。承托层11具有若干空隙,在用于阻挡短程反硝化区中的短程反硝化污泥向下移动的同时,能对短程反硝化区均匀布水。在实际应用时,承托层11主要包括底板和无机颗粒物,其中,底板固定于反应装置II内腔中,底板上均匀固定布设有若干无机颗粒物(例如玻璃珠、鹅卵石、砂砾等),共同构成多孔隙结构,从而拦截上方的短程反硝化污泥,且下方的水流和气体能够通过无机颗粒物之间的孔隙进入上方的短程反硝化区。
短程反硝化区用于接种短程反硝化污泥,内部设有可拆卸更换的固态碳源装置13。固态碳源装置13为网状结构,内部装有用于为短程反硝化污泥提供碳源的固态碳源。在实际应用时,固态碳源可以采用合成材料(如绿色塑料等)或天然材料(如农业废弃物、大米、玉米粒等)。固态碳源能够通过网状外壳与外部的水流接触并提供碳源,但无法从网状外壳中流出,避免了固态碳源的流失。固态碳源装置13的内腔顶部由下至上逐渐缩小,该种结构可以使得内部填充的固态碳源量也是由下至上逐渐减少,进而使得内部填充的固态碳源由于在污水流动方向上有机物释放效率由高到低,既可以满足短程反硝化微生物有机物需求,又可降低出水有机物浓度防止超标。在实际应用时,固态碳源装置13可以设置为上部长于下部的梭形结构,上部与下部的高度比为3~2:1,最大直径为短程反硝化区直径的1/2~2/3,高度为短程反硝化区高度的3/5~2/3。固态碳源装置13设于短程反硝化区至上部1/6~1/5高度至下部4/5~5/6高度之间,且位于第一排气口7正上方。固态碳源装置13的形状下部宽短、上部细长,覆合两个圆锥体的底面,严密扣紧上下部的连接处,实现固态碳源填充。固态碳源装置可定期取出更换内部碳源。在固态碳源装置13的该种结构下,可以在位于短程反硝化区的反应装置II内壁固定有碳源固定环12,碳源固定环12用于放置固定固态碳源装置13。
为了使反应装置II中厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区相互配合的处理效果更好,可以将厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区的体积之比设置为10:(5~10):(1~2):10。
三相分离装置III与短程反硝化区相连通,内部设有竖向的气体收集管16,气体收集管16顶部设有能与外界连通的第二排气口19。三相分离装置III上部侧壁开设排水口18,底部通过回流管14与进水管2相连通,用于将分离的液体部分回流。气体收集管与三相分离装置III外壁之间构成沉淀区17。在实际应用时,气体收集管16与三相分离装置III同轴设置,底部设有第二集气罩15,第二集气罩15为内径由下至上逐渐缩小的喇叭状结构。回流管14与三相分离装置III的连通处位于三相分离装置III底部的1/5~1/4处。反应装置II侧壁上可以沿轴向在不同高度和区域处开设多个取水口4,以便于在装置运行过程中定期通过取水口4抽取污泥或者污水,通过检测抽取样品的参数来反馈调节反应装置II。
利用上述自强化固态碳源释放的高效脱氮装置的污水处理方法,具体如下:
首先,在厌氧氨氧化区和短程反硝化区中分别接种厌氧氨氧化污泥和短程反硝化污泥。在装置的持续运行过程中,短程反硝化区产生的亚硝氮污水进入回流管并与新的待处理的氨氮和硝氮污水一同进入布水排泥装置,经布水器均匀布水后向上进入反应装置。
将含有氨氮和硝氮的污水通过进水管2进入布水排泥装置I,经第一布水器3均匀布水后向上进入反应装置II。在反应装置II中,污水首先进入厌氧氨氧化区,微生物通过厌氧氨氧化反应将污水中的氨氮和短程反硝化区产生并回流的亚硝氮转化成氮气。经厌氧氨氧化反应后的固液气混合物进入内三相分离区。厌氧氨氧化产生的氮气在喇叭状的第一集气罩6内积累,第一集气罩6中的气压逐渐增大,当气压产生的推力大于第一内排气口7处重力球8的重力时,气体脉冲释放至短程反硝化区。释气结束后,由于重力作用,重力球8回落并重新封堵第一排气口7。重力球8在气体的作用下上下循环往复移动,以实现自动脉冲释气。固液混合物通过分离挡板5和第一集气罩6的阻挡作用,在重力作用下静置沉降实现固液分离,厌氧氨氧化污泥重新回落至厌氧氨氧化区。经厌氧氨氧化反应后的污水通过第二布水器10的均匀布水作用,经承托层11进入短程反硝化区。固态碳源装置13能够缓释有机物,为微生物提供碳源。第一集气罩6内的气体经第一内排气口7进入短程反硝化区,脉冲气体产生的动力可强化流体对固态碳源装置13中固态碳源的搅动,提高有机物释放效率性能。通过固态碳源装置13顶部内腔的特殊结构,可实现在污水流动方向上有机物释放效率由高到低,既可满足短程反硝化微生物有机物需求,又可降低出水有机物浓度防止超标。微生物通过短程反硝化反应将污水中的硝氮转换成亚硝氮。
在整个反应过程中,厌氧氨氧化反应去除污水中的氨氮和亚硝氮;短程反硝化反应去除污水中的硝氮,最终表现为完全脱氮。
经短程反硝化区处理后的产物进入三相分离装置III,气体由气体收集管16收集后经第二排气口19排出。固液混合物经沉降后实现固液分离,固体污泥重新回落至反应装置II中,液体一部分通过回流管14进入进水管2实现污水回流,另一部分经过排水口18排出。
本发明将短程反硝化和厌氧氨氧化耦合,利用厌氧氨氧化过程产生的氮气作为动力,促进流态扰动和固态碳源释放,增强固态碳源有机物释放效能。在内循环过程中,进水管内通入氨氮和硝氮废水,短程反硝化过程将硝氮转化成亚硝氮,含亚硝氮的废水通过回流管和再次进入厌氧氨氧化区,发生厌氧氨氧化反应,生成氮气和小部分硝氮,氮气积累后向上排出作为推动力,硝氮再次进入短程反硝化区被除去,实现循环脱氮。本发明中采用固态碳源为短程反硝化过程提供电子,通过下宽上窄的梭子形固态碳源结构的设计,在短程反硝化区可实现下部固态碳源高效释放,提高短程反硝化反应速率与亚硝酸盐积累率,同时在上部降低出水有机物浓度,提高达标性能,控制厌氧氨氧化区进水有机物浓度,实现高效协同脱氮。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (9)

1.一种自强化固态碳源释放的高效脱氮装置,其特征在于,包括由下至上依次连通的布水排泥装置(I)、反应装置(II)和三相分离装置(III);
所述布水排泥装置(I)为下部逐渐缩小且具有内腔的结构,底部开设排泥口(1),内腔中设有用于均匀分布污水的第一布水器(3),第一布水器(3)通过进水管(2)与外部连通;
所述反应装置(II)内部包括由下至上依次连通的厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区;所述厌氧氨氧化区用于接种厌氧氨氧化污泥,底部与布水排泥装置(I)连通;所述内三相分离区中设有三相分离器,三相分离器上方依次设有分离挡板(5)和喇叭状的第一集气罩(6),分离挡板(5)和第一集气罩(6)均用于阻挡厌氧氨氧化污泥;第一集气罩(6)顶部连接有漏斗状的内排气板(9),两者内腔连接处形成第一排气口(7),第一排气口(7)处设有能向上移动的重力球(8);初始状态下,重力球(8)能封堵第一排气口(7);厌氧氨氧化区产生的气体能向上顶开重力球(8),并仅能通过第一排气口(7)进入内布水区;所述内布水区中设有第二布水器(10),第二布水器(10)上方设有承托层(11),承托层(11)能将所在处反应装置(II)的内腔横截面完全覆盖;所述承托层(11)具有若干空隙,在用于阻挡短程反硝化区中的短程反硝化污泥向下移动的同时,能对短程反硝化区均匀布水;所述短程反硝化区用于接种短程反硝化污泥,内部设有可拆卸更换的固态碳源装置(13);固态碳源装置(13)为网状结构,内部装有用于为短程反硝化污泥提供碳源的固态碳源,内腔顶部由下至上逐渐缩小;
所述三相分离装置(III)与短程反硝化区相连通,内部设有竖向的气体收集管(16),气体收集管(16)顶部设有能与外界连通的第二排气口(19);三相分离装置(III)上部侧壁开设排水口(18),底部通过回流管(14)与进水管(2)相连通,用于将分离的液体部分回流。
2.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,所述分离挡板(5)位于第一集气罩(6)下方,为固定于反应装置(II)内壁的环形结构;第一集气罩(6)位于反应装置(II)的1/3~2/5高度处,为由下至上内径逐渐缩小的喇叭状结构,沿水平方向的倾斜角度为50~60°;内排气板(9)为由下至上内径逐渐增大的漏斗状结构,沿水平方向的倾斜角度为70~80°;第一集气罩(6)、内排气板(9)与反应装置(II)均同轴设置。
3.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,位于所述短程反硝化区的反应装置(II)内壁固定有碳源固定环(12),碳源固定环(12)用于放置固定固态碳源装置(13)。
4.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,所述固态碳源装置(13)为上部长于下部的梭形结构,上部与下部的高度比为(3~2):1,最大直径为短程反硝化区直径的1/2~2/3,高度为短程反硝化区高度的3/5~2/3;固态碳源装置(13)设于短程反硝化区至上部1/6~1/5高度至下部4/5~5/6高度之间,且位于第一排气口(7)正上方。
5.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,所述气体收集管(16)与三相分离装置(III)同轴设置,底部设有第二集气罩(15),第二集气罩(15)为内径由下至上逐渐缩小的喇叭状结构。
6.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,所述厌氧氨氧化区、内三相分离区、内布水区和短程反硝化区的体积之比为10:(5~10):(1~2):10。
7.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,所述第二布水器(10)位于整个反应装置(II)2/3~3/5高度处,回流管(14)与三相分离装置(III)的连通处位于三相分离装置(III)底部的1/5~1/4处。
8.根据权利要求1所述的自强化固态碳源释放的高效脱氮装置,其特征在于,所述承托层(11)包括底板和无机颗粒物;底板固定于反应装置(II)内腔中,其上均匀布设有若干无机颗粒物,共同构成多孔隙结构。
9.一种根据权利要求1~8任一所述自强化固态碳源释放的高效脱氮装置的污水处理方法,其特征在于,具体如下:
在厌氧氨氧化区和短程反硝化区中分别接种厌氧氨氧化污泥和短程反硝化污泥;将含有氨氮和硝氮的污水通过进水管(2)进入布水排泥装置(I),经第一布水器(3)均匀布水后向上进入反应装置(II);在反应装置(II)中,污水首先进入厌氧氨氧化区,微生物通过厌氧氨氧化反应将污水中的氨氮和短程反硝化区产生并回流的亚硝氮转化成氮气;经厌氧氨氧化反应后的固液气混合物进入内三相分离区;厌氧氨氧化产生的氮气在喇叭状的第一集气罩(6)内积累,第一集气罩(6)中的气压逐渐增大,当气压产生的推力大于第一内排气口(7)处重力球(8)的重力时,气体脉冲释放至短程反硝化区;释气结束后,由于重力作用,重力球(8)回落并重新封堵第一排气口(7);重力球(8)在气体的作用下上下循环往复移动,以实现自动脉冲释气;固液混合物通过分离挡板(5)和第一集气罩(6)的阻挡作用,在重力作用下静置沉降实现固液分离,厌氧氨氧化污泥重新回落至厌氧氨氧化区;经厌氧氨氧化反应后的污水通过第二布水器(10)的均匀布水作用,经承托层(11)进入短程反硝化区;固态碳源装置(13)能够缓释有机物,为微生物提供碳源;第一集气罩(6)内的气体经第一内排气口(7)进入短程反硝化区,脉冲气体产生的动力可强化流体对固态碳源装置(13)中固态碳源的搅动,提高有机物释放效率性能;通过固态碳源装置(13)顶部内腔的特殊结构,可实现在污水流动方向上有机物释放效率由高到低,既可满足短程反硝化微生物有机物需求,又可降低出水有机物浓度防止超标;微生物通过短程反硝化反应将污水中的硝氮转换成亚硝氮;
经短程反硝化区处理后的产物进入三相分离装置(III),气体由气体收集管(16)收集后经第二排气口(19)排出;固液混合物经沉降后实现固液分离,固体污泥重新回落至反应装置(II)中,液体一部分通过回流管(14)进入进水管(2)实现污水回流,另一部分经过排水口(18)排出。
CN202210312979.0A 2022-03-28 2022-03-28 一种自强化固态碳源释放的高效脱氮装置及方法 Active CN114716011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210312979.0A CN114716011B (zh) 2022-03-28 2022-03-28 一种自强化固态碳源释放的高效脱氮装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210312979.0A CN114716011B (zh) 2022-03-28 2022-03-28 一种自强化固态碳源释放的高效脱氮装置及方法

Publications (2)

Publication Number Publication Date
CN114716011A true CN114716011A (zh) 2022-07-08
CN114716011B CN114716011B (zh) 2023-02-28

Family

ID=82239907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210312979.0A Active CN114716011B (zh) 2022-03-28 2022-03-28 一种自强化固态碳源释放的高效脱氮装置及方法

Country Status (1)

Country Link
CN (1) CN114716011B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893659A (zh) * 2022-12-02 2023-04-04 西南交通大学 脉冲释气式厌氧颗粒污泥生物反应器以及废水处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515350A (zh) * 2011-12-09 2012-06-27 北京工业大学 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置与方法
CN104692525A (zh) * 2015-02-15 2015-06-10 北京工业大学 一种连续流一体式硝酸盐氮和氨氮同步去除的装置和方法
CN109712900A (zh) * 2018-12-28 2019-05-03 安徽龙芯微科技有限公司 半导体焊片排布装置
CN111592104A (zh) * 2020-05-26 2020-08-28 昆明冶金研究院有限公司 一种餐厨垃圾消化液的短程高效生物处理装置及处理方法
CN113200604A (zh) * 2021-06-07 2021-08-03 浙江大学 基于固态碳源短程反硝化-厌氧氨氧化的脱氮装置及方法
CN113321369A (zh) * 2021-02-08 2021-08-31 重庆大学 一种同时脱氮除磷的潮汐流人工湿地

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515350A (zh) * 2011-12-09 2012-06-27 北京工业大学 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置与方法
CN104692525A (zh) * 2015-02-15 2015-06-10 北京工业大学 一种连续流一体式硝酸盐氮和氨氮同步去除的装置和方法
CN109712900A (zh) * 2018-12-28 2019-05-03 安徽龙芯微科技有限公司 半导体焊片排布装置
CN111592104A (zh) * 2020-05-26 2020-08-28 昆明冶金研究院有限公司 一种餐厨垃圾消化液的短程高效生物处理装置及处理方法
CN113321369A (zh) * 2021-02-08 2021-08-31 重庆大学 一种同时脱氮除磷的潮汐流人工湿地
CN113200604A (zh) * 2021-06-07 2021-08-03 浙江大学 基于固态碳源短程反硝化-厌氧氨氧化的脱氮装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893659A (zh) * 2022-12-02 2023-04-04 西南交通大学 脉冲释气式厌氧颗粒污泥生物反应器以及废水处理方法
CN115893659B (zh) * 2022-12-02 2024-05-24 西南交通大学 脉冲释气式厌氧颗粒污泥生物反应器以及废水处理方法

Also Published As

Publication number Publication date
CN114716011B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN202297249U (zh) 内循环流化床生物反应器
CN100473616C (zh) 叠加式污水生化反应器
CN201458905U (zh) 一种好氧流化床—生物滤池耦合反应器
CN105174601B (zh) 一种木薯酒精废水的生物处理工艺
CN105600931B (zh) 一种具有深度脱氮功能的微曝气型固体碳源湿地系统及其脱氮处理工艺
CN101786770A (zh) 一种微动力移动床生活污水处理系统
CN1626460A (zh) 一种处理废水的生物反应器
CN101928065A (zh) 电场强化两相厌氧反应器
CN105130102A (zh) 分散式生活污水生化处理过程中强化反硝化脱臭的方法
CN201999792U (zh) 内循环移动床生物反应器
CN114716011B (zh) 一种自强化固态碳源释放的高效脱氮装置及方法
CN111115981A (zh) 一种资源再生型人工湿地系统
CN100500593C (zh) 复合式污水处理方法及装置
CN211198754U (zh) 一种内嵌沉淀结构的一体化a2/o生化塔
CN209740821U (zh) 一种用于农村生活污水治理的复合型人工湿地系统
CN113526654A (zh) 一种集成式一体化污水处理系统
CN201485326U (zh) 固定化颗粒污泥好氧反应器
CN102617002A (zh) 分散性生活污水处理方法
CN215049474U (zh) 一种集中式污水处理设施
CN202046931U (zh) 一种复合多功能水处理反应器
CN105174449B (zh) 结构改进型的上流式厌氧污泥床反应器
CN104386809A (zh) 一种好氧颗粒污泥处理养猪废水的优化方法
CN201495154U (zh) 生物流化床与生物滤床复合式污水生物处理系统
CN212669469U (zh) 一种分散式污水处理装置
CN210974336U (zh) 一种脱氮一体化设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant