CN114713839A - 一种金-钌双金属纳米颗粒、其制备方法及应用 - Google Patents

一种金-钌双金属纳米颗粒、其制备方法及应用 Download PDF

Info

Publication number
CN114713839A
CN114713839A CN202210566155.6A CN202210566155A CN114713839A CN 114713839 A CN114713839 A CN 114713839A CN 202210566155 A CN202210566155 A CN 202210566155A CN 114713839 A CN114713839 A CN 114713839A
Authority
CN
China
Prior art keywords
gold
solution
nanoparticles
ruthenium
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210566155.6A
Other languages
English (en)
Other versions
CN114713839B (zh
Inventor
殷航
王亦博
元爱丽
何广莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanghe Science and Technology College
Original Assignee
Huanghe Science and Technology College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanghe Science and Technology College filed Critical Huanghe Science and Technology College
Priority to CN202210566155.6A priority Critical patent/CN114713839B/zh
Publication of CN114713839A publication Critical patent/CN114713839A/zh
Application granted granted Critical
Publication of CN114713839B publication Critical patent/CN114713839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种金‒钌双金属纳米颗粒、其制备方法及应用,具体过程是:(1)多孔金的制备:以氯金酸(HAuCl4)为金源,PbS为种子,在抗坏血酸(AA)存在的条件下实现金在硫化铅表面的选择性生长,得到多孔金纳米颗粒;(2)金‒钌双金属纳米颗粒的制备:以三氯化钌(RuCl3)为钌源,硼氢化钠(NaBH4)为还原剂,通过改变钌源和还原剂的量,制备不同钌负载量的金‒钌双金属纳米颗粒。将金‒钌双金属纳米材料用于光电催化氮气还原,Ru是电催化固氮的活性中心,Au可以与可见光产生强烈的相互作用,产生表面局域等离激元共振效应,产生热电子,促进了电催化生成氨量和法拉第效率的提高。

Description

一种金-钌双金属纳米颗粒、其制备方法及应用
技术领域
本发明属于材料化学领域,具体涉及一种金‒钌双金属纳米颗粒、其制备方法及应用。
背景技术
氨(NH3)是全球经济的重要组成部分,可以合成多种关键化学物质,包括肥料、清洁能源载体和储氢分子等。但是,由于N≡N键非常稳定,目前NH3的工业生产仍然依赖于高纯N2和H2的“高温高压”Haber-Bosch工艺。而工业产氨一项技术每年消耗的天然气量占每年世界天然气产量的3%‒5%,每年排放的二氧化碳量大约占世界上每年温室气体排放量的1.5%,这会产生温室效应以及不可再生资源的持续消耗等问题。日益严重的环境问题和化石燃料的不断消耗,迫切需要通过一种高效的方法来代替传统的Haber-Bosch法。因此,开发一种可行且可靠的策略来提高金属基催化剂的固氮活性和法拉第效率对绿色和可持续的NH3生产至关重要。光催化和光电催化技术进行氮气还原可直接利用取之不尽、用之不竭的太阳能,与光催化固氮受到快速电子-空穴对重组的限制相比,电催化固氮尤其具有吸引力,因为这一尚未开发的领域可以通过应用不同的电势对应用少量的电催化剂优化NH3生产。到目前为止,尽管广泛的探索已经致力于制造有效的材料和提高产量和效率。电化学固氮仍然具有活性不足、选择性低和稳定性差的特点。
局域表面等离子体共振(LSPR)是金属纳米晶体在共振激发下的集体振荡,可以产生热电子。利用等离子体产生的热电子来驱动化学反应已经成为太阳光催化的一个热门课题。对于不同的电催化反应,等离子体激发也被应用于不同的方面做出有价值的贡献,但对于它们的功能机制和未来潜力我们仍然还需不停探索。金纳米结构是典型的等离激元材料,可以与可见光产生强烈的相互作用,产生表面局域等离激元共振效应,将远大于自身几何截面的光能集中在很小的范围内,并通过能量转移引起强烈的光-物质的相互作用,在实现太阳能到化学能的转化方面很有潜力。不同于光催化剂以粉末的形式分散于反应溶剂中,光电催化的催化剂通常以电极的形式连接在光电反应池中。在光催化氮气还原反应中,生成的氨极容易被迁移到材料表面的光生空穴氧化,降低反应产率。利用光电催化技术进行氮气还原可以将氧化反应和还原反应分开在不同的反应池中进行,防止生成的氨被氧化。此外,光电催化可以通过外加偏压促进光生电子和空穴的有效分离。
金(Au)由于其较强的可见光吸收和化学稳定性,是利用最多的等离子体材料。尽管一些研究已经证明Au具有对N2的吸附能力,但单独的金仍然不能表现出良好的活性以及选择性。而钌(Ru)作为Haber−Bosch工艺中较好的催化剂,在NRR电催化中具有合适的氮吸附能。因此,本申请在常温常压下,通过湿化学法制备一种多孔金和钌的复合结构,来有效地提高氮气和水合成氨的转化效率。在这里,Au被用来生成热电子并提供等离子体电势,而Ru是N2还原的真正的催化活性位点。
发明内容
本发明的目的在于提供一种金‒钌双金属纳米颗粒、其制备方法及应用,通过湿化学法制备金‒钌双金属纳米颗粒,具有等离子体性能的多孔金能够大范围捕获光,但其对氮气分子的吸附能力较弱。钌是在电催化氮气还原中使用最广泛的贵金属,其也能作为助催化剂用于光催化氮气还原领域。为此本申请将多孔金与具有固氮活性的钌复合在一起,并将其用于光电催化固氮。
基于上述目的,本发明采取如下技术方案:
一种金‒钌双金属纳米颗粒的制备方法,过程如下:
(1) 多孔金的制备:向CTAC溶液中添加HAuCl4溶液,在搅拌下加入抗坏血酸溶液,然后在搅拌下注入PbS种子溶液,然后将得到的混合溶液静置后离心,酸洗并离心,固体分散在水中,即得多孔金溶液;
(2) 金‒钌双金属纳米颗粒的制备:向步骤(1)中的多孔金溶液中加入RuCl3溶液,混合均匀,再加入NaBH4溶液,继续搅拌1h~1.5h 得到金‒钌双金属溶液,离心,固体分散在水中,即得,多孔金溶液、RuCl3和NaBH4的体积比为10:(0.02~0.2): (0.02~0.2),RuCl3溶液浓度为0.5mM~2 mM,NaBH4浓度为5 mM ~20 mM。
具体地,步骤(1)中PbS种子溶液的制备过如下:向34.3 mL水中依次加入2 mL浓度为0.5M硫代乙酰胺,3 mL浓度为0.1 M十六烷基三甲基溴化铵溶液,2 mL浓度为0.5 M乙酸铅溶液和4 mL浓度为1M乙酸溶液,溶液混合均匀后,在80±10℃放置8~12 h,即得。
具体地,步骤(1)的具体过程如下:向10 mL浓度为0.1 M CTAC溶液中添加0.5 mL浓度为0.01 M的 HAuCl4 溶液,在搅拌下加入0.5 mL 浓度为0.1 M抗坏血酸溶液,然后在搅拌下注入0.03~0.07mL的PbS种子溶液,然后将得到的混合溶液静置后离心,随后用盐酸或硝酸洗涤并离心,分散在10 mL水中。
具体地,所述步骤(2)中添加RuCl3溶液浓度为1mM,体积为0.02~0.2 mL,NaBH4浓度为10mM,体积为0.02~0.2 mL。
上述方法制得的金‒钌双金属纳米颗粒。
上述金‒钌双金属纳米颗粒在光电催化固氮中的应用。
具体地,采用带光窗的H 型电解池,用Ag/AgCl为参比电极,Pt片为对电极,碳纸为工作电极,300W氙灯为光源,0.1 M KOH 为电解质溶液,金‒钌双金属纳米颗粒在碳纸上的负载量为0.1 mg cm-2
金‒钌双金属纳米颗粒在碳纸上的负载过程如下:金‒钌双金属纳米颗粒在碳纸上的负载过程如下:将金‒钌双金属纳米颗粒水溶液与 Nafion溶液超声混合均匀后,滴在碳纸上自然干燥,使最终负载量为0.1 mg cm-2,金‒钌双金属纳米颗粒水溶液和Nafion溶液体积比为10:1。具体地,将0.1 mL 浓度为1mg/mL金‒钌双金属纳米颗粒水溶液与 0.01 mLNafion (0.5 wt%)溶液超声混合30 min 后,滴在碳纸上自然干燥,最终负载量为0.1 mgcm-2
本发明明显优点在于:
(1)用PbS八面体为模板,在十六烷基三甲基氯化铵(CTAC)溶液中制备多孔金纳米材料,并采用湿化学法在常温常压下制备金‒钌双金属纳米颗粒。这种多孔纳米结构能更大程度地增强表面电场;
(2)将金‒钌双金属纳米材料用于光电催化氮气还原。Ru是电催化固氮的活性中心,Au可以与可见光产生强烈的相互作用,产生表面局域等离激元共振效应,产生热电子,促进了电催化生成氨量和法拉第效率的提高。
附图说明
图1是本发明实施例1得到的PbS纳米八面体的扫描电镜图;
图2是本发明实施例1得到的多孔Au纳米颗粒透射电镜图;
图3为本发明实施例1得到的不同Ru负载量的AuRux纳米粒子的透射电镜图,(a)AuRu1,(b)AuRu2,(c)AuRu3
图4为本发明实施例1得到的Au、以及不同Ru负载量的AuRux 的紫外图谱;
图5为本发明实施例1得到的Au、以及不同Ru负载量的AuRux 的LSV曲线;
图6为本发明实施例2使用 Nessler 试剂通过显色法测定产生的 NH3的量得到的标准曲线图;
图7为本发明实施例2使用 Nessler 试剂通过显色法测定AuRu2在不同电压下和开关光条件下产生的 NH3的产率和法拉第效率;
图8为Au、Ru、Au+Ru 混合物、以及不同Ru负载量的AuRux在-0.4V和开光条件下NH3的产率和法拉第效率对比;
图9为 AuRu2 样品的循环5次过程中产生的 NH3的产率和法拉第效率;
图10为 AuRu2 样品循环5次后的TEM 图像。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步详细说明。
实施例1
金‒钌双金属纳米颗粒的制备过程如下:
(1)PbS八面体的制备:
根据先前报道的方法,对PbS纳米粒子进行了轻微的改性。具体而言,在50mL塑料离心管中加入水(34.3mL),然后依次加入硫代乙酰胺(2 mL,0.5M)溶液、CTAB(3ml、0.1M)溶液、乙酸铅(2ml、0.5M)溶液和乙酸(4ml、1 M)溶液。所有制剂均采用电阻率为18.2 MΩ.cm的去离子水。混合溶液加盖,然后在 80℃烘箱中放置10 h,即得。
采用扫描电子显微镜(SEM)进行表征,如图1所示。由图1可知,所得的PbS 纳米颗粒为均匀的八面体,尺寸为40 ± 2 nm。
(2)多孔Au的制备,过程如下:
以氯金酸(HAuCl4)为金源,PbS为种子,在抗坏血酸(AA)存在的条件下实现金在硫化铅表面的选择性生长,得到多孔金纳米颗粒,可通过控制硫化铅种子的用量调节其吸收波长。通过在PbS纳米粒子上的Au过度生长合成了多孔Au纳米粒子,并伴随着PbS与生长溶液的刻蚀。具体是:向10 mL CTAC (0.1 M) 溶液中添加0.5 mL HAuCl4 (0.01 M)溶液,在剧烈搅拌下加入AA溶液 (0.1 M, 0.5 mL),反应溶液变成无色,然后在剧烈搅拌下注入0.05mL 步骤(1)制得的PbS纳米八面体溶液,然后将得到的混合溶液静置过夜离心,除去未反应的物种。随后用HCl (0.1 M) 洗涤三次并离心分散在10 mL水中。
采用透射电子显微镜(TEM)对胶体多孔金纳米粒子进行表征,如图2所示,所得到的多孔金纳米颗粒尺寸为124 ± 3 nm。
(3)不同Ru负载量的AuRux的制备,过程如下:
以三氯化钌(RuCl3)为钌源,硼氢化钠 (NaBH4)为还原剂,通过改变钌源和还原剂的量,制备不同钌负载量的多孔金纳米颗粒。首先向步骤(2)中的多孔金纳米粒子溶液(10mL)中加入0.02 mL 的RuCl3(1mM)溶液,搅拌30 min,随后再加入0.02 mL NaBH4 (10mM)溶液,继续搅拌1h 得到钌负载量的金‒钌双金属溶液AuRu1,离心后重新分散在10 mL的水中。
改变RuCl3(1mM)的量为0.05 mL 和0.1 mL,其它同AuRu1的制备。分别得到AuRu2和AuRu3
单独的Au为步骤(2)制得的多孔金纳米粒子溶液(10 mL)。
单独的Ru 制备步骤为0.02 mL 的RuCl3 (1mM)中加入0.02 mL NaBH4 (10mM)溶液,离心分散在10 mL水中。
Au+Ru 混合物即将单独得到的Au和Ru 搅拌得到。
(4)采用透射电子显微镜(TEM)分别对不同钌负载的多孔AuRux进行表征,如图3所示。
不同Ru负载量的多孔AuRux,Ru作为电催化固氮的活性位点能够吸附和活化氮气。Au可以与可见光产生强烈的相互作用,产生表面等离激元共振效应,提供热电子。由图3可知,AuRu1 和AuRu2 为多孔形貌,与多孔Au形貌一致,AuRu3出现单独Ru颗粒的团聚。
实施例2
Au、Ru、Au+Ru 混合物、不同Ru负载量的AuRux的性能测试:
(1)多孔AuRux光电固氮性能的研究:实验中采用带光窗的H 型电解池 (高仕睿联),用Ag/AgCl为参比电极,Pt片为对电极,碳纸为工作电极。用氙灯为光源,通过电化学工作站研究电化学性能,并用纳氏试剂法显色法确定产生氨气的量。
(2)在 NRR 测试之前,首先对Nafion膜进行清洗,避免后期对测试产生干扰。将Nafion 211 膜分别在体积分数为5% H2O2 和0.5 M H2SO4溶液中各煮沸 1 小时,并在在去离子水中煮沸 2 小时。光源为300 W的氙灯 (> 400 nm),使用上海辰华工作站进行电化学测试,Pt片(1 cm × 1 cm)和 Ag/AgCl(饱和 KCl 电解质)分别用作对电极和参比电极。将0.1 mL 浓缩后的AuRux样品(1mg/mL) 与 0.01 mL Nafion (0.5wt %,溶剂为异丙醇)超声混合30 min 后,滴在碳纸上自然干燥,最终负载量为0.1 mg cm-2。0.1 M KOH 为电解质溶液。循环伏安图(CV)和线性扫描伏安图(LSV)分别以 10 mV s-1和5 mV s-1 的扫描速率进行。在收集数据之前,将工作电极扫描数次直至稳定。将电流密度归一化为几何面积。在这项工作中,所有电位都转化为以可逆氢电极(RHE)电位为基准。根据能斯特方程(ERHE= EAg/AgCl+ 0.059 pH + 0.197 V),可以将测量的电位从相对于 Ag/AgCl 转换成相对于可逆氢电极(RHE)的标度。
(3)采用紫外光谱仪对不同Ru负载量的AuRux 进行表征,如图4示。由图4可知,多孔Au的紫外吸收峰在647 nm,可以有效地吸收可见光,负载Ru后,随着负载量的增大逐渐发生红移。AuRu1紫外吸收峰为650 nm,AuRu2紫外吸收峰为680nm,AuRu3紫外吸收峰为720 nm。这是由于等离子体对自身界面的改变及周围环境的影响较为敏感,Ru 纳米颗粒的负载影响了 Au的表界面性质,改变了光学吸收。
(4)通入高纯氮气,继而采用LSV分别对不同Ru负载量的AuRux 进行扫描,如图5所示。
(5)使用 Nessler 试剂通过比色法测定产生的 NH3的量。通过测定具有特定浓度范围的一系列 NH4Cl 参考溶液(0μg/mL、0.1μg/mL、0.25μg/mL、0.5μg/mL、1.0μg/mL、2.5μg/mL)绘制标准曲线。用空白溶液校正显色背景,用可见分光光度计测量测试溶液在 425nm 处的吸光度。Nessler 试剂显色法得到的标准曲线如图6所示,由图6可知,标准曲线为y=0.012+0.034x。
(6)通入高纯氮气(99.99%),流速为20 sccm,施加不同的电压(-0.2V、-0.3V、-0.4V、-0.5V、-0.6V)测试开关光条件下AuRu2 的固氮性能,反应时间为4h,结果如图7、图8所示。由图7可知,在开光条件下,电催化固氮产率和法拉第效率均高于关光条件。由图8可知,最优电压为-0.4 V,在开光下,-0.4V 时产氨速率为26.47 μg h−1 mg−1(2.647 μg h−1cm−2) ,关光时为20.58 μg h−1 mg−1(2.058 μg h−1 cm−2)。但是法拉第效率随着电压的增大而降低,这是因为电压高时,产氢的效率也在提高,并占主导地位。
(7)对比不同Ru负载量的AuRux 的样品在-0.4 V 的光电固氮性能,AuRu2 样品的性能最好,AuRu3性能降低是由于过量的Ru发生了团聚。此外,单独的Ru和Au,Ru物理混合后的样品性能都降低,进一步说明了Au、Ru的协同作用的重要性。
(8)图9、图10针对样品的稳定性进行了测试,由图9可知,对样品AuRu2循环5次后,(测试条件:电压-0.4 V, 开光条件)产氨量性能保持在最初的80%,将反应后的样品从碳纸上刮下来制样观察反应后形貌。由图10可知,循环5次后样品的形貌也没有发生变化(图10中A 图中杂质为刮下来的碳颗粒,图10中B 图不含杂质)。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种金‒钌双金属纳米颗粒的制备方法,其特征是,过程如下:
(1) 多孔金的制备:向CTAC溶液中添加HAuCl4溶液,在搅拌下加入抗坏血酸溶液,然后在搅拌下注入PbS种子溶液,然后将得到的混合溶液静置后离心,酸洗并离心,固体分散在水中,即得多孔金溶液;
(2) 金‒钌双金属纳米颗粒的制备:向步骤(1)中的多孔金溶液中加入RuCl3溶液,混合均匀,再加入NaBH4溶液,继续搅拌1h~1.5h 得到金‒钌双金属溶液,离心,固体分散在水中,即得,多孔金溶液、RuCl3和NaBH4的体积比为10:(0.02~0.2): (0.02~0.2),RuCl3溶液浓度为0.5mM~2 mM,NaBH4浓度为5 mM ~20 mM。
2. 根据权利要求1所述金‒钌双金属纳米颗粒的制备方法,其特征是,所述步骤(2)中添加RuCl3溶液浓度为1mM,体积为0.02~0.2 mL,NaBH4浓度为10mM,体积为0.02~0.2 mL。
3.权利要求1或2所述的方法制得的金‒钌双金属纳米颗粒。
4.权利要求3所述金‒钌双金属纳米颗粒在光电催化固氮中的应用。
5. 根据权利要求4所述的应用,其特征是,采用带光窗的H 型电解池,用Ag/AgCl为参比电极,Pt片为对电极,碳纸为工作电极,300W氙灯为光源,0.1 M KOH 为电解质溶液,金‒钌双金属纳米颗粒在碳纸上的负载量为0.1 mg cm-2
6. 根据权利要求5所述的应用,在特征在于,金‒钌双金属纳米颗粒在碳纸上的负载过程如下:将金‒钌双金属纳米颗粒水溶液与 Nafion溶液超声混合均匀后,滴在碳纸上自然干燥,使最终负载量为0.1 mg cm-2,金‒钌双金属纳米颗粒水溶液和Nafion溶液体积比为10:1。
CN202210566155.6A 2022-05-24 2022-05-24 一种金-钌双金属纳米颗粒、其制备方法及应用 Active CN114713839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210566155.6A CN114713839B (zh) 2022-05-24 2022-05-24 一种金-钌双金属纳米颗粒、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210566155.6A CN114713839B (zh) 2022-05-24 2022-05-24 一种金-钌双金属纳米颗粒、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN114713839A true CN114713839A (zh) 2022-07-08
CN114713839B CN114713839B (zh) 2024-09-06

Family

ID=82230370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210566155.6A Active CN114713839B (zh) 2022-05-24 2022-05-24 一种金-钌双金属纳米颗粒、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN114713839B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885029B2 (en) 2019-02-12 2024-01-30 Georgia Tech Research Corporation Systems and methods for forming nitrogen-based compounds
CN117587456A (zh) * 2024-01-16 2024-02-23 苏州大学 一种基底上原位生长表面等离激元金属催化剂的方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE810315A (fr) * 1973-01-29 1974-05-16 Anodes metalliques a surface anodique reduite et a densite de courant elevee et leur utilisation dans des procedes d'extraction electrolytique avec une densite de courant cathodique faible
WO2010037667A1 (en) * 2008-10-02 2010-04-08 Basf Se Complex salts
CN110479379A (zh) * 2019-08-28 2019-11-22 浙江工业大学 一种基于负载Ru纳米颗粒的共价有机框架材料催化剂及其制备方法和应用
CN110721687A (zh) * 2019-09-29 2020-01-24 浙江工业大学 一种自支撑多孔Fe2O3纳米棒阵列电催化剂及其制备方法
CN111307898A (zh) * 2020-02-28 2020-06-19 广州钰芯传感科技有限公司 一种可检测水体污染物醋氨酚的氧化钌-纳米多孔金复合电极的制备方法及应用
CN112191259A (zh) * 2020-10-22 2021-01-08 黄河科技学院 一种MXene/Au光催化固氮材料、其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE810315A (fr) * 1973-01-29 1974-05-16 Anodes metalliques a surface anodique reduite et a densite de courant elevee et leur utilisation dans des procedes d'extraction electrolytique avec une densite de courant cathodique faible
WO2010037667A1 (en) * 2008-10-02 2010-04-08 Basf Se Complex salts
CN110479379A (zh) * 2019-08-28 2019-11-22 浙江工业大学 一种基于负载Ru纳米颗粒的共价有机框架材料催化剂及其制备方法和应用
CN110721687A (zh) * 2019-09-29 2020-01-24 浙江工业大学 一种自支撑多孔Fe2O3纳米棒阵列电催化剂及其制备方法
CN111307898A (zh) * 2020-02-28 2020-06-19 广州钰芯传感科技有限公司 一种可检测水体污染物醋氨酚的氧化钌-纳米多孔金复合电极的制备方法及应用
CN112191259A (zh) * 2020-10-22 2021-01-08 黄河科技学院 一种MXene/Au光催化固氮材料、其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANQIAO TAN: "Synthesis of ammonia via electrochemical nitrogen reduction on high-index faceted Au nanoparticles with a high faradaic efficiency", CHEMICAL COMMUNICATIONS, 14 November 2019 (2019-11-14), pages 14482 - 14485 *
李茹萍: "常温常压下光(电)催化氮气还原的研究", 上海师范大学硕士论文, 16 July 2019 (2019-07-16), pages 33 - 47 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885029B2 (en) 2019-02-12 2024-01-30 Georgia Tech Research Corporation Systems and methods for forming nitrogen-based compounds
CN117587456A (zh) * 2024-01-16 2024-02-23 苏州大学 一种基底上原位生长表面等离激元金属催化剂的方法及应用
CN117587456B (zh) * 2024-01-16 2024-07-16 苏州大学 一种基底上原位生长表面等离激元金属催化剂的方法及应用

Also Published As

Publication number Publication date
CN114713839B (zh) 2024-09-06

Similar Documents

Publication Publication Date Title
Li et al. Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution
Li et al. Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution
CN110479379B (zh) 一种基于负载Ru纳米颗粒的共价有机框架材料催化剂及其制备方法和应用
Iqbal Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution
Meng et al. High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction
CN108745340B (zh) 一种碳负载铋纳米颗粒催化剂的制备方法及应用
Li et al. Based on amorphous carbon C@ ZnxCd1-xS/Co3O4 composite for efficient photocatalytic hydrogen evolution
CN114713839A (zh) 一种金-钌双金属纳米颗粒、其制备方法及应用
Jin et al. In situ XPS proved efficient charge transfer and ion adsorption of ZnCo2O4/CoS S-Scheme heterojunctions for photocatalytic hydrogen evolution
Yu et al. 2D CdS functionalized by NiS2-doped carbon nanosheets for photocatalytic H2 evolution
Gao et al. Bi2S3 quantum dots in situ grown on MoS2 nanoflowers: An efficient electron-rich interface for photoelectrochemical N2 reduction
Ma et al. Hydrothermal synthesis of WO 3/CoS 2 n–n heterojunction for Z-scheme photocatalytic H 2 evolution
CN112647095B (zh) 原子级分散的双金属位点锚定的氮掺杂碳材料及其制备和应用
KR20180129307A (ko) 이산화탄소 환원용 구리 전기촉매의 제조방법
CN109277103A (zh) 一种高活性铂基双金属析氢催化剂及其制备方法
Li et al. Rare earth perovskite modified cobalt disulfide catalysts controlled by reaction solvent synthesis to form a pn heterojunction
Kim et al. New fan blade-like core-shell Sb2TixSy photocatalytic nanorod for hydrogen production from methanol/water photolysis
Arsalan et al. Surface-assembled Fe-Oxide colloidal nanoparticles for high performance electrocatalytic water oxidation
Vignesh et al. Rational construction of efficient ZnS quantum dots-supported g-C3N4 with Co3O4 heterostructure composite for bifunctional electrocatalytic hydrogen evolution reaction and environmental pollutant degradation
CN108682873A (zh) 一种Ru-MoO3-x/rGO复合材料及其制备方法和应用
Song et al. Oxygen-doped MoS2 nanoflowers with sulfur vacancies as electrocatalyst for efficient hydrazine oxidation
Liu et al. High efficiency hydrogen production with visible light layered MgAl-LDH coupled with CoSx
Wang et al. Strong redox-capable graphdiyne-based double S-scheme heterojunction 10% GC/Mo for enhanced photocatalytic hydrogen evolution
Guo et al. Enhanced photocatalytic nitrogen fixation of etched Ag-doped PM-CdS catalyst under visible light irradiation
Li et al. Multi-tailoring of a modified MOF-derived Cu x O electrochemical transducer for enhanced hydrogen peroxide sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant