CN114709579B - 一种片上集成太赫兹功能芯片的波导封装 - Google Patents

一种片上集成太赫兹功能芯片的波导封装 Download PDF

Info

Publication number
CN114709579B
CN114709579B CN202210353291.7A CN202210353291A CN114709579B CN 114709579 B CN114709579 B CN 114709579B CN 202210353291 A CN202210353291 A CN 202210353291A CN 114709579 B CN114709579 B CN 114709579B
Authority
CN
China
Prior art keywords
terahertz
chip
metal
waveguide
rectangular waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210353291.7A
Other languages
English (en)
Other versions
CN114709579A (zh
Inventor
涂学凑
张祎琛
赵清源
周淑宇
吴强强
陈鹏飞
王卧虎
贾小氢
张蜡宝
康琳
陈健
吴培亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202210353291.7A priority Critical patent/CN114709579B/zh
Publication of CN114709579A publication Critical patent/CN114709579A/zh
Application granted granted Critical
Publication of CN114709579B publication Critical patent/CN114709579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit

Abstract

本发明提出了一种片上集成太赫兹功能芯片的波导封装,包括:金属上腔体封装盖、金属下腔体载片盒、置于金属下腔体载片盒上的太赫兹功能芯片,其中金属下腔体载片盒上设置波导矩形通道,与所述金属上腔体封装盖组装形成含有金属矩形波导封闭金属封装盒;所述太赫兹功能芯片安装在金属矩形波导的中心,功能芯片的传输端口置入矩形波导,将电磁场信号耦合到太赫兹功能芯片中。本发明加工简单,工艺成熟,显著降低了太赫兹集成系统的信号传输损耗,组成一体化封装的每个模块非常灵活,可以根据需要灵活调节尺寸参数,适用于多场景下的太赫兹信号片上探测与处理。

Description

一种片上集成太赫兹功能芯片的波导封装
技术领域
本发明涉及太赫兹芯片封装技术,具体涉及一种片上集成太赫兹功能芯片的波导封装。
背景技术
太赫兹波广义上是指频率在0.1THz~10THz的电磁波,恰好位于电子学和光子学的过渡区,因此具有很多独特的性质。太赫兹波与微波相比,信息容量更大,电子设备可以做的更加小巧;与光波相比,穿透性更强,能量更低,可用于生物无损检测等。太赫兹技术在电子、生物、医疗、天文空间等各个领域有着广阔的应用前景,而这些应用落地需要大规模的太赫兹片上集成系统来辅助实现。太赫兹片上集成功能芯片的封装技术自然成为了构建太赫兹集成系统过程中亟待解决的技术难题。
由于太赫兹波在空气中的损耗较大,所以其传输结构是片上集成系统中不可或缺的部分,对不同传输结构的损耗和色散特性的研究,一直是太赫兹领域的研究热点。各国科研人员都在努力寻找低损耗、低色散、高功率容量的太赫兹传输结构,根据太赫兹频段在波谱中夹在毫米波频段和光学频段之间这一特性,人们试图将在这些频段成熟的传输材料进行改进应用到太赫兹频段,因此以波导为基础的太赫兹器件就成了太赫兹传输的重要基础,也是太赫兹波能否广泛应用的关键。于是出现了诸如太赫兹金属波导、带有金属涂层的介质波导、全介质波导、双线传输结构、光子晶体等。用硅基集成电路实现太赫兹收发功能芯片,可以有效地降低系统成本、提高集成度、缩小设备体积、实现便携化。硅基集成电路工艺已经是6GHz黄金频段内移动通信、无线接入等商业通信产品的首要加工工艺,随着硅集成电路工艺的持续发展,采用硅工艺实现太赫兹通信集成电路及系统的设计和应用,已是不可阻挡的发展趋势。太赫兹集成电路的研究与发展离不开片上集成封装技术的不断更新和进步,研发低成本、高集成、低损耗和小型化的集成封装设备是发展太赫兹集成系统的重要基础。为了与平面结构的半导体功能芯片电路相兼容,采用平面传输线结构来传输太赫兹波渐渐成为了太赫兹集成技术中的一种新方式。平面传输线的损耗主要由导体损耗,介质损耗和辐射损耗三部分构成。减少导体损耗需要高电导率的金属作为传输线,在太赫兹波段减少介质损耗的常用方法是采用硅片或者石英作为功能芯片和传输线基板。传统的功能芯片电路封装技术是通过微带—波导过渡探针将信号从微带传输到金属波导,实现波导信号到功能芯片的传输转换。但是在太赫兹波段,微带线的阻抗匹配要求非常苛刻,信号很容易在微带线上因为匹配问题造成高反射;同时由于微带线本身存在辐射损耗,信号到达功能芯片时就已经严重衰减。
硅工艺多金属-质层的特点将使得各个器件、结构和电路模块在太赫兹频段产生非常复杂的寄生、耦合效应。受此影响,硅基太赫兹频段集成电路的设计很大程度上需要将版图结构的寄生量初始即作为电路设计的重要组成部分,并带入到功能设计和性能优化设计中。目前对于传统过渡电路的解决方法非常有限,对此本发明提出一种新型片上集成太赫兹功能芯片的波导封装,采用金属波导和功能芯片的直接耦合来减少传输损耗,实现小型化和低成本的封装技术。
发明内容
本发明的目的在于提出一种太赫兹功能芯片的波导封装,该封装结构是兼顾低成本、小型化和低传输损耗的新型封装方式。
实现本发明目的的技术解决方案为:一种片上集成太赫兹功能芯片的波导封装,包括:金属上腔体封装盖、金属下腔体载片盒、置于金属下腔体载片盒上的太赫兹功能芯片,其中金属下腔体载片盒上设置波导矩形通道,与所述金属上腔体封装盖组装形成含有金属矩形波导封闭金属封装盒;所述太赫兹功能芯片安装在金属矩形波导的中心,功能芯片的传输端口置入矩形波导,将电磁场信号耦合到太赫兹功能芯片中。
进一步的,所述金属封装盒的主体部分由铜制成,其内外表面由金涂层覆盖,金涂层的厚度略大于太赫兹波信号的趋肤深度。
进一步的,所述太赫兹功能芯片制备在高阻硅或石英基片上。
进一步的,所述太赫兹功能芯片包括且不局限于探测器、滤波器、调制器、隔离器、耦合器、混频器、倍频器、源等太赫兹功能器件,也包括多个以上功能器件的任意组合。
进一步的,所述金属矩形波导的型号与传输频率、太赫兹功能芯片的传输端口尺寸相关。
进一步的,所述金属下腔体载片盒内部承载区域的尺寸与太赫兹功能芯片的尺寸相关。
进一步的,还包括法兰接头,通过螺栓与外部连接波导的法兰相连。
更进一步的,所述法兰接头采用非完全对称的结构,金属矩形波导的开口位置根据太赫兹功能芯片和金属矩形波导平面的关系决定,当金属矩形波导的电磁波垂直耦合到太赫兹功能芯片端口时,太赫兹功能芯片平面平行于矩形波导的短边,金属矩形波导的开口位于金属矩形波导短边所在的平面,当金属矩形波导中电磁波水平耦合到太赫兹功能芯片端口时,太赫兹功能芯片平面平行于矩形波导的长边,金属矩形波导的开口位于金属矩形波导长边所在的平面,金属矩形波导的开口所在平面也是法兰的切口面。
进一步的,所述太赫兹功能芯片采用平面传输结构,金属下腔体载片盒根据太赫兹功能芯片的规格尺寸设计内部承载区域的下沉深度,使得太赫兹功能芯片的传输端口正好处于金属矩形波导上下左右的中心位置。
进一步的,还包括信号处理模块,用于集成PCB板处理转换后的低频交流信号,扩展片上集成系统的功能性。
本发明与现有技术相比,其显著优点为:1)相比于跳金丝的封装结构,本发明的一体化封装加工简单,工艺成熟,在低成本和小型化方便优势显著。2)波导-功能芯片-波导的传输结构没有引入悬置微带线的过渡转换结构,显著降低了太赫兹集成系统的信号传输损耗。3)组成一体化封装的每个模块非常灵活,可以根据需要灵活调节尺寸参数,适用于多场景下的太赫兹信号片上探测与处理。
附图说明
图1是本发明的金属下腔体载片盒(装载太赫兹功能芯片)三维结构示意图。
图2是本发明的金属封装盒的法兰截面示意图。
图3是本发明实例的金属封装盒组合时AutoCAD平面图。
图4本发明实例的金属下腔体载片盒AutoCAD平面示意图。
图5本发明实例的金属上腔体封装盖AutoCAD平面示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
一种片上集成太赫兹功能芯片的波导封装,包括:金属上腔体封装盖、金属下腔体载片盒、置于金属下腔体载片盒上的太赫兹功能芯片。金属下腔体载片盒上设置波导矩形通道,金属上腔体封装盖和金属下腔体载片盒可以组装形成一个含有金属矩形波导的封闭金属封装盒,金属封装盒的两端是金属矩形波导端口,分别用来输入和输出信号,如图2所示。所述太赫兹功能芯片就安装在金属封装盒的内部,同时位于两个金属矩形波导端口的中心,如图1所示。
本发明中,金属上腔体封装盖构成了金属矩形波导的上金属壁部分,如图2所示,实现信号在矩形波导的低损耗传递;同时构成了金属封装盒的封装盖,阻止信号在太赫兹功能芯片传输过程中的辐射泄露,并且屏蔽外边信号的耦合影响。当金属封装盒组合在一起时用螺丝拧紧加固,信号从金属封装盒的一个金属矩形波导端口进入传输,经过太赫兹功能芯片的处理再从金属封装盒的另一个矩形波导端口输出,如图3和图4所示。金属封装盒拆分打开时,变成金属上腔体封装盖和金属下腔体载片盒两个部分,如图4和图5所示,方便太赫兹功能芯片的更换和安装。
金属封装盒的主体部分由铜制成,其内外表面由金涂层覆盖,金涂层的厚度略大于太赫兹波信号的趋肤深度,利用金的电导率大这一优势减少信号传输过程中的能量衰减,同时以铜作为金属的主体结构大大降低了封装器件的成本。
太赫兹功能芯片由高阻硅或石英基片制成,相较于掺杂硅基片等其他材质减少了太赫兹波传输过程中的介质损耗。金属封装盒内部的太赫兹功能芯片为了实现与其他功能模块相组合而选择采用平面传输结构,同时太赫兹功能芯片传输端口位于金属矩形波导的正中心,使得金属矩形波导中心部位的强电磁场信号可以有效耦合到太赫兹功能芯片。
金属封装盒两端的金属矩形波导部分要根据传输频率选择相对应的波导型号,同时要与太赫兹功能芯片两个端口的尺寸相适应。另外金属封装盒的两端采用法兰结构,可以通过螺栓使金属矩形波导与外部连接波导的两法兰紧紧相连,从而降低信号衰减。
金属下腔体载片盒需要承载太赫兹功能芯片,根据太赫兹功能芯片的规格尺寸设计金属下腔体载片盒内部承载区域的下沉深度,使得太赫兹功能芯片的传输端口正好处于金属矩形波导上下左右的中心位置,金属下腔体载片盒的法兰切口要与金属矩形波导上表面齐平,如图2所示。
金属下腔体载片盒除了承载太赫兹功能芯片和构成金属矩形波导之外,还可以增加信号处理模块,如图1所示,集成PCB板处理转换后的低频交流信号,可以有效丰富和扩展片上集成系统的功能性。
本发明的核心构成是金属波导-太赫兹功能芯片-金属波导的信号传输结构。金属封装盒的矩形波导型号及金属下腔体载片盒内部承载区域的尺寸可以调整。
为了验证发明方案的有效性,进行如下实验设计。
实施例一
本实施例中信号频段设计为400GHz。所述金属矩形波导依据信号频段选择WR2.2矩形波导(330GHz-500GHz)传输信号,矩形波导由下金属腔的矩形通道与上金属腔的金属封盖壁构成,如图1和图2所示。该实施例中期望矩形波导中的TE波能够垂直耦合到太赫兹功能芯片端口,所以功能芯片平面要平行于矩形波导的短边,与图2示意图中功能芯片平面平行长边正好相反。根据太赫兹功能芯片的厚度h=200μm,还有WR2.2矩形波导(570/285μm)的尺寸,从而选择金属下腔的功能芯片载体下沉深度为385(570/2+h/2)μm,如图1所示中间部分为下沉区域,使得功能芯片中心水平面恰好与波导的中心平齐。由WR2.2矩形波导(570/285μm)的短边限制,功能芯片接入端口的宽度选择220微米(宽度留有余量方便插入连接)。
所述法兰结构采用非完全对称结构,考虑到矩形波导长边中心的强电磁场泄露问题,金属波导的开口选择放在矩形波导短边所在的平面,该平面正好也是法兰的切口面。此外,金属下腔体的功能芯片载体两侧有放置PCB板的信号处理模块,如图1所示扩展结构,可以同时测量太赫兹信号幅度和传输的S参数,丰富了集成系统的扩展功能。
本实施例的创新性在于将整个功能芯片电路置于金属封装盒的内部(此前很少有这么考虑),因此可以采用金属矩形波导与太赫兹功能芯片端口直接耦合的方法,省去了传统上使用的悬置微带匹配电路,通常微带线是采用高低阻抗传输线的的结构,会因为加工误差而引起失配,导致大量信号被反射。本实施例从理论上清晰地展示了波导封装结构的优越性。
实施例二
本实施例中,信号频段设计为320GHz。所述金属矩形波导依据信号频段选择WR2.8矩形波导(260GHz-400GHz)传输信号,矩形波导由下金属腔的矩形通道与上金属腔的金属封盖壁构成,如图4金属波导封装的端口结构示意图。该实施例中期望矩形波导中的TE波能够平行耦合到太赫兹功能芯片端口,所以功能芯片平面要平行于矩形波导的长边,与图2示意图中功能芯片平面与矩形长边平行相一致。根据太赫兹功能芯片的厚度h=100μm和WR2.8矩形波导(710/356μm)的尺寸,从而选择金属下腔的功能芯片载体下沉深度为228(356/2+h/2)μm。根据WR2.8矩形波导(710/356μm)的长边限制,功能芯片接入端口的宽度可以选择650微米,在功能芯片端口能插入的基础上尽量增大耦合接触面,从而使更多能量耦合到太赫兹功能芯片。
所述法兰结构采用非完全对称结构,金属波导的开口选择放在矩形波导长边所在的平面,该平面正好也是法兰的切口面。此外,金属下腔体的功能芯片载体两侧有放置PCB板的信号处理模块,如图1所示扩展结构,可以同时测量太赫兹信号幅度和传输的S参数,丰富了集成系统的扩展功能。
本发明的技术原理:通过金属腔体两侧的法兰结构连接输入和输出信号端口,减弱信号在波导间的传输泄露。太赫兹信号从矩形波导传输至太赫兹功能芯片,太赫兹功能芯片对信号进行加工处理,一部分作为直流信号从PCB测量模块输出,另一部分依然作为太赫兹信号从波导端口输出,可以同时测量一体化封装结构的S参数和输入太赫兹信号的幅度信息。合固时金属腔的完全屏蔽结构可以很好的减少外界信号噪声的耦合影响,同时微带转接线的删除可以避免太赫兹信号在过渡结构产生的寄生效应,金属波导是低损耗传输线的优先选择。
本发明实施例的上下腔体组合结构,其金属矩形波导传输信号,金属封装盒屏蔽外界信号耦合干扰,兼顾传输、稳定和灵活扩展。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种片上集成太赫兹功能芯片的波导封装,其特征在于,包括:金属上腔体封装盖、金属下腔体载片盒、置于金属下腔体载片盒上的集成太赫兹功能芯片,其中金属下腔体载片盒上设置矩形波导通道,与所述金属上腔体封装盖组装形成含有金属矩形波导封闭金属封装盒;所述太赫兹功能芯片安装在金属矩形波导的中心,功能芯片的传输端口置入金属矩形波导,将电磁场信号耦合到太赫兹功能芯片中;
还包括法兰接头,通过螺栓与外部连接波导的法兰相连;所述法兰接头采用非完全对称的结构,金属矩形波导的开口位置根据太赫兹功能芯片和金属矩形波导平面的关系决定,当金属矩形波导的电磁波垂直耦合到太赫兹功能芯片端口时,太赫兹功能芯片平面平行于金属矩形波导的短边,金属矩形波导的开口位于金属矩形波导短边所在的平面;当金属矩形波导中电磁波水平耦合到太赫兹功能芯片端口时,太赫兹功能芯片平面平行于金属矩形波导的长边,金属矩形波导的开口位于金属矩形波导长边所在的平面,金属矩形波导的开口所在平面也是法兰的切口面。
2.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,所述金属封装盒的主体部分由铜制成,其内外表面由金涂层覆盖,金涂层的厚度略大于太赫兹波信号的趋肤深度。
3.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,所述太赫兹功能芯片包括探测器、滤波器、调制器、隔离器、耦合器、混频器、倍频器、源中的一种或多种。
4.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,所述太赫兹功能芯片制备在高阻硅或石英基片上。
5.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,所述金属矩形波导的型号与传输频率、太赫兹功能芯片的传输端口尺寸相关。
6.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,所述金属下腔体载片盒内部承载区域的尺寸与太赫兹功能芯片的尺寸相关。
7.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,所述太赫兹功能芯片采用平面传输结构,金属下腔体载片盒根据太赫兹功能芯片的规格尺寸设计内部承载区域的下沉深度,使得太赫兹功能芯片的传输端口正好处于金属矩形波导上下左右的中心位置。
8.根据权利要求1所述的片上集成太赫兹功能芯片的波导封装,其特征在于,还包括信号处理模块,用于集成PCB板处理转换后的低频交流信号,扩展片上集成系统的功能性。
CN202210353291.7A 2022-04-06 2022-04-06 一种片上集成太赫兹功能芯片的波导封装 Active CN114709579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210353291.7A CN114709579B (zh) 2022-04-06 2022-04-06 一种片上集成太赫兹功能芯片的波导封装

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210353291.7A CN114709579B (zh) 2022-04-06 2022-04-06 一种片上集成太赫兹功能芯片的波导封装

Publications (2)

Publication Number Publication Date
CN114709579A CN114709579A (zh) 2022-07-05
CN114709579B true CN114709579B (zh) 2022-12-09

Family

ID=82173477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210353291.7A Active CN114709579B (zh) 2022-04-06 2022-04-06 一种片上集成太赫兹功能芯片的波导封装

Country Status (1)

Country Link
CN (1) CN114709579B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000663B (zh) * 2022-07-29 2022-11-22 四川太赫兹通信有限公司 太赫兹波导结构及其中间腔体、电路结构及电子设备
CN115133246A (zh) * 2022-08-01 2022-09-30 四川太赫兹通信有限公司 太赫兹集成波导腔体、波导结构、辐射计系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207622A (zh) * 2015-09-09 2015-12-30 中国工程物理研究院电子工程研究所 一种基于mems技术的低损耗太赫兹倍频器
CN108461884A (zh) * 2018-02-12 2018-08-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 四分支端口平板介质太赫兹波导耦合器
CN110932672A (zh) * 2019-11-18 2020-03-27 东南大学 全频段太赫兹四倍频模块
JP2020052066A (ja) * 2018-09-21 2020-04-02 沖電気工業株式会社 テラヘルツ波検出装置
CN112530910A (zh) * 2020-11-18 2021-03-19 北京理工大学 一种用于芯片三维封装的金属波导装置及其设计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143084B2 (en) * 2011-08-25 2015-09-22 California Institute Of Technology On-chip power-combining for high-power schottky diode based frequency multipliers
US9372316B2 (en) * 2014-09-11 2016-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Silicon interface for dielectric slab waveguide
US9941560B2 (en) * 2014-12-22 2018-04-10 The Regents Of The University Of Michigan Non-contact on-wafer S-parameter measurements of devices at millimeter-wave to terahertz frequencies
US9537199B2 (en) * 2015-03-19 2017-01-03 International Business Machines Corporation Package structure having an integrated waveguide configured to communicate between first and second integrated circuit chips
CN108428981A (zh) * 2018-02-12 2018-08-21 西南电子技术研究所(中国电子科技集团公司第十研究所) 屏蔽g线太赫兹表面波滤波器
CN112350670B (zh) * 2020-10-19 2023-06-20 电子科技大学 一种基于混合微带/槽线的平衡式三倍频器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207622A (zh) * 2015-09-09 2015-12-30 中国工程物理研究院电子工程研究所 一种基于mems技术的低损耗太赫兹倍频器
CN108461884A (zh) * 2018-02-12 2018-08-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 四分支端口平板介质太赫兹波导耦合器
JP2020052066A (ja) * 2018-09-21 2020-04-02 沖電気工業株式会社 テラヘルツ波検出装置
CN110932672A (zh) * 2019-11-18 2020-03-27 东南大学 全频段太赫兹四倍频模块
CN112530910A (zh) * 2020-11-18 2021-03-19 北京理工大学 一种用于芯片三维封装的金属波导装置及其设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"U"型结构带波导腔多芯片微波组件封装外壳;庞学满;《固体电子学研究与进展》;20201215;第40卷(第6期);第1页 *

Also Published As

Publication number Publication date
CN114709579A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN114709579B (zh) 一种片上集成太赫兹功能芯片的波导封装
CN105680133B (zh) 基片集成脊波导板间垂直互联电路结构
Hong et al. Microstrip filters for RF/microwave applications
US10693209B2 (en) Waveguide-to-microstrip transition with through holes formed through a waveguide channel area in a dielectric board
Vosoogh et al. Compact integrated full-duplex gap waveguide-based radio front end for multi-Gbit/s point-to-point backhaul links at E-band
CN105493343B (zh) 平面传输线波导转接器
CN107317081A (zh) 太赫兹无跳线倒置共面波导单片电路封装过渡结构
CN107394328A (zh) 一种d波段波导‑平面电路过渡装置
Mozharovskiy et al. Wideband probe-type waveguide-to-microstrip transition for 28 GHz applications
Strauss et al. Millimeter-wave monolithic integrated circuit interconnects using electromagnetic field coupling
Yu et al. High-integration and low-cost transmitter packaging solution for 0.2 THz SiP application using HTCC technology
Gamez-Machado et al. Microstrip-to-stripline planar transitions on LTCC
CN115473025B (zh) 基于微带-波导混合集成的波导差端口魔t
Shi et al. Compact planar W-band front-end module based on EBG packaging and LTCC circuits
CN107941333B (zh) 基于单片集成技术的太赫兹低噪声辐射计前端
CN114050387B (zh) 微系统电磁场微调介质腔体结构
Liu et al. Extremely low-loss planar transition from hollow dielectric waveguide to printed circuit board for millimeter-wave interconnect
CN112993505B (zh) 太赫兹无跳丝共面波导单片及系统级电路低插损封装结构
Rotaru et al. Implementation of packaged integrated antenna with embedded front end for Bluetooth applications
CN115411481A (zh) 波导型集成utc-pd装置
Sun et al. Three-dimensional interconnection with magnetically coupled transition for W-Band integration applications
Beeresha et al. CPW to microstrip transition using different CPW ground plane structures
Lucyszyn et al. Terahertz multi-chip module (T-MCM) technology for the 21st Century?
Ding et al. Low-Loss 140-175 GHz MMIC-to-Waveguide Transitions and MMIC-to-MMIC Interconnections
Krutiev et al. Narrow-Band Waveguide Filter on Complex Resonant Diaphragms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant