CN114707814B - 一种面向水下事件覆盖的水下机器人部署方法 - Google Patents

一种面向水下事件覆盖的水下机器人部署方法 Download PDF

Info

Publication number
CN114707814B
CN114707814B CN202210255288.1A CN202210255288A CN114707814B CN 114707814 B CN114707814 B CN 114707814B CN 202210255288 A CN202210255288 A CN 202210255288A CN 114707814 B CN114707814 B CN 114707814B
Authority
CN
China
Prior art keywords
underwater robot
node
underwater
coverage
event
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210255288.1A
Other languages
English (en)
Other versions
CN114707814A (zh
Inventor
李海滨
董明如
尹荣荣
张晓龙
覃玉华
李雅倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202210255288.1A priority Critical patent/CN114707814B/zh
Publication of CN114707814A publication Critical patent/CN114707814A/zh
Application granted granted Critical
Publication of CN114707814B publication Critical patent/CN114707814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/872Combination of several systems for attitude determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

本发明公开一种面向水下事件覆盖的水下机器人部署方法,属于水声传感器网络覆盖领域,包括①在需监测水下目标事件周围随机部署多个水下机器人节点;②每个水下机器人节点在自身的通信范围内获取邻居节点个数,各个邻居节点的位置、覆盖的事件数、拥挤度相关信息感知范围内获取覆盖的事件个数和邻近节点个数;③根据获取的邻居信息和事件信息,水下机器人节点在每次移动时根据是否有邻居节点和覆盖事件及其距离信息做出停止不动,诱导运动、觅食运动或者随机扩散的决策;④每个水下机器人节点判断自身是否达到覆盖条件,如果没达到则返回步骤②继续执行步骤②和步骤③,如果达到,则不再移动。如果所有水下机器人节点均达到覆盖条件,则部署完成。

Description

一种面向水下事件覆盖的水下机器人部署方法
技术领域
本发明属于水声传感器网络覆盖方法领域,具体涉及一种面向水下事件覆盖的水下机器人部署方法。
背景技术
海洋可以为人类提供许多宝贵的物质资源,如石油、天然气、矿产等。近年来,海洋资源的开发利用已成为世界关注的焦点,越来越多的国家关注海洋资源的勘探、维护和管理。水声传感器网络(UASN)作为海洋物联网的重要组成部分,在海洋发展中发挥着重要作用。UASN可广泛应用于海洋数据采集、污染监测、辅助导航和战场监视等领域,从而引起了广泛的关注。目前,研究人员在UASN方面开展了大量工作,如路由算法、拓扑控制、数据融合等。UASN覆盖控制,即UASN节点的部署是路由算法、拓扑控制、数据融合等的基础。良好的UASN节点部署策略不仅可以保证对目标的监控质量,而且有利于后续网络协议的设计和运行,影响网络的生命周期。因此,如何在UASN中部署节点是一个基础和关键的问题,设计一个良好的水声传感器部署方法是非常重要的。
根据传感器节点的移动性特点,UASN中的节点部署可分为静态部署、移动受限部署和自由移动部署。UASN的静态部署是指节点放置在监控区域内后,不能移动。在UASN静态部署中,为了保证高的网络覆盖,需要部署高密度节点,这容易造成传感器资源的浪费和信息传输的干扰。移动受限部署是指传感器节点可以根据其相邻节点的深度调整自身的深度,以最大限度地实现网络覆盖。由于节点只能向深度方向移动,移动受限部署在很多应用中的覆盖效果并不好。自由移动部署是指传感器节点可以自由移动。这些传感器节点一般为自主水下航行器,又称水下机器人。基于水下机器人的自由移动部署方便、应用广泛,是UASN节点部署的研究重点。因此,研究水下机器人移动部署具有十分重要的意义。
目前大部分的水下机器人移动部署研究均应用于区域覆盖,即覆盖目标为水下区域。然而,在许多实际应用中,需要监测和覆盖的目标是一些事件点,如军事入侵监测、鱼类监测、水下救援等。因此,面向水下事件覆盖的水下机器人部署研究十分必要。
发明内容
本发明的目的在于提供面向水下目标事件覆盖的水下机器人节点部署方法,对水下需要监测的目标事件以较小的能耗实现最优的覆盖。
为此,本发明提供了一种面向水下事件覆盖的水下机器人部署方法,包括以下步骤:
步骤S1,开始随机部署多个水下机器人节点在监测事件所在的水域;
具体的,有M个需要监测的水下目标事件分布在一个三维水下区域G内,这M个目标事件点用集合E=(e1,e2,…,eM)表示。在目标事件周围随机部署N个水下机器人节点,水下机器人节点集合用S=(s1,s2,…,sN)表示。
步骤S2,每个水下机器人节点在自身的通信范围内获取邻居节点相关信息,感知范围内获取覆盖的事件个数和邻近节点个数;
每个水下机器人节点从初始部署位置移向最优位置过程中,每一步移动时,每个机器人节点通过声呐装置获得覆盖的事件数,并在自身的通信范围广播HELLO信息,通过接受的信息获取邻居节点个数,各个邻居节点的位置、覆盖的事件数、拥挤度等信息,根据获得的邻居信息得到感知范围内邻近节点的个数。
步骤S3,根据所述步骤S2中获取的信息,水下机器人在每次移动时做出停止不动,诱导运动、觅食运动或者随机扩散的决策;
根据所述步骤S2获取的信息,水下机器人在每次移动时首先判断是否有覆盖事件及是否有邻居节点,并依据判断结果做出停止不动,诱导运动、觅食运动或者随机扩散的决策。
步骤S4,每个水下机器人判断自身是否达到覆盖条件,如果没达到则返回步骤S2继续执行步骤S2和步骤S3,如果达到,则不再移动;当所有机器人节点均不再移动,则部署完成。
本发明技术方案的进一步改进在于:步骤S1中N个水下机器人具有相同的属性,即具有相同的通信半径rc、感知半径rs和最大移动步长L,每个机器人并配有声呐装置,并具有通信和定位功能。水下机器人通信采用水声通信,每个所述机器人均配有换能器和调制解调器。水下机器人定位采用惯性导航定位,每个所述机器人均配有惯性导航定位系统。
本发明技术方案的进一步改进在于:步骤S2中水下机器人节点覆盖的事件数通过声呐装置获得,通过声呐获得机器人节点与事件的距离,在感知范围内的事件数即为机器人节点覆盖的事件数。
本发明技术方案的进一步改进在于:所述步骤S2中邻居节点数可利用布尔感知模型表示,即在水下机器人通信范围内的其它机器人节点则为其邻居,超出其通信范围的则不是其邻居,因此水下机器人节点sj的邻居可表示为Φ(sj)={sλ|d(sj,sλ)≤rc,λ=1,2,…,N andλ≠j},其中d(sj,sλ)是机器人节点sj和sλ的距离。故水下机器人节点sj的邻居节点个数可表示为dd_S(sj)=card(Φ(sj))。
本发明技术方案的进一步改进在于:所述步骤S2中节点的位置通过惯性导航定位系统获得。
本发明技术方案的进一步改进在于:所述步骤S2中节点的邻近节点数是感知半径rs内的邻居节点数,根据节点的位置信息计算所述水下机器人节点与邻近水下机器人节点的欧氏距离,欧式距离小于rs的邻居节点即为所述水下机器人节点的邻近节点。水下机器人节点sj的邻近节点数用dd_near(sj)。
本发明技术方案的进一步改进在于:所述步骤S3中所作判断可分为子步骤S3.1和S3.2所示:
S3.1如果所述水下机器人节点sj有覆盖的事件,覆盖的事件数用dd_E(sj)表示,首先判断dd_E(sj)是否满足dd_E(sj)>dd_E0,dd_E0计算如下。如果满足,节点将执行停止不动,如果不满足,所述机器人节点将按子步骤S3.1.1和S3.1.2移动。
其中M为目标事件数,N为水下机器人节点数,τ为为权重系数,通过实验经验τ的值一般为1.5,dd_Emost为N个水下机器人节点中覆盖事件数最多的那个节点覆盖的事件数。
S3.1.1如果所述水下机器人节点sj没有邻居节点,则所述水下机器人节点sj执行觅食运动。
S3.1.2如果所述水下机器人节点sj有邻居节点,判断邻居节点是否满足其覆盖事件数多于sj覆盖的事件数并不拥挤,如果所有邻居节点均不满足,则所述水下机器人节点sj执行觅食运动;如果有满足上述条件的邻居节点,并且满足条件的邻居节点的质心比sj覆盖事件的中心距离更近,则所述水下机器人节点sj执行诱导运动,否则执行觅食运动。
S3.2如果所述水下机器人节点sj没有邻居节点,所述水下机器人节点将按子步骤S3.2.1和S3.2.2移动。
S3.2.1如果所述水下机器人节点sj没有邻居节点,则所述水下机器人节点sj执行随机扩散运动。
S3.2.2如果所述水下机器人节点sj有邻居节点,判断邻居节点是否满足其覆盖事件数多于sj覆盖的事件数并不拥挤,如果所有邻居节点均不满足,则所述水下机器人节点sj执行随机扩散运动;如果有满足上述条件的邻居节点,则所述水下机器人节点sj执行诱导运动。
本发明技术方案的进一步改进在于:所述步骤S3中诱导运动是所述水下机器人节点受邻居节点影响而进行的运动,所述水下机器人节点sj的诱导运动可以用表示,其中/>是所述水下机器人节点sj要移向的新位置,/>是移动前的位置,L是最大移动步长。/>是邻近节点的诱导方向,计算如下/>其中NP是满足其覆盖事件数多于sj覆盖的事件数并不拥挤的邻居节点个数,/>是满足条件的邻居节点z的吸引权重,并且 是邻近节点的诱导方向,并且/>其中dd_E(sz)是邻居节点z覆盖的事件数,Pz是满足条件的邻居节点z的位置。
本发明技术方案的进一步改进在于:步骤S3中觅食运动是指所述水下机器人节点受目标事件影响而进行的运动,所述水下机器人节点覆盖的事件位置可由声呐估计获得,则所述水下机器人节点sj的觅食运动可以用其中,mcov是sj覆盖的事件数,/>是覆盖事件的位置。
本发明技术方案的进一步改进在于:步骤S3中随机扩散运动是指所述水下机器人节点在最大移动步长内随机移动。所述水下机器人节点sj的随机扩散运动可以用表示,rand(L)是0到1之间的随机数,UV是任意单位向量。
由于采用了上述技术方案,本发明取得的技术效果如下:
本发明的方法实现了用较少能耗实现水下事件最优覆盖,提出分布式水下机器人部署方法,根据水下机器人节点邻居节点信息及自身所感知的事件信息做出停止不动,诱导运动、觅食运动或者随机扩散不同的行为决策,从而使水下机器人节点快速移动到最优位置,实现对水下事件的有效覆盖,并提升事件覆盖的均匀性。
附图说明
图1为水下机器人节点的初始状态示意图;
图2为面向水下事件覆盖的水下机器人部署结构示意图;
图3为根据本发明实施的面向水下事件覆盖的水下机器人部署流程图;
其中,1、目标事件,2、水下机器人节点。
具体实施方式
下面结合具体实施例和附图对本发明作进一步说明。
如图1所示为水下机器人节点的初始状态示意图,有M个需要监测的水下目标事件1分布在一个三维水下区域G内,在目标事件1周围随机部署N个水下机器人节点2。如图2所示为面向水下事件覆盖的水下机器人部署结构示意图,虚线圆圈内的区域是所述水下机器人节点2可以感知的范围,虚直线表示的是通信链路。图1表示了所述水下机器人节点的初始状态。所述水下机器人节点2开始随机地部署在目标事件1附近,但是可以看出对目标事件1的覆盖效果不好。为了有效地监测这些目标事件,所述水下机器人节点需要将这些目标事件覆盖在自己的感知区域内,因此利用本发明的面向水下事件覆盖的水下机器人部署方法使所述机器人节点移动到最优位置实现对实现的最优覆盖,效果如图2所示,水下机器人节点2对目标事件1实现了最优覆盖,从而可以对这些目标事件1进行有效监测,将监测信息通过基站节点发送给用户,实现用户对水下目标事件的实时监测。
如图3所示,面向水下事件覆盖的水下机器人部署方法包含如下步骤:
(1)在需要监测目标事件1水域内随机部署N个水下机器人节点2。N个水下机器人节点具有相同的属性,即具有相同的通信半径rc、感知半径rs和最大移动步长L,每个水下机器人节点配有声呐装置,并具有通信和定位功能。所述水下机器人节点通信采用水声通信,每个所述水下机器人节点均配有换能器和调制解调器。所述水下机器人节点定位采用惯性导航定位,每个所述水下机器人节点均配有惯性导航定位系统。
(2)每个水下机器人节点2在每一步移动时,通过声呐装置获得覆盖的事件数dd_E(sj),并在自身的通信范围广播HELLO信息,通过接受的信息获取邻居节点个数dd_S(sj),各个邻居节点的位置、覆盖的事件数、拥挤度ξ(sj)。根据获得的邻居信息得到感知范围内邻近节点的个数dd_near(sz)。
(3)对所述的每个水下机器人节点判断是否覆盖目标事件1。如果有覆盖的目标事件,即dd_E(sj)>0,首先判断是否达到覆盖要求dd_E(sj)>dd_E0,dd_E0计算如下。达到覆盖要求的水下机器人节点不再移动。
其中M为目标事件数,N为水下机器人节点数,τ为为权重系数,通过实验经验τ的值一般为1.5,dd_Emost为N个水下机器人节点中覆盖事件数最多的那个节点覆盖的事件数。
没达到覆盖要求的水下机器人节点判断是否存在邻居节点,如果所述水下机器人节点sj没有邻居节点,则所述水下机器人节点sj执行觅食运动。所述水下机器人节点sj的觅食运动可以用其中,/>是所述水下机器人节点sj要移向的新位置,mcov是sj覆盖的事件数,/>是覆盖事件的位置。
如果所述水下机器人节点sj有邻居节点,判断邻居节点是否满足其覆盖事件数多于sj覆盖的事件数并不拥挤,如果所有邻居节点均不满足,则所述水下机器人节点sj执行觅食运动;如果有满足上述条件的邻居节点,并且满足条件的邻居节点的质心比sj覆盖事件的中心距离更近,则所述水下机器人节点sj执行诱导运动,否则执行觅食运动。所述水下机器人节点sj的诱导运动可以用表示,其中/>是所述机器人节点sj要移向的新位置,/>是移动前的位置,L是最大移动步长。/>是邻近节点的诱导方向,计算如下其中NP是满足其覆盖事件数多于sj覆盖的事件数并不拥挤的邻居节点个数,是满足条件的邻居节点z的吸引权重,并且/> 是邻近节点的诱导方向,并且/>其中dd_E(sz)是邻居节点z覆盖的事件数,Pz是满足条件的邻居节点z的位置。
(4)对所述的水下机器人节点判断没有覆盖目标事件,则判断是否有邻居节点,如果没有邻居节点,则所述水下机器人节点执行随机扩散运动,随机扩散运动可以用表示,/>是所述水下机器人节点sj要移向的新位置,/>是移动前的位置,rand(L)是0到1之间的随机数,UV是任意单位向量。
如果所述水下机器人节点sj有邻居节点,判断邻居节点是否满足其覆盖事件数多于sj覆盖的事件数并不拥挤,如果所有邻居节点均不满足,则所述水下机器人节点sj执行随机扩散运动;如果有满足上述条件的邻居节点,则所述水下机器人节点sj执行诱导运动。水下机器人节点sj的诱导运动可以用表示,其中/>是所述机器人节点sj要移向的新位置,/>是移动前的位置,L是最大移动步长。/>是邻近节点的诱导方向,计算如下其中NP是满足其覆盖事件数多于sj覆盖的事件数并不拥挤的邻居节点个数,是满足条件的邻居节点z的吸引权重,并且/> 是邻近节点的诱导方向,并且/>其中dd_E(sz)是邻居节点z覆盖的事件数,Pz是满足条件的邻居节点z的位置。
(5)每个水下机器人节点判断自身是否达到覆盖条件,如果没达到则返回步骤(2)继续执行步骤(2)、(3)和(4),如果达到,则不再移动。如果所有水下机器人节点均不再移动时,则部署完成。

Claims (9)

1.一种面向水下事件覆盖的水下机器人部署方法,其特征在于包括如下步骤:
步骤S1,开始随机部署多个水下机器人节点在监测水下事件所在的水域;
步骤S2,每个水下机器人节点在自身的通信范围内获取邻居节点相关信息,感知范围内获取覆盖的事件个数和邻近水下机器人节点个数;
步骤S3,根据所述步骤S1中获取的信息,水下机器人节点在每次移动时做出停止不动、诱导运动、觅食运动或者随机扩散的决策;步骤S3中所作判断可分为子步骤S3.1和S3.2所示:
S3.1如果所述水下机器人节点sj有覆盖的事件,覆盖的事件数用dd_E(sj)表示,首先判断dd_E(sj)是否满足dd_E(sj)>dd_E0,dd_E0计算如下:
如果满足,节点将执行停止不动,如果不满足,所述机器人节点将按子步骤S3.1.1和S3.1.2移动;
其中M为目标事件数,N为水下机器人节点数,τ为为权重系数,通过实验经验τ的值为1.5,dd_Emost为N个水下机器人节点中覆盖事件数最多的那个节点覆盖的事件数;
S3.1.1如果所述水下机器人节点sj没有邻居节点,则所述水下机器人节点sj执行觅食运动;
S3.1.2如果所述水下机器人节点sj有邻居节点,判断邻居节点是否满足其覆盖事件数多于sj覆盖的事件数并不拥挤,如果所有邻居节点均不满足,则所述水下机器人节点sj执行觅食运动;如果有满足覆盖事件数多于sj覆盖的事件数且不拥挤的邻居节点,并且满足条件的邻居节点的质心比sj覆盖事件的中心距离更近,则所述水下机器人节点sj执行诱导运动,否则执行觅食运动;
S3.2如果所述水下机器人节点sj没有邻居节点,所述水下机器人节点将按子步骤S3.2.1和S3.2.2移动;
S3.2.1如果所述水下机器人节点sj没有邻居节点,则所述水下机器人节点sj执行随机扩散运动;
S3.2.2如果所述水下机器人节点sj有邻居节点,判断邻居节点是否满足其覆盖事件数多于sj覆盖的事件数并不拥挤,如果所有邻居节点均不满足,则所述水下机器人节点sj执行随机扩散运动;如果有满足覆盖事件数多于sj覆盖的事件数且不拥挤的邻居节点,则所述水下机器人节点sj执行诱导运动;
步骤S3中诱导运动是所述水下机器人节点受邻居节点影响而进行的运动,所述水下机器人节点sj的诱导运动可以用表示,其中/>是所述水下机器人节点sj要移向的新位置,/>是移动前的位置,L是最大移动步长;/>是邻近节点的诱导方向,计算如下其中NP是满足其覆盖事件数多于sj覆盖的事件数并不拥挤的邻居节点个数,是满足条件的邻居节点z的吸引权重,并且/> 是邻近节点的诱导方向,并且/>其中dd_E(sz)是邻居节点z覆盖的事件数,Pz是满足条件的邻居节点z的位置;
步骤S3中觅食运动是指所述水下机器人节点受目标事件影响而进行的运动,所述水下机器人节点覆盖的事件位置可由声呐估计获得,则所述水下机器人节点sj的觅食运动用其中,mcov是sj覆盖的事件数,/>是覆盖事件的位置;
步骤S3中随机扩散运动是指所述水下机器人节点在最大移动步长内随机移动;所述水下机器人节点sj的随机扩散运动用表示,rand(L)是0到1之间的随机数,UV是任意单位向量;
步骤S4,每个水下机器人节点判断自身是否达到覆盖条件,如果没达到则返回步骤S2继续执行步骤S2和步骤S3,如果达到,则不再移动;当所有水下机器人节点均不再移动,则部署完成。
2.根据权利要求1所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:步骤S1中,所述水下事件为所需要监测的水下目标事件,水下机器人节点开始随机部署在水下目标事件所在的三维水下区域内。
3.根据权利要求1所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:步骤S2中,每个水下机器人节点均自带定位通信系统,水下机器人可以时刻获取自身位置,并可以在通信范围内与邻居机器人进行水声通信,通过水声通信获取邻居节点的ID、位置、邻居节点覆盖的事件数及拥挤度相关信息。
4.根据权利要求3所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于,步骤S2中,每个水下机器人节点均自带声呐装置,通过声呐获得感知范围内要监测的目标事件数。
5.根据权利要求1所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:步骤S3中,水下机器人节点在每次移动时所做出决策是指水下机器人节点从初始部署位置移动到最优位置实现目标事件最优覆盖过程中,根据步骤S2获得的邻居和事件信息,水下机器人节点每次移动前从停止不动、诱导运动、觅食运动和随机扩散四种行为中选择一种作为下一步要执行的决策。
6.根据权利要求5所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:所述诱导运动是指,若水下机器人节点具有满足如下条件的邻居节点:邻居节点覆盖的事件数多于此水下机器人节点,且不拥挤,则此水下机器人节点向满足条件的邻居节点质心移动。
7.根据权利要求5所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:所述觅食运动是指,若水下机器人节点没有邻居,但有覆盖目标事件时,此水下机器人节点向所覆盖的目标事件中心位置移动。
8.根据权利要求5所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:所述随机扩散运动是指,如水下机器人节点既没有邻居节点也没有覆盖的目标事件时,此水下机器人节点在监测水域中任意移动,但步长不超过最大规定步长。
9.根据权利要求1所述的一种面向水下事件覆盖的水下机器人部署方法,其特征在于:步骤S4中,所述部署结束条件采用每个水下机器人节点覆盖的事件目标数超过覆盖条件事件数dd_E0时,所有水下机器人节点不再移动,面向水下目标事件覆盖的水下机器人节点部署结束。
CN202210255288.1A 2022-03-15 2022-03-15 一种面向水下事件覆盖的水下机器人部署方法 Active CN114707814B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210255288.1A CN114707814B (zh) 2022-03-15 2022-03-15 一种面向水下事件覆盖的水下机器人部署方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210255288.1A CN114707814B (zh) 2022-03-15 2022-03-15 一种面向水下事件覆盖的水下机器人部署方法

Publications (2)

Publication Number Publication Date
CN114707814A CN114707814A (zh) 2022-07-05
CN114707814B true CN114707814B (zh) 2024-02-02

Family

ID=82168238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210255288.1A Active CN114707814B (zh) 2022-03-15 2022-03-15 一种面向水下事件覆盖的水下机器人部署方法

Country Status (1)

Country Link
CN (1) CN114707814B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743740A (zh) * 2019-02-27 2019-05-10 西北师范大学 基于3D-Voronoi剖分的有向传感器网络目标监测方法
CN110868730A (zh) * 2019-11-14 2020-03-06 中国人民解放军国防科技大学 一种基于非合作博弈的移动传感器覆盖增强方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743740A (zh) * 2019-02-27 2019-05-10 西北师范大学 基于3D-Voronoi剖分的有向传感器网络目标监测方法
CN110868730A (zh) * 2019-11-14 2020-03-06 中国人民解放军国防科技大学 一种基于非合作博弈的移动传感器覆盖增强方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
一种基于黏性流体算法的水下传感器网络节点部署模型;田祥宏;;南京理工大学学报(05);第1-8页 *
事件驱动的水下传感器网络部署研究;王力立;黄成;徐志良;吴晓蓓;;传感器与微系统(09);第1-4页 *
移动传感器网络非均匀事件区域节点部署优化;刘军;程良伦;王建华;王涛;;电子学报(12);全文 *

Also Published As

Publication number Publication date
CN114707814A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Han et al. District partition-based data collection algorithm with event dynamic competition in underwater acoustic sensor networks
Chang et al. An obstacle-free and power-efficient deployment algorithm for wireless sensor networks
Senouci et al. Localized movement-assisted sensordeployment algorithm for holedetection and healing
JP6750615B2 (ja) 制御装置、機器、情報処理システム、制御方法、および、制御プログラム
CN109275099B (zh) 水下无线传感器网络中基于voi的多auv高效数据收集方法
CN103997748B (zh) 一种基于混合型传感器网络的差异覆盖方法
Xu et al. Internet of things applications: Animal monitoring with unmanned aerial vehicle
Wang Mobile sensor networks: system hardware and dispatch software
CN110430547B (zh) UASNs中基于Q-learning的多AUV协作数据收集方法
Senel et al. Autonomous deployment of sensors for maximized coverage and guaranteed connectivity in underwater acoustic sensor networks
CN107295534B (zh) 一种农业无线多媒体传感器网络有向感知覆盖增强方法
CN111542020B (zh) 水声传感器网络中基于区域划分的多auv协作数据收集方法
Arivudainambi et al. Sensor deployment for target coverage in underwater wireless sensor network
CN102158988A (zh) 一种有向传感器网络强栅栏覆盖判定方法
CN113242562B (zh) 一种WSNs覆盖增强方法及系统
CN114707814B (zh) 一种面向水下事件覆盖的水下机器人部署方法
Zhao et al. Cooperative Search and Rescue with Artificial Fishes Based on Fish‐Swarm Algorithm for Underwater Wireless Sensor Networks
CN101316200A (zh) 一种检测与修补无线视频传感器网络最坏情况覆盖的方法
Boulanouar et al. Pmt 2: a predictive mobile target tracking algorithm in wireless multimedia sensor networks
Hui et al. An efficient depth-adjustment deployment scheme for underwater wireless sensor networks
Nii et al. Dynamic multiple swarming for mobile sensing cluster based on swarm intelligence
Dong et al. Energy-Efficient Sensor Deployment Strategy for Optimal Coverage of Underwater Events Inspired by Krill Herd
Caiti et al. Cooperative distributed behaviours of an AUV network for asset protection with communication constraints
Niewiadomska-Szynkiewicz et al. Simulation-based evaluation of robot-assisted wireless sensors positioning
Manoufali et al. An analysis of uncovered area for camera sensor network in maritime environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant