CN114705611A - A flow cytometer based on confocal optical path design - Google Patents
A flow cytometer based on confocal optical path design Download PDFInfo
- Publication number
- CN114705611A CN114705611A CN202210340915.1A CN202210340915A CN114705611A CN 114705611 A CN114705611 A CN 114705611A CN 202210340915 A CN202210340915 A CN 202210340915A CN 114705611 A CN114705611 A CN 114705611A
- Authority
- CN
- China
- Prior art keywords
- flow
- cell
- quartz
- fluorescence
- sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 73
- 238000013461 design Methods 0.000 title claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 76
- 239000010453 quartz Substances 0.000 claims abstract description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 230000005284 excitation Effects 0.000 claims abstract description 22
- 238000002347 injection Methods 0.000 claims abstract description 20
- 239000007924 injection Substances 0.000 claims abstract description 20
- 238000011010 flushing procedure Methods 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 15
- 239000002699 waste material Substances 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 238000000684 flow cytometry Methods 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 20
- 238000012545 processing Methods 0.000 description 18
- 238000001228 spectrum Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 230000003595 spectral effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000007619 statistical method Methods 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000012764 semi-quantitative analysis Methods 0.000 description 3
- 239000012491 analyte Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011527 multiparameter analysis Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N2015/1452—Adjustment of focus; Alignment
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种基于共聚焦光路设计的流式细胞分析仪,属于生命分析科学检测设备技术领域。所述流式细胞分析仪包括液流系统、光学系统及检测系统;液流系统包括分别与石英流通池连通的注射管路和鞘液管路,注射管路向石英流通池的中心鞘液通道注射细胞样品,细胞样品在鞘液管路向石英流通池中心鞘液通道注入的鞘流的包裹挤压下形成单细胞流;光学系统包括激发光路和荧光收集光路,激发光路的激光束聚焦于石英流通池的中心鞘流通道,用于激发石英流通池中心鞘流通道的细胞样品产生荧光,荧光通过荧光收集光路收集;检测系统包括依次连接的光电探测器、数据采集卡和上位机。本发明的流式细胞分析仪结构紧凑,光路对焦简单高效,使用方便。
A flow cytometer based on confocal optical path design belongs to the technical field of life analysis scientific detection equipment. The flow cytometer includes a liquid flow system, an optical system and a detection system; the liquid flow system includes an injection pipeline and a sheath liquid pipeline respectively connected with the quartz flow cell, and the injection pipeline injects into the central sheath liquid channel of the quartz flow cell Cell sample, the cell sample is wrapped and squeezed by the sheath flow injected into the sheath liquid channel in the center of the quartz flow cell to form a single cell flow; the optical system includes an excitation light path and a fluorescence collection light path, and the laser beam of the excitation light path is focused on the quartz flow The central sheath flow channel of the cell is used to excite the cell samples in the central sheath flow channel of the quartz flow cell to generate fluorescence, and the fluorescence is collected by the fluorescence collection optical path; the detection system includes a photodetector, a data acquisition card and an upper computer connected in sequence. The flow cytometer of the invention has a compact structure, simple and efficient focusing of the optical path, and is convenient to use.
Description
技术领域technical field
本发明涉及生命分析科学检测设备技术领域,特别涉及一种基于共聚焦光路设计的流式细胞分析仪。The invention relates to the technical field of life analysis scientific detection equipment, in particular to a flow cytometer based on a confocal optical path design.
背景技术Background technique
细胞是构成生命体和完成生命活动的最基本单元,且细胞与细胞间普遍存在异质性,因此,在单细胞水平上对生命活动进行表征成为了蛋白质组学、金属组学等生命科学研究领域以及疾病的诊断和治疗等医学领域所必须的技术手段。流式细胞术是目前应用最为广泛的高通量单细胞多参数分析技术。流式细胞仪可通过鞘流中单细胞经过光源(通常为激光束)时产生的光学和荧光特性,来获得细胞内荧光标记的蛋白等生物分子的定量信息及细胞结构、形态等信息,可进行细胞活性、免疫表型、以及内吞作用等生理功能的相关研究。流式细胞术的目标分析物目前也已从细胞扩展到更小尺寸的颗粒,例如微生物、细胞核、染色体制剂和纳米微颗粒等。Cells are the most basic unit that constitutes life and completes life activities, and there is general heterogeneity between cells. Therefore, characterizing life activities at the single-cell level has become a life science research such as proteomics and metalloomics. The technical means necessary in the medical field such as the diagnosis and treatment of diseases and diseases. Flow cytometry is currently the most widely used high-throughput single-cell multiparameter analysis technology. Flow cytometer can obtain quantitative information of intracellular biomolecules such as fluorescently labeled proteins, and information such as cell structure and morphology through the optical and fluorescent properties of single cells in sheath flow when they pass through a light source (usually a laser beam). Conduct research on cell viability, immunophenotype, and physiological functions such as endocytosis. The target analytes for flow cytometry have also now expanded from cells to smaller sized particles such as microorganisms, nuclei, chromosomal preparations, and nanoparticles.
流式细胞仪通常包括液流系统、光学系统和检测系统。液流系统是将细胞以悬液的形式引入并利用鞘流聚焦技术进行细胞的聚焦排列,并按照固定的路径经过光学系统检测区域。鞘流聚焦技术即通过鞘流和样品流在流通池微通道内汇聚后,依靠鞘流和样品流之间的流速差,使样品流在鞘液的包裹挤压下形成一定宽度的稳定的细胞流线,使混乱分散的细胞排列成一列并逐一经过光学系统检测区域。该技术可以保证悬液中的细胞按同一路径经过激发光源照射光斑中心位置,保证经过检测区的细胞都受到一致的激发光源照射,同时大大减小细胞重叠通过检测区的概率,从而获得准确的单细胞荧光检测信号。由此可见,液流系统对细胞的高效稳定聚焦是流式细胞仪获得准确的单细胞检测信号的前提。而传统流式细胞仪为获得稳定的聚焦效果而采用设计复杂的一体式流通池,该类设计不仅加工精度要求高,成本高昂,且维护困难。A flow cytometer usually includes a fluidic system, an optical system, and a detection system. The liquid flow system is to introduce the cells in the form of suspension and use the sheath flow focusing technology to focus and arrange the cells, and pass through the detection area of the optical system according to a fixed path. The sheath flow focusing technology is that after the sheath flow and the sample flow converge in the microchannel of the flow cell, relying on the flow rate difference between the sheath flow and the sample flow, the sample flow forms stable cells of a certain width under the wrapping and extrusion of the sheath liquid. Streamline, so that the chaotic and scattered cells are arranged in a row and pass through the detection area of the optical system one by one. This technology can ensure that the cells in the suspension follow the same path through the excitation light source to illuminate the center of the spot, ensure that the cells passing through the detection area are irradiated by the same excitation light source, and greatly reduce the probability of cells passing through the detection area. Single-cell fluorescence detection signal. It can be seen that the efficient and stable focusing of the cells by the liquid flow system is the prerequisite for the flow cytometer to obtain accurate single-cell detection signals. In order to obtain stable focusing effect, traditional flow cytometers use a complex integrated flow cell, which not only requires high processing precision, but also is expensive and difficult to maintain.
流式细胞仪的光学系统包括激发光路和荧光收集光路,激发光路包括激光器、激光光束质量调整模块(如扩束、缩束、滤光等)、激光聚焦模块等,荧光收集光路包括荧光收集、准直、滤光、以及荧光的光电转换与信号放大等模块。传统的流式细胞仪采用正交光路设计的模式,即激发光路和荧光收集光路互相垂直。正交式光路可以有效降低激发光背景干扰,提高灵敏度,但是该模式需要激发光汇聚透镜和荧光收集透镜从两个方向对焦于细胞流线上,光路对焦繁琐复杂,且三者稍有偏离就会极大降低检测灵敏度,因此通常需要专业的工程师来完成光路对焦调整。此外,正交光路模式很难实现紧凑的仪器,仪器体积较为庞大。The optical system of the flow cytometer includes an excitation light path and a fluorescence collection light path. The excitation light path includes a laser, a laser beam quality adjustment module (such as beam expander, beam reduction, filter, etc.), a laser focusing module, etc. The fluorescence collection light path includes fluorescence collection, Modules such as collimation, filtering, and fluorescence photoelectric conversion and signal amplification. The traditional flow cytometer adopts the mode of orthogonal optical path design, that is, the excitation optical path and the fluorescence collection optical path are perpendicular to each other. The orthogonal optical path can effectively reduce the background interference of the excitation light and improve the sensitivity, but this mode requires the excitation light converging lens and the fluorescence collection lens to focus on the cell streamline from two directions. It will greatly reduce the detection sensitivity, so professional engineers are usually required to complete the optical path focus adjustment. In addition, it is difficult to realize a compact instrument in the orthogonal optical path mode, and the instrument is relatively bulky.
流式细胞仪的检测系统包括光电转换模块、信号采集模块和数据处理模块,光电转换模块通常为光电倍增管等,将微弱的荧光信号转换为电信号并进行放大,光电转换模块输出的电信号被数据采集模块采集并记录,并通过数据处理软件将海量的数据点进行处理后获得最终的细胞分析结果。传统流式细胞仪的数据处理通常为在线处理,处理速度快且能够实时观察,但同时繁琐复杂且难以理解的门阈值设定使得仪器操作须经过长时间培训和实操练习。The detection system of the flow cytometer includes a photoelectric conversion module, a signal acquisition module and a data processing module. The photoelectric conversion module is usually a photomultiplier tube, etc., which converts the weak fluorescent signal into an electrical signal and amplifies it. The electrical signal output by the photoelectric conversion module It is collected and recorded by the data acquisition module, and the massive data points are processed by the data processing software to obtain the final cell analysis result. The data processing of traditional flow cytometers is usually online, which is fast and can be observed in real time, but at the same time, the complicated and incomprehensible gate threshold settings make the instrument operation require long-term training and practical practice.
发明内容SUMMARY OF THE INVENTION
为了解决现有流式细胞分析仪存在的灵敏度低、光路调节复杂、使用流程和测试参数设定繁琐、价格昂贵等不足的技术问题,本发明提供了一种基于共聚焦光路设计的流式细胞分析仪。In order to solve the technical problems of the existing flow cytometer, such as low sensitivity, complex optical path adjustment, cumbersome use process and test parameter setting, and high price, the present invention provides a flow cytometer based on confocal optical path design. Analyzer.
为了实现上述目的,本发明的技术方案是:In order to achieve the above object, the technical scheme of the present invention is:
一种基于共聚焦光路设计的流式细胞分析仪,包括液流系统、光学系统及检测系统;A flow cytometer based on confocal optical path design, comprising a liquid flow system, an optical system and a detection system;
所述液流系统包括分别与石英流通池连通的注射管路和鞘液管路,所述注射管路向石英流通池的中心鞘液通道注射细胞样品,所述细胞样品在鞘液管路向石英流通池中心鞘液通道注入的鞘流的包裹挤压下形成单细胞流;The liquid flow system includes an injection pipeline and a sheath fluid pipeline that are respectively communicated with the quartz flow cell. The injection pipeline injects the cell sample into the central sheath fluid channel of the quartz flow cell, and the cell sample flows to the quartz in the sheath fluid pipeline. Single-cell flow is formed under the wrapping and extrusion of the sheath flow injected by the sheath fluid channel in the center of the pool;
所述光学系统包括激发光路和荧光收集光路,所述激发光路的激光束聚焦于石英流通池的中心鞘流通道,用于激发石英流通池中心鞘流通道的细胞样品产生荧光,所述荧光通过荧光收集光路收集;The optical system includes an excitation light path and a fluorescence collection light path. The laser beam of the excitation light path is focused on the central sheath flow channel of the quartz flow cell, and is used to excite the cell sample in the central sheath flow channel of the quartz flow cell to generate fluorescence, and the fluorescence passes through the central sheath flow channel of the quartz flow cell. Fluorescence collection optical path collection;
所述检测系统包括依次连接的光电探测器、数据采集卡和上位机,所述光电探测器检测荧光收集光路收集的荧光,并通过数据采集卡发送到上位机存储。The detection system includes a photodetector, a data acquisition card and a host computer which are connected in sequence. The photodetector detects the fluorescence collected by the fluorescence collection optical path, and sends the data to the host computer for storage through the data acquisition card.
进一步的,所述液流系统还包括冲洗管路,所述冲洗管路与石英流通池连通,用于冲洗石英流通池的中心鞘液通道以及排出液路中的气泡。Further, the liquid flow system further includes a flushing pipeline, which is communicated with the quartz flow cell and is used for flushing the central sheath liquid channel of the quartz flow cell and discharging air bubbles in the liquid path.
进一步的,所述注射管路包括依次连通的注射泵、进样注射器和毛细管,所述毛细管的出口端从四通的第一端口伸入,并从四通的第三端口穿出后,插入到石英流通池的中心鞘液通道的入口处;Further, the injection pipeline includes a syringe pump, a sample injection syringe and a capillary that are communicated in sequence, and the outlet end of the capillary extends into the first port of the spool, passes through the third port of the spool, and is inserted into the capillary. to the entrance of the central sheath liquid channel of the quartz flow cell;
所述鞘液管路包括与四通的第二端口连通的鞘液瓶,所述鞘液瓶与四通第二端口连通的管路上设置有第一开关阀;The sheath liquid pipeline includes a sheath liquid bottle communicated with the second port of the spool, and a first switch valve is provided on the pipeline communicated with the second port of the spool;
所述冲洗管路包括与四通的第四端口连通的冲洗注射器,所述冲洗注射器与四通第四端口连通的管路上设置有第二开关阀。The flushing pipeline includes a flushing syringe that communicates with the fourth port of the four-way, and a second on-off valve is arranged on the pipeline that communicates with the fourth port of the four-way.
进一步的,所述石英流通池的入口端与四通的第三端口连通,所述石英流通池的出口端与废液瓶连通。Further, the inlet end of the quartz flow cell is communicated with the third port of the spool, and the outlet end of the quartz flow cell is communicated with the waste liquid bottle.
优选的,所述毛细管为石英毛细管,外径为0.1~0.4mm,内径为20~200μm,毛细管出口端打磨成15°~45°锥形尖端。Preferably, the capillary is a quartz capillary, the outer diameter is 0.1-0.4 mm, the inner diameter is 20-200 μm, and the outlet end of the capillary is ground into a 15°-45° conical tip.
优选的,所述石英流通池为四面透光的石英流通池,外部长宽高为4mm×4mm×10mm~6mm×6mm×20mm,中心鞘液通道为0.1mm×0.1mm~0.4mm×0.4mm的矩形通道。Preferably, the quartz flow cell is a four-sided transparent quartz flow cell, the outer length, width and height are 4mm×4mm×10mm~6mm×6mm×20mm, and the central sheath fluid channel is 0.1mm×0.1mm~0.4mm×0.4mm rectangular channel.
进一步的,所述激发光路包括依次设置的激光器、激光缩束镜、第一反射镜、第一滤光片、二向色镜和物镜,所述激光器发出的激光束依次经过激光缩束镜、第一反射镜、第一滤光片、二向色镜和物镜后,聚焦于石英流通池的中心鞘流通道;所述荧光收集光路包括依次设置的物镜、二向色镜、第二反射镜、第二滤光片、非球面透镜和针孔板,所述石英流通池中心鞘流通道的细胞样品产生荧光通过物镜收集,并依次经过二向色镜、第二反射镜、第二滤光片、非球面透镜和针孔板后,被光电探测器检测。Further, the excitation light path includes a laser, a laser beam reduction mirror, a first reflection mirror, a first filter, a dichroic mirror and an objective lens arranged in sequence, and the laser beam emitted by the laser passes through the laser beam reduction mirror, After the first reflection mirror, the first filter, the dichroic mirror and the objective lens, focus on the central sheath flow channel of the quartz flow cell; the fluorescence collection optical path includes the objective lens, the dichroic mirror and the second reflection mirror arranged in sequence , the second filter, the aspheric lens and the pinhole plate, the cell sample in the central sheath flow channel of the quartz flow cell generates fluorescence and is collected by the objective lens, and passes through the dichroic mirror, the second reflector, the second filter in turn After the film, the aspheric lens and the pinhole plate are detected, it is detected by the photodetector.
进一步的,所述第一滤光片、二向色镜、第二反射镜、第二滤光片、非球面透镜和针孔板均封装在暗盒的内部,所述激光缩束镜固定于激光器光束出口处,所述激光器、第一反射镜和物镜均设置于暗盒顶部,所述暗盒固定于光学平板上,所述第一反射镜和第二反射镜分别固定于光束转折架上,所述四通及石英流通池通过三维平移台固定于物镜上方。Further, the first filter, the dichroic mirror, the second reflector, the second filter, the aspherical lens and the pinhole plate are all packaged inside the cassette, and the laser beam-reducing mirror is fixed to the laser. At the beam exit, the laser, the first reflecting mirror and the objective lens are all arranged on the top of the cassette, the cassette is fixed on the optical plate, the first reflecting mirror and the second reflecting mirror are respectively fixed on the beam turning frame, the The spool and the quartz flow cell are fixed above the objective lens through a three-dimensional translation stage.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1.本发明采用共聚焦光路设计,可有效降低杂散光干扰,提高检测灵敏度,并且极大降低了光路对焦难度,用户可自行调焦。1. The present invention adopts the confocal optical path design, which can effectively reduce the stray light interference, improve the detection sensitivity, and greatly reduce the difficulty of focusing the optical path, and the user can adjust the focus by himself.
2.本发明的液流系统采用模块化设计,石英流通池、毛细管、鞘液管路以及冲洗管路互相独立,使用方便,便于维护,并且模块化设计可大大降低零部件的加工精度要求,降低成本。2. The liquid flow system of the present invention adopts a modular design, and the quartz flow cell, capillary, sheath liquid pipeline and flushing pipeline are independent of each other, which is convenient to use and easy to maintain, and the modular design can greatly reduce the processing accuracy requirements of parts, cut costs.
3.本发明鞘液通道与进样毛细管以及石英流通池中心通道同轴,且鞘液通道入口与鞘液和样品的汇聚点距离较远,有效避免鞘液脉动扰动或鞘液进入聚焦池时的扰动而引起聚焦不稳的现象,降低细胞粘连或重叠而引起的检测误差。3. The sheath liquid channel of the present invention is coaxial with the sampling capillary and the central channel of the quartz flow cell, and the sheath liquid channel entrance is far away from the convergence point of the sheath liquid and the sample, which effectively avoids the sheath liquid pulsation disturbance or when the sheath liquid enters the focusing cell. The phenomenon of focus instability caused by the perturbation of the cell reduces the detection error caused by cell adhesion or overlapping.
4.本发明中的超高通量单细胞分析工作站,其仪器控制及数据采集系统和数据处理分析系统可相互独立运行,采集的数据为完整的荧光强度–时间谱图数据,用户可直接获得原始数据并自行进行离线处理,且数据处理分析系统的数据处理阈值设定简单易于理解,用户可根据需求进行灵活的数据处理和筛选。4. In the ultra-high-throughput single-cell analysis workstation of the present invention, its instrument control and data acquisition system and data processing and analysis system can operate independently of each other, and the collected data is complete fluorescence intensity-time spectrum data, which users can directly obtain The raw data is processed offline by itself, and the data processing threshold setting of the data processing and analysis system is simple and easy to understand. Users can flexibly process and filter data according to their needs.
5.本发明基于高灵敏、时间分辨的光学系统以及高效稳定的液流系统,能够实现至少100cells/s的高通量、高准确度的单细胞分析,并通过对原始数据的快速、准确的离线处理,可获得单个细胞内目标分析物的荧光信号谱峰的峰高、峰面积信息,实现半定量分析,并通过统计学分析实现检测数据的多元展示。5. The present invention is based on a highly sensitive, time-resolved optical system and an efficient and stable liquid flow system, which can achieve high-throughput and high-accuracy single-cell analysis of at least 100 cells/s, and through the rapid and accurate analysis of raw data. Offline processing can obtain the peak height and peak area information of the fluorescent signal spectrum peak of the target analyte in a single cell, realize semi-quantitative analysis, and realize multi-variate display of detection data through statistical analysis.
6.本发明安装在一块光学平板上,结构紧凑,体积小,可随意搬运挪动,且本发明为模块化开放型设计,液流系统和检测系统相互独立,用户可根据需求对仪器进行改装或与微流控芯片等样品前处理模块联用,满足个性化的单细胞分析需求。6. The present invention is installed on an optical flat plate, with compact structure and small volume, and can be moved at will, and the present invention is a modular and open design, the liquid flow system and the detection system are independent of each other, and the user can modify the instrument or It can be used in combination with sample pre-processing modules such as microfluidic chips to meet the needs of personalized single-cell analysis.
附图说明Description of drawings
图1是本发明提供的基于共聚焦光路设计的流式细胞分析仪结构示意图;1 is a schematic structural diagram of a flow cytometer based on a confocal optical path design provided by the present invention;
图2是本发明提供的液流系统示意图。FIG. 2 is a schematic diagram of the liquid flow system provided by the present invention.
其中,in,
1-注射泵,2-进样注射器,3-毛细管,4-四通,5-鞘液瓶,6-石英流通池,7-冲洗注射器,8-第一开关阀,9-第二开关阀,10-废液瓶,11-激光器,12-激光缩束镜,13-第一反射镜,14-第一滤光片,15-二向色镜,16-物镜,17-第二反射镜,18-第二滤光片,19-非球面透镜,20-针孔板,21-光电探测器,22-数据采集卡,23-上位机,A-液流系统,B-光学系统,C-检测系统。1-syringe pump, 2-injection syringe, 3-capillary, 4-four-way, 5-sheath liquid bottle, 6-quartz flow cell, 7-flushing syringe, 8-first on-off valve, 9-second on-off valve , 10-waste bottle, 11-laser, 12-laser beam-contractor, 13-first reflector, 14-first filter, 15-dichroic mirror, 16-objective lens, 17-second reflector , 18-second filter, 19-aspherical lens, 20-pinhole plate, 21-photodetector, 22-data acquisition card, 23-host computer, A-fluid system, B-optical system, C -Detection Systems.
具体实施方式Detailed ways
为了解决现有技术存在的问题,如图1和图2所示,本发明提供了一种基于共聚焦光路设计的流式细胞分析仪,包括液流系统A、光学系统B以及检测系统C三部分。In order to solve the problems existing in the prior art, as shown in FIG. 1 and FIG. 2 , the present invention provides a flow cytometer based on confocal optical path design, including a liquid flow system A, an optical system B and a detection system C three part.
液流系统A包括分别与石英流通池6连通的注射管路和鞘液管路,注射管路向石英流通池6的中心鞘液通道注射细胞样品,细胞样品在鞘液管路向石英流通池6中心鞘液通道注入的鞘流的包裹挤压下形成单细胞流;光学系统B包括激发光路和荧光收集光路,激发光路的激光束聚焦于石英流通池6的中心鞘流通道,用于激发石英流通池6中心鞘流通道的细胞样品产生荧光,荧光通过荧光收集光路收集;检测系统C包括依次连接的光电探测器21、数据采集卡22和上位机23,光电探测器21检测荧光收集光路收集的荧光,并通过数据采集卡22发送到上位机23存储。The liquid flow system A includes an injection pipeline and a sheath fluid pipeline that are respectively communicated with the
液流系统A还包括冲洗管路,冲洗管路与石英流通池6连通,用于冲洗石英流通池6的中心鞘液通道以及排出液路中的气泡。注射管路包括依次连通的注射泵1、进样注射器2和毛细管3,毛细管3的出口端从四通4的第一端口伸入,并从四通4的第三端口穿出后,插入到石英流通池6的中心鞘液通道的入口处;鞘液管路包括与四通4的第二端口连通的鞘液瓶5,鞘液瓶5与四通4第二端口连通的管路上设置有第一开关阀8;冲洗管路包括与四通4的第四端口连通的冲洗注射器7,冲洗注射器7与四通4第四端口连通的管路上设置有第二开关阀9。石英流通池6的入口端与四通4的第三端口连通,石英流通池6的出口端与废液瓶10连通。The liquid flow system A further includes a flushing pipeline, which is communicated with the
具体的,液流系统A包括注射泵1、进样注射器2、毛细管3、四通4、鞘液瓶5、石英流通池6、冲洗注射器7和废液瓶10,注射泵1、进样注射器2、毛细管3依次连通,四通4包括第一端口、第二端口、第三端口和第四端口,所毛细管3的出口端从第一端口伸入四通4,贯穿四通4后插入到石英流通池6的中心鞘液通道入口处;石英流通池6与第三端口连通,石英流通池6出口端与废液瓶10连通,第二端口与鞘液瓶5连通,第四端口与冲洗注射器7连通;第二端口与鞘液瓶5之间设置第一开关阀8;第四端口与冲洗注射器7之间设置第二开关阀9。液流系统A与光学系统C相互独立,且液流系统A为模块化设计,石英流通池6、毛细管3、鞘液管路以及冲洗管路互相独立,极大降低零部件加工精度的要求,从而降低了成本。Specifically, the liquid flow system A includes a syringe pump 1, a
样品由注射泵1通过进样注射器2从毛细管3的入口端压入,毛细管3从四通4的第一端口伸入并固定密封,毛细管3出口端贯穿四通4后插入石英流通池6的中心鞘液通道入口处,四通4的第三端口与石英流通池6连接密封,第二端口通过软管与鞘液瓶5相连,鞘液在重力及静压力作用下通过四通4流入石英流通池6的中心鞘液通道形成鞘流,并与样品流汇合,毛细管3出口尖端流出的样品流在鞘液的包裹挤压下进行排列形成单细胞流;四通4的第四端口通过软管与冲洗注射器7相连,用于冲洗石英流通池6的中心鞘液通道以及排出液路中的气泡,石英流通池6出口端通过软管与废液瓶10相连。The sample is pressed by the syringe pump 1 through the
具体的,毛细管3为石英毛细管,外径为0.1~0.4mm,内径为20~200μm,毛细管3出口端打磨成15°~45°锥形尖端;石英流通池6为四面透光的石英流通池,外部长宽高为4mm×4mm×10mm~6mm×6mm×20mm,中心鞘液通道为0.1mm×0.1mm~0.4mm×0.4mm的矩形通道;注射泵1设定样品注入流速为2~200μL/min,鞘液流速为100~2000μL/min。Specifically, the
激发光路包括依次设置的激光器11、激光缩束镜12、第一反射镜13、第一滤光片14、二向色镜15和物镜16;荧光收集光路包括依次设置的物镜16、二向色镜15、第二反射镜17、第二滤光片18、非球面透镜19和针孔板20;第一滤光片14、二向色镜15、第二反射镜17、第二滤光片18、非球面透镜19和针孔板20封装在暗盒的内部,激光缩束镜12固定于激光器11光束出口处,激光器11、第一反射镜13和物镜16设置于暗盒外的顶部,暗盒固定于光学平板上,第一反射镜13和第二反射镜17分别固定于光束转折架上,用于调整激光束和荧光光束的入射角度,针孔板20用于屏蔽杂散光线,液流系统A中的四通4及石英流通池6通过三维平移台固定于物镜16上方。The excitation light path includes a
光学系统B的激发光路和荧光收集光路采用共聚焦模式。共聚焦模式的设置方式为:激光器11发出的激光束依次经过激光缩束镜12、第一反射镜13、第一滤光片14、二向色镜15及物镜16后,聚焦于石英流通池6的中心鞘流通道,激光激发石英流通池6的中心鞘流通道的细胞样品产生荧光,荧光通过物镜16收集后依次经过二向色镜15、第二反射镜17、第二滤光片18、非球面透镜19、针孔板20后被光电探测器21检测。光学系统采用共聚焦光路,即激发光路与发射光路共线,激发光经物镜16汇聚于细胞样品,产生的荧光又以同一个物镜16进行收集,使得本申请的分析仪仅需调整激光出射物镜16的角度及单细胞流与物镜16焦点对焦即可完成光路调整,极大降低光路调整的难度,且该光路更为紧凑,减小了仪器的体积。The excitation light path and fluorescence collection light path of optical system B are in confocal mode. The setting method of the confocal mode is as follows: the laser beam emitted by the
具体的,激光器11为固体激光器,输出波长为200~800nm,固定输出功率为5~500mW,光束直径为0.5~4mm。激光缩束镜12为1~3倍缩束镜,用于缩小激光光束直径。第一滤光片14和第二滤光片18均为带通的介质膜滤光片。物镜16为2.5~100倍平场消色差物镜,工作距离为2~10mm,数值孔径为0.08~0.8。二向色镜15为长通或短通二向色镜,起始波长为200nm~800nm。非球面透镜19焦距为1~30mm。针孔板20通光孔径为0.1~1mm。光学平板为边长300mm、厚13mm的铝合金材质平板,表面阵列M6螺纹孔,孔间距25mm。三维平移台的行程为4~20mm;光束转折架调整角度为2°~10°。Specifically, the
检测系统C包括光电探测器21、数据采集卡22和上位机23,光电探测器21固定于光学平板,光电探测器21用于检测通过针孔板20后的荧光收集光路的荧光,光电探测器21与数据采集卡22连接,数据采集卡22与上位机23连接,上位机23安装有信号采集及数据处理软件。信号采集及数据处理软件为超高通量单细胞分析工作站,超高通量单细胞分析工作站包括仪器控制及数据采集系统和数据处理分析系统。检测系统C将荧光信号转化为电信号并进行存储,获得完整的荧光时序数据,因此数据处理与数据采集可离线进行。The detection system C includes a
光电探测器21固定于光学平板上,光电探测器21将荧光信号转为电信号,经数据采集卡22采集后通过数据线传输给上位机23,由超高通量单细胞分析工作站进行数据实时显示、存储及离线后处理。超高通量单细胞分析工作站包括仪器控制及数据采集系统和数据处理分析系统两个模块,二者可安装于同一上位机23,也可以安装于不同的上位机23上独立运行,仪器控制及数据采集系统用于调整数据采集参数、控制光电探测器21运行电压和数据采集及存储;数据处理分析系统用于将采集的原始数据进行单细胞脉冲信号识别、筛选,并最终得到单细胞脉冲信号谱峰的峰高、峰面积和峰宽信息,以及与之对应的频数分布统计结果。The
仪器控制及数据采集系统以生产者消费者模式将数据采集卡22采集到的荧光强度数据实时读取并以TDMS的文件格式存入上位机,得到完整的荧光强度–时间谱图数据,最大数据存储频率为10kS/s~100kS/s。荧光强度–时间谱图数据使用数据处理分析系统进行处理,数据处理分析的流程分为数据导入、参数设置、谱峰识别、统计分析、结果导出五个步骤。其中谱峰识别步骤是数据处理分析系统的核心,目的在于从海量的数据点组成的荧光强度–时间谱图中识别出单细胞脉冲信号,本发明根据一阶导辅助谱峰识别算法来快速准确地进行单细胞脉冲信号识别,即利用荧光强度-时间谱图的一阶导数趋势结合原荧光强度–时间谱图对谱峰特征点起始点、峰值、终点进行自动识别的一种荧光强度–时间谱图的谱峰识别算法,谱峰识别的具体实现方法如下:The instrument control and data acquisition system reads the fluorescence intensity data collected by the
S01,将原始的荧光强度–时间谱图数据进行迭代计算获得基线值和基线噪音值;S01, iteratively calculates the original fluorescence intensity-time spectrum data to obtain a baseline value and a baseline noise value;
S02,将原始的荧光强度–时间谱图数据进行求导,获得荧光强度一阶导时序数组;S02, derive the original fluorescence intensity-time spectrum data to obtain a first-order derivative time series array of fluorescence intensity;
S03,根据一阶导时序数组的起伏特征结合基线值和噪音值识别出单细胞脉冲信号的起始点、峰值及终点,并在原始的荧光强度–时间谱图中标出;S03, according to the fluctuation characteristics of the first-order derivative time series array combined with the baseline value and the noise value, identify the start point, peak value and end point of the single-cell pulse signal, and mark it in the original fluorescence intensity-time spectrum;
S04,基于标出的单细胞脉冲信号特征点进行积分、峰高和峰宽计算,获得单细胞脉冲信号峰面积、峰高和峰宽信息,实现单细胞内目标分析物的半定量分析,并可以通过阈值设置进行信号筛选,最终经统计学分析实现有效单细胞脉冲信号计数、重叠细胞脉冲信号占比、单细胞脉冲信号峰面积、峰高和峰宽的频数分布直方图、单细胞脉冲信号峰面积、峰高和峰宽的变异系数的展示。S04, perform integration, peak height and peak width calculations based on the marked single-cell pulse signal feature points, obtain the peak area, peak height and peak width information of the single-cell pulse signal, realize semi-quantitative analysis of the target analyte in a single cell, and can set the threshold value Perform signal screening, and finally achieve effective single-cell pulse signal count, proportion of overlapping cell pulse signals, frequency distribution histogram of single-cell pulse signal peak area, peak height and peak width, single-cell pulse signal peak area, peak height and peak width through statistical analysis display of the coefficient of variation.
具体的,光电探测器21为光电倍增管,频率带宽为DC~100kHz。数据采集卡22最大采样频率为10kS/s~100kS/s。Specifically, the
基于共聚焦光路设计的流式细胞分析方法,采用上述基于共聚焦光路设计的流式细胞分析仪,包括如下步骤:The flow cytometry analysis method based on confocal light path design, using the above-mentioned flow cytometer based on confocal light path design, includes the following steps:
步骤一,液流系统A预冲洗:在每次测样前需要对液流系统A进行预冲洗运行,用于液流系统A排出气泡和形成稳定的鞘流;首先打开第一开关阀8,让鞘液充满液流系统A,然后打开第二开关阀9,将鞘液引入冲洗注射器7,然后关闭第一开关阀8,轻推冲洗注射器7,排出液路中的气泡;然后关闭第二开关阀9,打开第一开关阀8,让鞘液充满整个液流通道,并运行3分钟直至鞘流达到预设流速且流速稳定。Step 1, pre-flushing of the liquid flow system A: before each sample measurement, the liquid flow system A needs to be pre-flushed to discharge air bubbles and form a stable sheath flow in the liquid flow system A; first open the first on-off valve 8, Let the sheath liquid fill the liquid flow system A, then open the second on-off valve 9, introduce the sheath liquid into the flushing syringe 7, then close the first on-off valve 8, push the flushing syringe 7 lightly, and discharge the air bubbles in the liquid path; then close the second on-off valve 8. The valve 9 is switched on and off, the first switch valve 8 is opened, and the sheath liquid is filled with the entire liquid flow channel, and the operation is carried out for 3 minutes until the sheath flow reaches the preset flow rate and the flow rate is stable.
步骤二,数据采集:打开仪器控制及数据采集系统,设置光电探测器21运行电压和数据采集通道,开始荧光强度-时间谱图数据采集。
步骤三,样品引入:将细胞悬液吸入进样注射器2中,然后设置注射泵1流速为5μL/min进行样品引入,细胞悬液的适宜浓度为1×104~1×106/mL。
步骤四,数据处理:将采集的荧光强度-时间谱图数据导入数据处理分析系统进行处理,获得单细胞脉冲信号谱峰的峰高、峰面积和峰宽信息用于荧光信号的半定量分析,并进行统计分析获得单细胞脉冲信号谱峰的峰高、峰面积和峰宽信息的频数分布结果。Step 4, data processing: import the collected fluorescence intensity-time spectrum data into the data processing and analysis system for processing, and obtain the peak height, peak area and peak width information of the single-cell pulse signal spectral peak for semi-quantitative analysis of the fluorescence signal, Statistical analysis was performed to obtain the frequency distribution results of the peak height, peak area and peak width of the single-cell pulse signal spectral peaks.
此外,若对本申请的细胞分析仪进行挪动搬运且使用过程中有明显检测异常,则需要进行光路对焦调整。光路对焦调整包括激发光路调整和荧光收集光路调整,激发光路调整即通过光束转折架的旋钮来调整第一发反射镜13的角度,让激光垂直射出物镜16。荧光收集光路调整时,将细胞悬液样品替换为荧光染料并按照正常的使用流程进行数据采集,然后通过调整三维平移台,让聚焦后的荧光染料流线位于物镜16汇聚的激光束焦点上,最后通过调整第二反射镜17,让物镜16收集的荧光光束最终进入针孔板20的针孔并被光电探测器21检测。整个光路对焦调整过程都可通过采集到的荧光信号强度实时反馈调焦效果,直至检测到的荧光信号强度达到最强且平稳,则调整完毕。In addition, if the cell analyzer of the present application is moved and transported and there is obvious detection abnormality during use, it is necessary to adjust the focus of the optical path. The optical path focusing adjustment includes excitation optical path adjustment and fluorescence collection optical path adjustment. When adjusting the optical path of fluorescence collection, replace the cell suspension sample with fluorescent dye and collect data according to the normal use process, and then adjust the three-dimensional translation stage so that the focused fluorescent dye streamline is located at the focus of the laser beam converged by the
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210340915.1A CN114705611A (en) | 2022-04-02 | 2022-04-02 | A flow cytometer based on confocal optical path design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210340915.1A CN114705611A (en) | 2022-04-02 | 2022-04-02 | A flow cytometer based on confocal optical path design |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114705611A true CN114705611A (en) | 2022-07-05 |
Family
ID=82173074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210340915.1A Pending CN114705611A (en) | 2022-04-02 | 2022-04-02 | A flow cytometer based on confocal optical path design |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114705611A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251466A (en) * | 2008-03-28 | 2008-08-27 | 厦门大学 | Biological Flow Analyzer |
CN103245651A (en) * | 2013-05-12 | 2013-08-14 | 浙江大学 | Detection method of eccentric focusing-type laser-induced fluorescence detection device suitable for detection on capillary column |
US20150140577A1 (en) * | 2013-11-19 | 2015-05-21 | Acea Biosciences, Inc. | Optical engine for flow cytometer, flow cytometer system and methods of use |
CN107843709A (en) * | 2017-12-19 | 2018-03-27 | 农业部环境保护科研监测所 | Integrated portable heavy metal quick analytic instrument and its analyzing detecting method |
CN112229781A (en) * | 2020-09-07 | 2021-01-15 | 桂林电子科技大学 | An Improved Spectral Subdivision Optical Fiber Distributed Detection Device for Flow Cytometer |
CN112255166A (en) * | 2020-11-10 | 2021-01-22 | 中国科学院苏州生物医学工程技术研究所 | Scanning flow cytometry analyzer |
-
2022
- 2022-04-02 CN CN202210340915.1A patent/CN114705611A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251466A (en) * | 2008-03-28 | 2008-08-27 | 厦门大学 | Biological Flow Analyzer |
CN103245651A (en) * | 2013-05-12 | 2013-08-14 | 浙江大学 | Detection method of eccentric focusing-type laser-induced fluorescence detection device suitable for detection on capillary column |
US20150140577A1 (en) * | 2013-11-19 | 2015-05-21 | Acea Biosciences, Inc. | Optical engine for flow cytometer, flow cytometer system and methods of use |
CN107843709A (en) * | 2017-12-19 | 2018-03-27 | 农业部环境保护科研监测所 | Integrated portable heavy metal quick analytic instrument and its analyzing detecting method |
CN112229781A (en) * | 2020-09-07 | 2021-01-15 | 桂林电子科技大学 | An Improved Spectral Subdivision Optical Fiber Distributed Detection Device for Flow Cytometer |
CN112255166A (en) * | 2020-11-10 | 2021-01-22 | 中国科学院苏州生物医学工程技术研究所 | Scanning flow cytometry analyzer |
Non-Patent Citations (1)
Title |
---|
郑安琪;郝亚男;果婷婷;舒杨;王建华;: "荧光成像-电感耦合等离子体质谱关联定量分析细胞内铜纳米粒子", 分析化学, vol. 48, no. 10, 31 October 2020 (2020-10-31), pages 1359 - 1366 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109477785B (en) | Flow cytometer with optical equalization | |
US9494509B2 (en) | System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source | |
US7580120B2 (en) | Blood analyzer, sample analyzer, and flow cytometer | |
CN109612911B (en) | Full-automatic sperm cell detector | |
US9551657B2 (en) | Sample analyzer and sample analyzing method | |
JPS59184841A (en) | Method and device for discriminating sub-class of leukocyte in sample | |
CN106019608B (en) | One type Gauss flat top beam laser system | |
CN104483254A (en) | Multi-color multi-parameter portable flow cytometer | |
US20240272061A1 (en) | Flow Cytometers Including Light Collection Enhancers, And Methods of Using The Same | |
CN100592071C (en) | Biological Flow Analyzer | |
US20220341838A1 (en) | Fluid management system for an analyzer and/or sorter type flow type particle analyzer | |
CN112229781A (en) | An Improved Spectral Subdivision Optical Fiber Distributed Detection Device for Flow Cytometer | |
CN110361316A (en) | Eccentric flow cell and lateral light collecting device for flow cytometer | |
CN116908076A (en) | A three-dimensional flow cytometry analyzer and method based on optical detection and ICP-MS | |
CN114705611A (en) | A flow cytometer based on confocal optical path design | |
CN117983334A (en) | A microfluidic chip, a microfluidic flow cell sorting system and a method | |
CN111044435B (en) | Multi-index detection light path system for flow cytometer | |
US20230393047A1 (en) | Fluidic Resistance Units, As Well As Flow Cytometers and Methods Involving the Same | |
US12135274B2 (en) | Outlet fittings for reducing bubbles at the interface with a flow cell, and flow cytometers and methods using the same | |
US20230296493A1 (en) | Methods and Systems for Determining an Ideal Detector Gain | |
US20230375458A1 (en) | Particle sorter nozzles and methods of use thereof | |
CN116203005A (en) | Flow system based on stimulated radiation loss ultrathin light sheet and micro-nano flow control chip and application thereof | |
CN117242329A (en) | Method and system for classifying flow cytometer data | |
CN116519652A (en) | Method and device for detecting algae cell density and living cell density based on microfluidic microfluidics | |
CN118837566A (en) | Sample analyzer and control method for sample analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |