CN114702957B - 具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备 - Google Patents

具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备 Download PDF

Info

Publication number
CN114702957B
CN114702957B CN202210459600.9A CN202210459600A CN114702957B CN 114702957 B CN114702957 B CN 114702957B CN 202210459600 A CN202210459600 A CN 202210459600A CN 114702957 B CN114702957 B CN 114702957B
Authority
CN
China
Prior art keywords
solution
silver sulfide
sulfide quantum
photo
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210459600.9A
Other languages
English (en)
Other versions
CN114702957A (zh
Inventor
牛娜
崔迪
陈立钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Forestry University
Original Assignee
Northeast Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Forestry University filed Critical Northeast Forestry University
Priority to CN202210459600.9A priority Critical patent/CN114702957B/zh
Publication of CN114702957A publication Critical patent/CN114702957A/zh
Application granted granted Critical
Publication of CN114702957B publication Critical patent/CN114702957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7407Chalcogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)

Abstract

涉及一种具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备方法。本发明是为了解决硫化银量子点作为单组分诊疗纳米粒子用于近红外二区荧光成像引导的光热治疗时光热转换效率低的问题。制备方法:一、将AgNO3溶液和Bi(NO3)3·5H2O溶液与白蛋白溶液充分混合,制备金属离子‑白蛋白复合物;二、调节所得金属离子‑白蛋白复合溶液的pH至1~13,加入Na2S·9H2O溶液,于50~60℃下反应4~6h;三、用超纯水透析24~48h,得到铋掺杂硫化银量子点。本发明为水相合成,制备工艺简单,反应温和,而且制备的铋掺杂硫化银量子点既具有良好的近红外二区荧光成像能力,又有高的光热转换性能,在用作单组分诊疗纳米粒子方面具有极大的潜力。

Description

具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的 制备
技术领域
本发明涉及一种具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备方法,属于生物化学材料领域。
背景技术
传统的癌症治疗存在成像和治疗过程分离和不同步的问题,而光诱导的诊疗纳米粒子可以有效解决这一问题。光诱导的诊疗纳米粒子用于荧光或光声成像和同步光热或光动力治疗,具有实时监测和调整治疗过程的优势。根据需要,人们设计和制备了多种诊疗纳米粒子,主要可分为单组分诊疗纳米粒子和多组分诊疗纳米粒子。但是多组分诊疗纳米粒子需要将多种材料复合在一起,因此制备过程复杂,而且会涉及生物安全,药代动力学等问题,单组分纳米粒子能在一定程度上克服这些弱点,生物安全性更高,且更易于大规模制备。
目前,作为一个新兴的前沿领域,单组分诊疗纳米粒子(包括金纳米粒子、量子点和有机荧光染料等)得到了广泛的探索。其中,硫化银量子点(Ag2S QDs)作为高效的近红外荧光成像剂之一,在癌症诊疗方面有很大的应用潜力。而且相较于近红外一区(700-1000nm),近红外二区(1000-1700nm)荧光成像在生物体内散射更低,组织穿透更深,自发荧光背景几乎可忽略不计且分辨率达到了前所未有的水平。受益于这些优点,具有近红外二区荧光性能的硫化银量子点的制备具有重要意义。
此外,已有部分研究表明Ag2S QDs具有一定的光热性能。发明专利CN113004889A公开了一种合成近红外荧光/光热硫化银量子点的方法,但是光热转换效率仅为48.94%,且制备过程中仍然需要惰性气体保护,不利于大规模生产。治疗材料的低的光热转换效率,不仅会直接导致不好的治疗效果,而且还可能对患者皮肤等造成一定程度的伤害。因此,在保证近红外二区荧光成像能力的同时,提高单组分诊疗纳米粒子Ag2S QDs的光热性能就显得尤为重要和迫切。
发明内容
本发明的目的是解决硫化银量子点作为单组分诊疗纳米粒子用于近红外二区荧光成像引导的光热治疗时光热转换效率低的问题。本发明提供一种既具有近红外二区荧光成像能力,又有高的光热转换性能且组分为单组分的铋掺杂硫化银量子点的简单合成方法。
一种铋掺杂硫化银量子点的制备方法,具体是按照以下步骤完成:
一、在400rpm~600rpm转速的磁力搅拌下向20~50mg/mL牛血清白蛋白溶液中缓慢加入10~30mmol/LAgNO3溶液和30~50mmol/L Bi(NO3)3·5H2O溶液,搅拌混合12~24h,得到金属离子-白蛋白复合物;步骤一中所述AgNO3溶液与牛血清白蛋白溶液体积比为1:(8~12);步骤一中所述AgNO3溶液与Bi(NO3)3·5H2O溶液体积比为1:(0.01~0.06);
二、用1~2mol/L的氢氧化钠溶液将步骤一所得金属离子-白蛋白复合溶液的pH调至11~13,加入0.1~0.2mol/L Na2S·9H2O溶液,并于50~60℃下反应4~6h;步骤二中所述Na2S·9H2O溶液与步骤一中所述AgNO3溶液体积比为(0.1~0.4):1;
三、将步骤二反应到时间后的溶液置于截留分子量8000~14000的透析袋中,用超纯水透析24~48h,得到铋掺杂硫化银量子点。
有益效果
1、本发明为水相合成且制备的纳米诊疗材料是单组分的,制备过程更简单,无需高温真空环境,对环境友好,无需使用高沸点有机溶剂,无需复杂的相转移过程,可直接应用于生物领域;
2、白蛋白的修饰包裹赋予了铋掺杂硫化银量子点良好的生物相容性和优良的单分散性,这使它们在生物环境中保持稳定,更有利于生物应用;
3、本发明制备的铋掺杂硫化银量子点具有良好的近红外二区荧光发射性能,有利于在医学成像中实现更深的穿透深度和更高的分辨率;
4、本发明制备的铋掺杂硫化银量子点的光热转换性能有了很大改善。未掺杂的硫化银量子点的光热转换效率仅为30%~36%,而铋掺杂硫化银量子点的光热转换效率能提高至42%~59.8%。
附图说明
图1是实施例1制备的铋掺杂硫化银量子点的透射电镜图;由图1可以看出,铋掺杂硫化银量子点为球形的,且具有良好的单分散性,平均粒径约为4.1nm;
图2是实施例1制备的铋掺杂硫化银量子点的X射线光电子能谱图;图2中量子点在373.5eV,367.5eV,163.3eV,157.6eV处出峰,分别归因于Ag 3d3/2,Ag 3d5/2,Bi 3f5/2和Bi3f7/2,说明铋元素成功掺杂到硫化银量子点中;
图3是实施例1制备的铋掺杂硫化银量子点的荧光发射光谱;由图3可以看出铋掺杂硫化银量子点的荧光发射峰的中心位置位于1070nm左右,位于近红外二区(1000-1700nm),为铋掺杂硫化银量子点的近红外二区荧光成像奠定了基础;
图4是实施例1制备的铋掺杂硫化银量子点的近红外二区荧光成像图;将1mL的铋掺杂硫化银量子点溶液(1mg/mL)加入1.5mL塑料管中,利用近红外二区荧光成像系统进行成像,获得铋掺杂硫化银量子点的近红外二区荧光扫描图谱,使用的激发光源为755nm激光器。由图4可以看出,铋掺杂硫化银量子点具有良好的近红外二区荧光成像能力;
图5是实施例1制备的铋掺杂硫化银量子点的光热转换效率计算;将1mL的铋掺杂硫化银量子点溶液(1mg/mL)加入玻璃比色皿中,对其进行激光照射(755nm,1W/cm2),发现溶液温度趋于平稳后,撤去激光器使其自然冷却至室温,期间用热成像仪每间隔1min对溶液温度进行记录。由图5可以看出,用755nm激光器(1W/cm2)照射10min后,铋掺杂硫化银量子点溶液的温度上升了31.8℃,且温度变化趋于稳定,撤去激光器15min后,溶液自然冷却至室温。根据图5的结果,采用以下公式计算光热转换效率:
计算得到铋掺杂硫化银量子点的光热转换效率为59.8%,远高于许多文献报道的光热材料如金纳米粒子等,表明本发明所制备的铋掺杂硫化银量子点具有出色的光热转换效率。
具体实施方式
实施例1:
一种铋掺杂硫化银量子点的制备方法,具体是按照以下步骤完成:
一、在500rpm转速的磁力搅拌下向9mL牛血清白蛋白溶液(25mg/mL)中缓慢加入1mL AgNO3溶液(20mmol/L)和60μL Bi(NO3)3·5H2O溶液(50mmol/L),搅拌混合24h,得到金属离子-白蛋白复合物;
二、用2mol/L的氢氧化钠溶液将步骤一所得金属离子-白蛋白复合溶液的pH调至12,加入0.1mol/LNa2S·9H2O溶液,并于55℃下反应4h;
三、将步骤二反应到时间后的溶液置于截留分子量8000~14000的透析袋中,用超纯水透析24h,得到铋掺杂硫化银量子点。

Claims (1)

1.一种铋掺杂硫化银量子点的制备方法,其特征在于它按以下步骤制备的:
一、在400rpm~600rpm转速的磁力搅拌下向20~50mg/mL牛血清白蛋白溶液中缓慢加入10~30mmol/L AgNO3溶液和30~50mmol/L Bi(NO3)3·5H2O溶液,搅拌混合12~24h,得到金属离子-白蛋白复合物;步骤一中所述AgNO3溶液与牛血清白蛋白溶液体积比为1:(8~12);步骤一中所述AgNO3溶液与Bi(NO3)3·5H2O溶液体积比为1:(0.01~0.06);
二、用1~2mol/L的氢氧化钠溶液将步骤一所得金属离子-白蛋白复合溶液的pH调至11~13,加入0.1~0.2mol/L Na2S·9H2O溶液,并于50~60℃下反应4~6h;步骤二中所述Na2S·9H2O溶液与步骤一中所述AgNO3溶液体积比为(0.1~0.4):1;
三、将步骤二反应到时间后的溶液置于截留分子量8000~14000的透析袋中,用超纯水透析24~48h,得到铋掺杂硫化银量子点。
CN202210459600.9A 2022-04-27 2022-04-27 具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备 Active CN114702957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210459600.9A CN114702957B (zh) 2022-04-27 2022-04-27 具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210459600.9A CN114702957B (zh) 2022-04-27 2022-04-27 具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备

Publications (2)

Publication Number Publication Date
CN114702957A CN114702957A (zh) 2022-07-05
CN114702957B true CN114702957B (zh) 2023-10-27

Family

ID=82175856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210459600.9A Active CN114702957B (zh) 2022-04-27 2022-04-27 具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备

Country Status (1)

Country Link
CN (1) CN114702957B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117503955A (zh) * 2023-10-16 2024-02-06 华南师范大学 用于活体成像示踪的功能化硫化银量子点合成方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701265A (zh) * 2012-06-21 2012-10-03 复旦大学 一种近红外发光的硫化银量子点的水相制备方法
CN107418562A (zh) * 2017-09-06 2017-12-01 东北大学 近红外硫化银量子点的合成方法
CN109054812A (zh) * 2018-08-24 2018-12-21 南京邮电大学 一种水相制备近红外二区荧光硫化银量子点的方法
CN110724525A (zh) * 2018-07-16 2020-01-24 南京邮电大学 近红外二区荧光硫化银量子点的制备方法及硫化银量子点
CN113004889A (zh) * 2021-03-09 2021-06-22 大连民族大学 一种合成近红外荧光/光热/光声硫化银量子点的方法
CN113150773A (zh) * 2021-04-12 2021-07-23 东北林业大学 一种利用牛血清白蛋白为支架的化学荧光探针检测水果中乙烯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701265A (zh) * 2012-06-21 2012-10-03 复旦大学 一种近红外发光的硫化银量子点的水相制备方法
CN107418562A (zh) * 2017-09-06 2017-12-01 东北大学 近红外硫化银量子点的合成方法
CN110724525A (zh) * 2018-07-16 2020-01-24 南京邮电大学 近红外二区荧光硫化银量子点的制备方法及硫化银量子点
CN109054812A (zh) * 2018-08-24 2018-12-21 南京邮电大学 一种水相制备近红外二区荧光硫化银量子点的方法
CN113004889A (zh) * 2021-03-09 2021-06-22 大连民族大学 一种合成近红外荧光/光热/光声硫化银量子点的方法
CN113150773A (zh) * 2021-04-12 2021-07-23 东北林业大学 一种利用牛血清白蛋白为支架的化学荧光探针检测水果中乙烯的方法

Also Published As

Publication number Publication date
CN114702957A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Qiu et al. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification
Hu et al. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels
Li et al. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application
Chang et al. Rare earth ion-doped upconversion nanocrystals: synthesis and surface modification
US8093566B2 (en) Upconversion fluorescent nano-structured material and uses thereof
CN114702957B (zh) 具有近红外二区荧光/光热性能的铋掺杂硫化银量子点的制备
Na et al. Versatile PEG-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals
CN110102776A (zh) 一种在有机相中合成金纳米球、金纳米棒、金纳米线的方法
KR20110080781A (ko) 산화철 나노 mri 조영제 및 그 제조방법
Zhang et al. 808 nm laser triggered self-monitored photo-thermal therapeutic nano-system Y2O3: Nd3+/Yb3+/Er3+@ SiO2@ Cu2S
CN110408377B (zh) 一种稀土掺杂NaCeF4近红外荧光纳米探针及其制备方法和生物应用
CN103110964B (zh) 一种具有荧光和磁共振成像的双模式造影剂及其制备方法
CN102154012A (zh) 一种诱导制备小尺寸六角相NaYF4纳米基质材料的方法
Ortega-Berlanga et al. An overview of gadolinium-based oxide and oxysulfide particles: Synthesis, properties, and biomedical applications
CN107418554A (zh) 一种金纳米棒与上转换纳米晶复合纳米材料及其制备方法
Pu et al. Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals
Chien et al. Synthesis, optical properties, and sensing applications of LaF3: Yb3+/Er3+/Ho3+/Tm3+ upconversion nanoparticles
Yan et al. Synthesis of aqueous CdTe/CdS/ZnS core/shell/shell quantum dots by a chemical aerosol flow method
Feng et al. Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol
CN115505388A (zh) 近红外二区双荧光发射稀土纳米探针及其制备方法和应用
Li et al. Deep eutectic solvent-assisted synthesis of nitrogen-doped carbon quantum dots for cell imaging
CN110104689A (zh) 一种中空二氧化锰纳米颗粒及其制备方法
CN112940711A (zh) 一种生物可降解的上转换核壳纳米晶、制备方法及其应用
CN110169958A (zh) 一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法
Ge et al. A facile high-speed vibration milling method to mass production of water-dispersible silicon quantum dots for long-term cell imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant