CN114699168A - Calibration system and calibration method of biplane ultrasonic probe - Google Patents
Calibration system and calibration method of biplane ultrasonic probe Download PDFInfo
- Publication number
- CN114699168A CN114699168A CN202210075799.5A CN202210075799A CN114699168A CN 114699168 A CN114699168 A CN 114699168A CN 202210075799 A CN202210075799 A CN 202210075799A CN 114699168 A CN114699168 A CN 114699168A
- Authority
- CN
- China
- Prior art keywords
- calibration
- phantom
- ultrasonic probe
- coordinate system
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000002604 ultrasonography Methods 0.000 claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims abstract description 39
- 238000003384 imaging method Methods 0.000 claims abstract description 21
- 230000009466 transformation Effects 0.000 claims abstract description 20
- 238000002372 labelling Methods 0.000 claims abstract description 6
- 239000004677 Nylon Substances 0.000 claims description 12
- 229920001778 nylon Polymers 0.000 claims description 12
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims 2
- 239000007787 solid Substances 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000013480 data collection Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 238000012285 ultrasound imaging Methods 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
- A61B2017/3413—Needle locating or guiding means guided by ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明公开一种基于双平面超声探头的标定系统,包括正交双平面超声探头、磁场发生器、磁导航定位接收器、标定仿体、容器。其中,标定仿体为一长方体,固定于容器底部,被容器中的超声成像介质浸没;标定仿体分为上下两个部分,分别穿插有N形丝线组;双平面超声探头两个成像平面相互垂直,可分别与标定仿体的两组丝线组相交;磁导航定位接收器固定于双平面超声探头中部;磁导航定位探针用于点选仿体表面点,从而定位标定仿体;磁场发生器置于容器一侧,保证其磁场范围能够覆盖超声探头上的磁导航定位接收器以及磁导航定位探针。该方案有利于标准化标定数据采集、标注流程;有利于高精度地计算从磁导航定位接收器到超声图像之间的坐标转换矩阵。
The invention discloses a calibration system based on a dual-plane ultrasonic probe, comprising an orthogonal dual-plane ultrasonic probe, a magnetic field generator, a magnetic navigation positioning receiver, a calibration phantom and a container. Among them, the calibration phantom is a cuboid, which is fixed at the bottom of the container and is submerged by the ultrasonic imaging medium in the container; the calibration phantom is divided into upper and lower parts, which are respectively interspersed with N-shaped wire groups; the two imaging planes of the dual-plane ultrasonic probe are mutually Vertical, it can intersect with the two sets of wire sets for the calibration phantom; the magnetic navigation positioning receiver is fixed in the middle of the dual-plane ultrasonic probe; the magnetic navigation positioning probe is used to select the surface points of the phantom to locate and calibrate the phantom; the magnetic field generates The device is placed on the side of the container to ensure that its magnetic field range can cover the magnetic navigation positioning receiver and the magnetic navigation positioning probe on the ultrasonic probe. The scheme is beneficial to standardize the calibration data collection and labeling process; it is beneficial to calculate the coordinate transformation matrix from the magnetic navigation positioning receiver to the ultrasound image with high precision.
Description
技术领域technical field
本发明涉及一种正交双平面超声探头的标定系统与标定方法,属于医疗器械、计算机视觉技术领域。The invention relates to a calibration system and a calibration method for an orthogonal double plane ultrasonic probe, belonging to the technical fields of medical equipment and computer vision.
背景技术Background technique
前列腺穿刺活检术,是前列腺癌诊断的金标准。超声图像因其采集的便利性、图像的实时性,常被用于引导前列腺穿刺手术。目前,临床上用到术前MR、术中超声融合的前列腺穿刺活检系统,需要获取二维超声图像的空间位置信息。通过在超声探头上固定电磁定位传感器,可以实时获取传感器的空间位姿信息。另外需要将超声探头进行标定,从而获得传感器坐标系到超声图像坐标系的转换关系,进而获得超声图像的空间位置信息。Prostate biopsy is the gold standard for prostate cancer diagnosis. Ultrasound images are often used to guide prostate puncture because of the convenience of acquisition and the real-time nature of images. At present, the prostate biopsy system that uses preoperative MR and intraoperative ultrasound fusion in clinical practice needs to obtain the spatial position information of two-dimensional ultrasound images. By fixing the electromagnetic positioning sensor on the ultrasonic probe, the spatial pose information of the sensor can be acquired in real time. In addition, the ultrasound probe needs to be calibrated, so as to obtain the conversion relationship between the sensor coordinate system and the ultrasound image coordinate system, and then obtain the spatial position information of the ultrasound image.
目前,常见的超声图像标定方法,通过在水箱中令超声图像扫描N线体膜,形成若干个亮点,识别并计算亮点的空间位置信息,并结合其在超声图像中的像素坐标信息,从而计算标定矩阵。At present, the common ultrasonic image calibration method is to scan the N-line body membrane in the water tank to form several bright spots, identify and calculate the spatial position information of the bright spots, and combine the pixel coordinate information in the ultrasonic image to calculate Calibration matrix.
现有的技术,超声标定仿体主要为单平面超声探头设计。对于双平面超声探头,由于其两个成像平面相互正交、视野有限,且无法全部浸没于水箱当中,因此难以找到合适的角度与位置使之能够扫描到N线仿体的全部点。由于超声图像成像质量较差,有反射、伪影等问题,且在超声截面与N线不完全垂直时亮斑面积过大,因此特征点识别精度较差。以上原因导致标定图像采集困难,以及计算得到的标定矩阵精度较低。In the prior art, the ultrasonic calibration phantom is mainly designed as a single plane ultrasonic probe. For the dual-plane ultrasound probe, because its two imaging planes are orthogonal to each other, the field of view is limited, and it cannot be fully immersed in the water tank, it is difficult to find a suitable angle and position to scan all the points of the N-line phantom. Because the imaging quality of ultrasound images is poor, there are problems such as reflection and artifacts, and the bright spot area is too large when the ultrasound section is not completely perpendicular to the N line, so the recognition accuracy of feature points is poor. The above reasons lead to the difficulty in the acquisition of calibration images, and the low precision of the calculated calibration matrix.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种方便易用的双平面超声探头标定系统,以及一种鲁棒、高精度的标定方法。In view of the above problems, the purpose of the present invention is to provide a convenient and easy-to-use dual-plane ultrasonic probe calibration system, and a robust and high-precision calibration method.
为实现上述目的,本发明采取以下技术方案:一种双平面超声探头标定系统,包括正交双平面超声探头,其具有两个超声成像截面,且两个截面相互正交;磁场发生器,用于产生用于电磁定位的磁场;磁导航定位接收器,其刚体固定于双平面超声探头上,在磁场发生器所产生的磁场当中,能够实时地获取自身的空间位置与姿态参数,从而标定后可用于获取两个超声截面的空间位姿参数;磁导航定位探针,在磁场发生器产生的磁场中,可以实时地获取针尖的空间位置参数,用于定位标定仿体;标定仿体,为一个长方体;容器及固定装置,用于盛放超声成像介质。In order to achieve the above object, the present invention adopts the following technical solutions: a biplane ultrasonic probe calibration system, including an orthogonal biplane ultrasonic probe, which has two ultrasonic imaging sections, and the two sections are orthogonal to each other; It is used to generate the magnetic field for electromagnetic positioning; the magnetic navigation positioning receiver, whose rigid body is fixed on the dual-plane ultrasonic probe, can obtain its own spatial position and attitude parameters in real time in the magnetic field generated by the magnetic field generator, so that after calibration It can be used to obtain the spatial pose parameters of the two ultrasonic sections; the magnetic navigation positioning probe, in the magnetic field generated by the magnetic field generator, can obtain the spatial position parameters of the needle tip in real time for positioning and calibrating the phantom; A rectangular parallelepiped; container and fixture for holding ultrasound imaging media.
进一步地,所述标定仿体,使用树脂材质制成,整体为长方体,分为上下两个区域,各有一个方形孔洞,孔洞侧壁设有若干倒三角形通孔,穿插有尼龙线。Further, the calibration phantom is made of resin material, and the whole is a cuboid, divided into upper and lower regions, each with a square hole, and the side wall of the hole is provided with a number of inverted triangular through holes, interspersed with nylon threads.
进一步地,所述标定仿体,上下两个区域的孔洞,均在侧壁打孔,穿插线,形成5 组N形。且对于仿体的上下两个区域,分别由尼龙线穿插而成的各5组N形线其形状、大小相同,相互垂直。上半区域用于采集超声探头矢状面标定所需的数据,下半区域用于采集超声探头横断面标定所需的数据。Further, in the calibration phantom, the holes in the upper and lower regions are all punched in the side walls, and lines are inserted to form 5 groups of N shapes. And for the upper and lower regions of the phantom, five groups of N-shaped lines interspersed with nylon threads are the same in shape and size, and are perpendicular to each other. The upper half area is used to collect the data required for the sagittal calibration of the ultrasonic probe, and the lower half area is used to collect the data required for the cross-sectional calibration of the ultrasonic probe.
进一步地,所述标定仿体,三角形通孔间所穿的线为尼龙材质,且直径与超声探头所采用的超声波长相近,从而使得超声图像中,与尼龙线的交点更为清晰。Further, in the calibration phantom, the wire passing through the triangular through holes is made of nylon, and the diameter is similar to the ultrasonic length used by the ultrasonic probe, so that the intersection point with the nylon wire in the ultrasonic image is clearer.
进一步地,所述容器及固定装置,容器高度足够盛放标定仿体及固定装置。固定装置可以将标定仿体固定于容器底部。容器可用于盛放人体温温度的热水并浸没标定仿体。容器四壁设有吸波材料用于减少超声反射。Further, in the container and the fixing device, the height of the container is sufficient to hold the calibration phantom and the fixing device. The fixing device can fix the calibration dummy to the bottom of the container. The container can be used to hold hot water at human body temperature and submerge the calibration phantom. The four walls of the container are provided with absorbing materials to reduce ultrasonic reflection.
一种基于双平面超声探头标定系统的标定方法,包括以下步骤:A calibration method based on a dual-plane ultrasonic probe calibration system, comprising the following steps:
步骤(1)标定数据采集:使用上述双平面超声探头标定系统,采集标定所需的原始数据;Step (1) calibration data collection: use the above-mentioned dual-plane ultrasonic probe calibration system to collect the raw data required for calibration;
步骤(2)标定数据标注:自动或非自动地,对于超声截面与标定仿体N形线相交形成的若干个点,自动或非自动地,根据特定几何关系,识别并标注其在图像中的坐标;Step (2) Labeling of calibration data: automatically or non-automatically, for several points formed by the intersection of the ultrasonic section and the N-shaped line of the calibration phantom, automatically or non-automatically, according to a specific geometric relationship, identify and label the points in the image. coordinate;
步骤(3)标定数据预处理:根据超声截面与标定仿体N形线相交形成的若干个点,其距离几何关系,计算与各组N线斜边相交而成的若干个特征点,在仿体坐标系下的坐标;Step (3) Calibration data preprocessing: According to several points formed by the intersection of the ultrasonic cross-section and the N-shaped line of the calibration phantom, and their distance geometric relationship, calculate several feature points that intersect with the hypotenuse of each group of N-lines, and in the simulation The coordinates in the body coordinate system;
步骤(4)最小二乘法迭代优化,去除离群点并计算标定矩阵:计算从磁导航接收器坐标系到超声图像坐标系之间的坐标变换矩阵;Step (4) iterative optimization of least squares method, removing outliers and calculating calibration matrix: calculating the coordinate transformation matrix from the coordinate system of the magnetic navigation receiver to the ultrasonic image coordinate system;
步骤(5)双平面标定矩阵求平均:根据超声探头两个成像平面相互正交的先验信息,对两个探头分别求得的标定矩阵求平均;Step (5) averaging of two-plane calibration matrices: averaging the calibration matrices obtained by the two probes according to the prior information that the two imaging planes of the ultrasonic probe are mutually orthogonal;
进一步地,所述步骤(1)的具体过程为:Further, the concrete process of described step (1) is:
步骤(1.1)将标定仿体竖直固定于容器内,令成像介质浸没仿体;In step (1.1), the calibration phantom is vertically fixed in the container, and the imaging medium is immersed in the phantom;
步骤(1.2)以磁场发生器为基准,建立磁场发生器坐标系;Step (1.2) establishes the coordinate system of the magnetic field generator based on the magnetic field generator;
步骤(1.3)使用针型探头,采集仿体定位数据,分别包括长方体标定仿体右表面、上表面、正面的若干个点的坐标;Step (1.3) uses a needle probe to collect phantom positioning data, including the coordinates of several points on the right surface, upper surface and front of the phantom calibrated by a cuboid;
步骤(1.4)确保磁导航定位接收器固定于超声探头中部;Step (1.4) ensure that the magnetic navigation positioning receiver is fixed in the middle of the ultrasonic probe;
步骤(1.5)采集横断面标定数据:令超声横断面与标定仿体下半部分的N线相交。Step (1.5) Collect cross-section calibration data: make the ultrasonic cross-section intersect with the N line of the lower half of the calibration phantom.
在保证超声图像与所有N形线相交且交点清晰可见的前提下,分别调整超声探头3个平移自由度,3个旋转自由度,采集若干张图像;Under the premise of ensuring that the ultrasound image intersects with all N-shaped lines and the intersection points are clearly visible, adjust the 3 translational degrees of freedom and 3 rotational degrees of freedom of the ultrasound probe respectively, and collect several images;
步骤(1.6)采集矢状面标定数据:令超声矢状面与标定仿体上半部分的N线相交。Step (1.6) Collect sagittal plane calibration data: make the ultrasound sagittal plane intersect with the N line of the upper half of the calibration phantom.
在保证超声图像与所有N形线相交且交点清晰可见的前提下,分别调整超声探头3个平移自由度,3个旋转自由度,采集若干张图像;Under the premise of ensuring that the ultrasound image intersects with all N-shaped lines and the intersection points are clearly visible, adjust the 3 translational degrees of freedom and 3 rotational degrees of freedom of the ultrasound probe respectively, and collect several images;
进一步地,所述步骤(2)的具体过程为,考虑对于单帧图像中的前景点,有点ABC共线,DEF共线、GHI共线、JKL共线、MNO共线,ADG共线、BEH共线、CFI共线,且有AC∥DF∥GI,以及AG∥BH∥CI,则标注时可以排除其他不符合上述规则的噪声点的干扰,按照共线及平行规则,更准确地识别前景点Further, the specific process of the step (2) is, considering that for the foreground points in a single frame image, some ABC collinear, DEF collinear, GHI collinear, JKL collinear, MNO collinear, ADG collinear, BEH collinear. collinear, CFI is collinear, and there are AC∥DF∥GI, and AG∥BH∥CI, then the interference of other noise points that do not meet the above rules can be excluded when labeling, and according to the collinear and parallel rules, more accurate identification Attractions
进一步地,所述步骤(4)的具体过程为:Further, the concrete process of described step (4) is:
步骤(4.1)、以磁场发射器为基准建立磁场发生器坐标系T(transmitter),以标定仿体为基准建立仿体重建坐标系C(reconstruction)如图2所示,以磁导航定位接收器为基准建立接收器坐标系R(receiver),以横断面、矢状面超声图像为基准建立图像坐标系 I(image),则对于任一特征点,有坐标变换:pc=Tct*Ttr*Tri*pi;In step (4.1), the magnetic field generator coordinate system T (transmitter) is established based on the magnetic field transmitter, and the phantom reconstruction coordinate system C (reconstruction) is established based on the calibration phantom as shown in Figure 2, and the receiver is positioned with magnetic navigation. The receiver coordinate system R(receiver) is established as the benchmark, and the image coordinate system I(image) is established based on the cross-sectional and sagittal ultrasound images, then for any feature point, there is a coordinate transformation: p c =T ct *T tr *T ri * pi ;
步骤(4.2)、已知标定仿体的参数信息,使用已经采集到的长方体仿体的右表面、上表面、正面各30个点的磁场发生器坐标系坐标,计算发射器(transmitter)坐标系到仿体重建坐标系(reconstruction)的转换矩阵Tct;In step (4.2), the parameter information of the calibration phantom is known, and the coordinates of the magnetic field generator coordinate system of 30 points on the right surface, upper surface and front of the cuboid phantom that have been collected are used to calculate the transmitter coordinate system the transformation matrix Tct to the phantom reconstruction coordinate system (reconstruction);
步骤(4.3)、以5点共面为依据,筛除离群点。对于上述标定图片当中的5个特征点,应属于同一平面。使用这5点的磁场发生器坐标系坐标拟合平面。若计算得到其中任意一点与平面的距离大于特定阈值,则丢弃该帧图片数据;Step (4.3), based on the coplanarity of 5 points, filter out outliers. The five feature points in the above calibration pictures should belong to the same plane. Fit the plane using the magnetic field generator coordinate system coordinates of these 5 points. If the calculated distance between any point and the plane is greater than a certain threshold, discard the frame of picture data;
步骤(4.4)、使用迭代最小二乘拟合从图像(image)坐标系到传感器/接收器(receiver) 坐标系的转换矩阵Tri;Step (4.4), use iterative least squares to fit the transformation matrix Tri from the image coordinate system to the sensor/receiver coordinate system;
步骤(4.5)、使用上述第6步求得的标定矩阵Tri,对现有关键点进行坐标变换,重建其仿体坐标系坐标;Step (4.5), use the calibration matrix Tri obtained in the above-mentioned
步骤(4.6)、对于计算得到的仿体坐标系坐标,与真实值相差较大的点,作为离群点筛除;Step (4.6), for the calculated coordinates of the phantom coordinate system, the points that differ greatly from the real values are screened out as outliers;
步骤(4.7)、重复(4.4)~(4.6),直至没有离群点被筛除,得到该横断面或矢状面的标定矩阵Tri。Step (4.7), repeat (4.4) to (4.6) until no outliers are screened out, and obtain the calibration matrix Tri of the transverse or sagittal plane.
进一步地,所述步骤(5)的具体过程为Further, the concrete process of described step (5) is
步骤(5.1)、对于横断面、矢状面,其标定矩阵形式上均为4*4矩阵 其中其物理意义分别是超声探头轴线方向、正上方、正右方在接收器坐标系下的方向向量;Step (5.1), for the transverse and sagittal planes, the calibration matrix is in the form of a 4*4 matrix in Its physical meaning is the direction vector of the ultrasonic probe axis direction, directly above, and just right in the receiver coordinate system;
步骤(5.2)、令构造新的横断面、矢状面标定矩阵 Step (5.2), make Construct new transverse and sagittal calibration matrices
本发明由于采取以上技术方案,其具有以下优点:The present invention has the following advantages due to taking the above technical solutions:
1.本发明中的标定仿体设计标准化,制作成本低,且侧壁倒三角形孔的设计保证了穿插尼龙线坐标的精确性;1. The design of the calibration phantom in the present invention is standardized, the production cost is low, and the design of the inverted triangular hole in the side wall ensures the accuracy of the coordinates of the interspersed nylon wire;
2.本发明中的标定仿体,其N形线分为上下两个区域且互相垂直,适用于双平面标定仿体横断面、矢状面相互垂直的情况。固定好标定仿体后,将超声探头竖直插入成像介质中,可使用标定仿体的上下两个区域的N形线,分别采集两个平面所需的标定图像,超声成像平面与N形线大致垂直,则图像中的特征点更清晰,更易识别;2. In the calibration phantom of the present invention, its N-shaped line is divided into upper and lower regions and perpendicular to each other, which is suitable for the situation where the cross-section and sagittal plane of the biplane calibration phantom are perpendicular to each other. After fixing the calibration phantom, insert the ultrasound probe vertically into the imaging medium. You can use the N-shaped lines in the upper and lower regions of the calibration phantom to collect the calibration images required for the two planes, the ultrasound imaging plane and the N-shaped line. Roughly vertical, the feature points in the image are clearer and easier to identify;
3.本发明提出的标定图像采集流程,系统地规定了图像采集过程中探头的移动方式,分别调整3个平移自由度和3个旋转自由度,从而采集到大量不同位姿下的超声数据,有利于标定矩阵求解的准确性;3. The calibration image acquisition process proposed by the present invention systematically specifies the movement mode of the probe during the image acquisition process, and adjusts 3 translational degrees of freedom and 3 rotational degrees of freedom respectively, so as to collect a large number of ultrasonic data in different poses, It is beneficial to the accuracy of the calibration matrix solution;
4.本发明提出的标定仿体定位方法,通过使用多点坐标分别最小二乘拟合长方形仿体3 个平面的方式,避免了人工定位特定点的操作难度,且提高了仿体位置计算的稳定性;4. The calibration phantom positioning method proposed by the present invention avoids the difficulty of manually locating specific points by using multi-point coordinates to fit the three planes of the rectangular phantom by least squares respectively, and improves the calculation efficiency of the phantom position. stability;
5.本发明规定的标定仿体5组N形线穿线方式,提供了N形线垂直的先验信息,有助于标定图像人工标注时识别关键点;5. The 5 groups of N-shaped line threading methods of the calibration phantom specified in the present invention provide the prior information of the verticality of the N-shaped line, which is helpful for identifying key points when the calibration image is manually annotated;
6.本发明提出的标定图像预处理方式,通过筛除离群点,提高了标定矩阵的计算精度;6. The calibration image preprocessing method proposed by the present invention improves the calculation accuracy of the calibration matrix by screening out outliers;
7.本发明提出的双平面垂直校准后处理,通过引入超声探头双平面垂直的信息,降低了标定矩阵的计算误差。7. The dual-plane vertical calibration post-processing proposed by the present invention reduces the calculation error of the calibration matrix by introducing the information of the dual-plane perpendicularity of the ultrasonic probe.
附图说明Description of drawings
图1为本发明所描述的标定系统所有硬件放置位置示意图;Fig. 1 is the schematic diagram of all hardware placement positions of the calibration system described in the present invention;
图2为使用标定仿体下半部分N形线,采集超声探头横断面标定数据(左图);使用标定仿体桑半部分N形线,采集超声探头矢状面标定数据(右图)Figure 2 shows the use of the N-shaped line in the lower half of the calibration phantom to collect the cross-sectional calibration data of the ultrasound probe (left image); the N-shaped line in the lower half of the calibration phantom is used to collect the sagittal calibration data of the ultrasound probe (right image)
图3为标定过程所涉及的几个坐标系的示意图;3 is a schematic diagram of several coordinate systems involved in the calibration process;
图4为本发明所描述的标定仿体的立体视图,不包括其中穿插的丝线组;Fig. 4 is the three-dimensional view of the calibration dummy described in the present invention, does not include the silk thread group interspersed therein;
图5为本发明所描述的标定仿体主视图;Fig. 5 is the front view of the calibration phantom described in the present invention;
图6为本发明所描述的标定仿体右视图;Fig. 6 is the right side view of the calibration phantom described in the present invention;
图7为仿体中穿插所有丝线组的示意图;Fig. 7 is the schematic diagram of interspersed all silk thread groups in the phantom;
图8为仿体中穿插的一组N形线示意图;8 is a schematic diagram of a group of N-shaped lines interspersed in the phantom;
图9为采集到的单帧矢状面标定图像示例;FIG. 9 is an example of a single-frame sagittal plane calibration image collected;
图10为标定全过程的流程图。Figure 10 is a flow chart of the entire calibration process.
图中:1、正交双平面超声探头,2、磁场发生器,3、磁导航定位接收器,4、超声扫描截面,5、标定仿体,6、容器。In the figure: 1. Orthogonal biplane ultrasonic probe, 2. Magnetic field generator, 3. Magnetic navigation positioning receiver, 4. Ultrasonic scanning section, 5. Calibration phantom, 6. Container.
具体实施方式Detailed ways
以下结合附图来对本发明进行详细的描绘。然而,附图的提供仅为了更好地理解本发明,它们不应被理解成对本发明的限制。The present invention will be described in detail below with reference to the accompanying drawings. However, the accompanying drawings are provided only for a better understanding of the present invention, and they should not be construed as limiting the present invention.
实施例1:参见图1、4、5、6、7,一种双平面超声探头标定系统,包括正交双平面超声探头1,其具有两个超声成像截面4,且两个截面相互正交;磁场发生器2,用于产生用于电磁定位的磁场;磁导航定位接收器3,其刚体固定于双平面超声探头上,在磁场发生器所产生的磁场当中,能够实时地获取自身的空间位置与姿态参数,从而标定后可用于获取两个超声截面的空间位姿参数;磁导航定位探针,在磁场发生器产生的磁场中,可以实时地获取针尖的空间位置参数,用于定位标定仿体;标定仿体5,为一个长方体;容器6及固定装置,用于盛放超声成像介质。Embodiment 1: Referring to Figures 1, 4, 5, 6, and 7, a biplane ultrasonic probe calibration system includes an orthogonal biplane
所述标定仿体5,使用树脂材质制成,如图4、5、6、7所示,整体为长方体,分为上下两个区域,各有一个方形孔洞,孔洞侧壁设有若干倒三角形通孔,可用于穿插丝线。The
所述标定仿体5,如图7所示,上下两个区域的孔洞,均在侧壁打孔,穿插线,形成5组N形线。且对于仿体的上下两个区域分别由尼龙线穿插而成的各5组N形线其形状、大小相同,相互垂直。The
所述标定仿体5,如图7所示,尼龙线穿插形成5组N形线,其中3组N形线相互平行,即图7中C、D、E 3组N形线;另外2组N形线与前述N形线的斜边方向相反,即图7中A、B 2组N形线。如图7所示,由内向外,共A、B、C、D、E 5组N形线。The
所述标定仿体5,三角形通孔间所穿的线为尼龙材质,且直径与超声探头所采用的超声波长相近。In the
所述容器6及固定装置,容器高度足够盛放标定仿体及固定装置。固定装置可以将标定仿体固定于容器底部。容器可用于盛放人体温温度的热水并浸没标定仿体。容器四壁设有吸波材料,用于减少超声反射。For the
实施例2:参见图2、3、8、9、10,基于上述双平面超声探头标定系统,本发明还提供一种基于双平面超声探头标定系统的标定方法,包括以下步骤:Embodiment 2: Referring to Figures 2, 3, 8, 9, and 10, based on the above-mentioned dual-plane ultrasonic probe calibration system, the present invention also provides a calibration method based on the dual-plane ultrasonic probe calibration system, comprising the following steps:
(1)标定数据采集:使用上述双平面超声探头标定系统,采集标定所需的原始数据,具体如下,(1) Calibration data collection: Use the above-mentioned dual-plane ultrasonic probe calibration system to collect the original data required for calibration, as follows:
(1.1)将标定仿体竖直固定于容器内,令清水浸没仿体。加热水,使之达到人体温37℃;(1.1) Fix the calibration phantom vertically in the container, and immerse the phantom in clean water. Heat the water so that it reaches the human body temperature of 37°C;
(1.2)以磁场发生器为基准,建立磁场发生器坐标系;(1.2) Based on the magnetic field generator, establish the coordinate system of the magnetic field generator;
(1.3)使用针形探头,采集仿体定位数据。即,任意地采集长方体仿体右表面、上表面、正面各30个点的磁场发生器坐标系坐标;(1.3) Use a needle probe to collect phantom positioning data. That is, randomly collect the coordinates of the magnetic field generator coordinate system of 30 points on the right surface, upper surface and front of the cuboid phantom;
(1.4)将磁导航定位接收器固定于超声探头中部;(1.4) Fix the magnetic navigation positioning receiver in the middle of the ultrasonic probe;
(1.5)采集横断面标定数据,如图2(左)所示;(1.5) Collect cross-sectional calibration data, as shown in Figure 2 (left);
(1.5.1)将超声探头竖直插入水中,前半段浸没于水中。调整超声探头位置,从而其横断面视野与仿体下半部分5组N线相交,横断面成像上能够清晰地看到与5组N线对应的共15个亮点;(1.5.1) Insert the ultrasonic probe vertically into the water, and immerse the first half in the water. Adjust the position of the ultrasound probe so that its cross-sectional field of view intersects with the 5 groups of N lines in the lower half of the phantom, and a total of 15 bright spots corresponding to the 5 groups of N lines can be clearly seen on the cross-sectional imaging;
(1.5.2)以0.3s每帧的频率采集共360张图像,同时采集磁导航定位接收器的位姿数据。期间,分别在标定仿体坐标系的x、y、N方向平移超声探头,以超声探头轴线方向为轴旋转超声探头、超声探头成像平面朝向仿体,俯仰超声探头、超声探头成像平面朝向仿体,左右旋转超声探头,并且保证15个亮点清晰可见;(1.5.2) Collect a total of 360 images at a frequency of 0.3s per frame, and collect the pose data of the magnetic navigation positioning receiver at the same time. During this period, translate the ultrasound probe in the x, y, and N directions of the calibration phantom coordinate system, rotate the ultrasound probe with the axis of the ultrasound probe as the axis, and the imaging plane of the ultrasound probe faces the phantom, and tilt the ultrasound probe and the imaging plane of the ultrasound probe face the phantom , rotate the ultrasound probe left and right, and ensure that 15 bright spots are clearly visible;
(1.6)采集矢状面标定数据,如图2(右)所示:(1.6) Collect sagittal plane calibration data, as shown in Figure 2 (right):
(1.6.1)将超声探头竖直插入水中,前半段浸没于水中。调整超声探头位置,从而其矢状面视野与仿体下上半部分5组N线相交,横断面成像上能够清晰地看到与5组N 线对应的共15个亮点;(1.6.1) Insert the ultrasonic probe vertically into the water, and immerse the first half in the water. Adjust the position of the ultrasound probe so that its sagittal field of view intersects with the 5 groups of N lines in the lower and upper half of the phantom, and a total of 15 bright spots corresponding to the 5 groups of N lines can be clearly seen on the cross-sectional imaging;
(1.6.2)以0.3s每帧的频率采集共360张图像,同时采集磁导航定位接收器的位姿数据。期间,分别在标定仿体坐标系的x、y、N方向平移超声探头,以超声探头轴线方向为轴旋转超声探头、超声探头成像平面朝向仿体,俯仰超声探头、超声探头成像平面朝向仿体,左右旋转超声探头,并且保证15个亮点清晰可见;(1.6.2) Collect a total of 360 images at a frequency of 0.3s per frame, and collect the pose data of the magnetic navigation positioning receiver at the same time. During this period, translate the ultrasound probe in the x, y, and N directions of the calibration phantom coordinate system, rotate the ultrasound probe with the axis of the ultrasound probe as the axis, and the imaging plane of the ultrasound probe faces the phantom, and tilt the ultrasound probe and the imaging plane of the ultrasound probe face the phantom , rotate the ultrasound probe left and right, and ensure that 15 bright spots are clearly visible;
(2)标定数据标注:在标定数据采集完成后,需对图像进行人工标注。如图9所示,以横断面超声截面标定图像为例,超声截面与5组N线相交形成A~O共15个亮点,人工标注这15个点在图像坐标系中的像素坐标。进一步的,按照图7规定的5组N线穿插方式,则对于图9所示的矢状面标注数据中的前景点,有点ABC共线,DEF共线、 GHI共线、JKL共线、MNO共线,ADG共线、BEH共线、CFI共线,且有AC∥DF∥GI,以及AG∥BH∥CI。人工标注时,可以排除其他不符合上述规则的噪声点的干扰,按照共线及平行规则,更准确地识别前景点;(2) Labeling of calibration data: After the collection of calibration data is completed, it is necessary to manually label the images. As shown in Figure 9, taking the cross-sectional ultrasound section calibration image as an example, the ultrasound section intersects with 5 sets of N lines to form a total of 15 bright spots from A to O, and the pixel coordinates of these 15 points in the image coordinate system are manually marked. Further, according to the 5 groups of N-line interspersed methods specified in Figure 7, for the foreground points in the sagittal plane annotation data shown in Figure 9, the points ABC are collinear, DEF collinear, GHI collinear, JKL collinear, MNO collinear Collinear, ADG collinear, BEH collinear, CFI collinear, and there are AC∥DF∥GI, and AG∥BH∥CI. When manually labeling, the interference of other noise points that do not meet the above rules can be excluded, and the foreground points can be more accurately identified according to the collinear and parallel rules;
(3)标定数据预处理:对于超声截面与5组N线相交而成的15个点,计算其中与每组N线斜边相交而形成的5个点,在标定仿体坐标系下的坐标。如图6所示,以一组 N线为例,共包括3条边,AC、EG、IK,其中,点A、C、E、G、I、K分别是N线与标定仿体内壁的交点。标定图像采集过程中,超声截面BFJ与这组N线相交于B、F、J三个点。另外的,边AC、EG延长线相交于点D,边EG、IK延长线相交于点H,则有△BDF~△JHF,因此,有在标定仿体形状已知的前提下,容易计算点D,H 坐标。则有 (3) Calibration data preprocessing: For the 15 points formed by the intersection of the ultrasonic section and 5 groups of N lines, calculate the 5 points formed by the intersection with the hypotenuse of each group of N lines, and the coordinates in the calibration phantom coordinate system . As shown in Figure 6, taking a group of N lines as an example, it includes three sides, AC, EG, IK, among which, points A, C, E, G, I, K are the distance between the N line and the inner wall of the calibration phantom, respectively. intersection. During the calibration image acquisition process, the ultrasonic cross-section BFJ intersects this group of N lines at three points B, F, and J. In addition, if the extension lines of sides AC and EG intersect at point D, and the extension lines of sides EG and IK intersect at point H, there are △BDF~△JHF, therefore, there are On the premise that the shape of the calibration phantom is known, it is easy to calculate the coordinates of points D and H. then there are
(4)最小二乘法迭代优化,去除离群点并计算标定矩阵:计算从磁导航接收器坐标系到超声图像坐标系之间的坐标变换矩阵;(4) Iterative optimization of the least squares method, removing outliers and calculating the calibration matrix: calculating the coordinate transformation matrix from the coordinate system of the magnetic navigation receiver to the coordinate system of the ultrasound image;
(4.1)以磁场发射器为基准建立磁场发生器坐标系T(transmitter),以标定仿体为基准建立仿体重建坐标系C(reconstruction)如图3所示,以磁导航定位接收器为基准建立接收器坐标系R(receiver),以横断面、矢状面超声图像为基准建立超声图像坐标系 I(image),则对于任一特征点,有坐标变换:pc=Tct*Ttr*Tri*pi;(4.1) The magnetic field generator coordinate system T (transmitter) is established based on the magnetic field transmitter, and the phantom reconstruction coordinate system C (reconstruction) is established based on the calibration phantom, as shown in Figure 3, and the magnetic navigation positioning receiver is used as the benchmark. The receiver coordinate system R(receiver) is established, and the ultrasound image coordinate system I(image) is established based on the transverse and sagittal ultrasound images, then for any feature point, there is a coordinate transformation: p c =T ct *T tr *T ri * pi ;
(4.2)已知标定仿体的参数信息,使用已经采集到的长方体仿体的右表面、上表面、正面各30个点的磁场发生器坐标系坐标,计算发射器(transmitter)坐标系到仿体重建坐标系(reconstruction)的转换矩阵Tct;(4.2) Knowing the parameter information of the calibration phantom, use the coordinates of the magnetic field generator coordinate system of 30 points on the right surface, upper surface and front of the cuboid phantom that have been collected to calculate the transmitter coordinate system to the simulacrum. the transformation matrix T ct of the volume reconstruction coordinate system (reconstruction);
(4.2.1)分别对于仿体右表面、上表面、正面的各30个点,最小二乘法拟合平面方程A*x+B*y+C*N-1=0,对于3个平面分别计算出3组平面参数A1、B1、C1、 A2、B2、C2、A3、B3、C3;(4.2.1) For 30 points on the right surface, upper surface and front of the phantom, respectively, the least squares method fits the plane equation A*x+B*y+C*N-1=0, for the three planes respectively Calculate 3 sets of plane parameters A1, B1, C1, A2, B2, C2, A3, B3, C3;
(4.2.2)使用3组平面参数,联例计算长方体标定仿体正面右上角点的磁场发生器坐标系坐标;(4.2.2) Using 3 sets of plane parameters, jointly calculate the coordinates of the magnetic field generator coordinate system of the upper right corner of the front of the cuboid calibration phantom;
(4.2.3)使用3组平面参数,分别计算长方体标定仿体其x、y、z轴正方向的磁场发生器坐标系坐标;(4.2.3) Using 3 sets of plane parameters, calculate the coordinates of the magnetic field generator coordinate system in the positive directions of the x, y, and z axes of the cuboid calibration phantom;
(4.2.4)使用2.2、2.3所示的1个点坐标和3个方向向量,共4个齐次坐标,最小二乘法拟合,计算磁场发生器T坐标系到仿体重建坐标系C的转换矩阵Tct;(4.2.4) Using 1 point coordinate and 3 direction vectors shown in 2.2 and 2.3, a total of 4 homogeneous coordinates, the least squares method is used to calculate the coordinate system of the magnetic field generator T to the phantom reconstruction coordinate system C transformation matrix Tct;
(4.3)以5点共面为依据,筛除离群点。对于上述每张图片当中的5个点,应属于同一平面。使用5点坐标拟合平面:(4.3) Screen out outliers based on the coplanarity of 5 points. For the 5 points in each of the above pictures, they should belong to the same plane. Fit a plane using 5-point coordinates:
(4.3.1)对于每张标定图像计算出的5个N线斜边交点的磁场发生器坐标系坐标,拟合平面;(4.3.1) For each calibration image, the coordinates of the magnetic field generator coordinate system of the intersections of the five N-line hypotenuses calculated, and fit the plane;
(4.3.2)分别计算5个点与平面的距离;(4.3.2) Calculate the distance between 5 points and the plane respectively;
(4.3.3)如果任意一点与平面的距离大于特定阈值,则抛弃该帧标定图像的所有数据,不再参与计算;(4.3.3) If the distance between any point and the plane is greater than a certain threshold, discard all the data of the frame calibration image and no longer participate in the calculation;
(4.4)使用迭代最小二乘拟合从图像(image)坐标系到传感器/接收器(receiver)坐标系的转换矩阵Tri:(4.4) Fit the transformation matrix Tri from the image coordinate system to the sensor/receiver coordinate system using iterative least squares:
(4.4.1)对于标定数据预处理步骤当中,标注出的所有特征点,由其仿体重建坐标系坐标计算其磁场发生器坐标系坐标pt=inverse(Tct)*pc;(4.4.1) For all the marked feature points in the calibration data preprocessing step, the coordinates of the magnetic field generator coordinate system pt =inverse(T ct )*pc are calculated from the coordinates of the phantom reconstruction coordinate system;
(4.4.2)对于上述步骤中的各磁场发生器坐标系坐标,计算其接收器坐标系坐标pr=inverse(Ttr)*pt,其中,Ttr为磁导航定位接收器到发射器之间的转换矩阵,由磁导航定位设备获取;(4.4.2) For each magnetic field generator coordinate system coordinate in the above steps, calculate its receiver coordinate system coordinate pr =inverse(T tr ) * pt , where T tr is the magnetic navigation positioning receiver to the transmitter The transformation matrix between them is obtained by the magnetic navigation and positioning device;
(4.4.3)任意选择一组6个参数构造初始的刚体变换矩阵,包括沿x轴旋转γ角度、沿y轴旋转β角度、沿N轴旋转α角度、平移(x,y,z);(4.4.3) Arbitrarily select a set of 6 parameters to construct the initial rigid body transformation matrix, including rotation along the x axis by γ angle, along the y axis by β angle, along the N axis by α angle, and translation (x, y, z);
(4.4.4)、修改矩阵变换参数α、β、γ、x、y、N,重新构造变换矩阵;(4.4.4), modify the matrix transformation parameters α, β, γ, x, y, N, and reconstruct the transformation matrix;
(4.4.5)、计算 (4.4.5), calculation
(4.4.6)、计算差值 (4.4.6), calculate the difference
(4.4.7)、如果差值更小则保留该步骤的迭代修改;(4.4.7), if the difference is smaller, keep the iterative modification of this step;
(4.4.8)、重复步骤(4.4.4)~(4.4.7),直至误差收敛。(4.4.8), repeat steps (4.4.4) to (4.4.7) until the error converges.
(4.5)使用上述第6步求得的标定矩阵Tri,对现有关键点进行坐标变换,重建其仿体坐标系坐标;(4.5) Using the calibration matrix Tri obtained in the above-mentioned 6th step, coordinate transformation is carried out on the existing key points, and the coordinates of the imitation body coordinate system are reconstructed;
(4.6)对于计算得到的仿体重建坐标系坐标,与真实值相差较大的点,作为离群点筛除;(4.6) For the coordinates of the reconstructed coordinate system of the phantom obtained by calculation, the points with a large difference from the real values are screened out as outliers;
(4.7)重复(4.4)~(4.6),直至没有离群点被筛除,得到该横断面或矢状面的标定矩阵Tri;(4.7) Repeat (4.4) to (4.6) until no outliers are screened out, and obtain the calibration matrix Tri of the transverse or sagittal plane;
(5)、双平面标定矩阵求平均:根据超声探头两个成像平面相互正交的先验信息,对两个探头分别求得的标定矩阵求平均;(5) Average dual-plane calibration matrix: According to the prior information that the two imaging planes of the ultrasonic probe are mutually orthogonal, the calibration matrix obtained by the two probes is averaged;
(5.1)、对于横断面、矢状面,其标定矩阵形式上均为4*4矩阵 其中其物理意义分别是超声探头轴线方向、正上方、正右方在接收器坐标系下的方向向量;(5.1) For transverse and sagittal planes, the calibration matrix is in the form of a 4*4 matrix in Its physical meaning is the direction vector of the ultrasonic probe axis direction, directly above, and just right in the receiver coordinate system;
(5.2)、令构造新的横断面、矢状面标定矩阵 (5.2), order Construct new transverse and sagittal calibration matrices
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and can also be made within the scope of knowledge possessed by those of ordinary skill in the art without departing from the purpose of the present invention. Various changes.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210075799.5A CN114699168B (en) | 2022-01-23 | 2022-01-23 | A calibration system and calibration method for a dual-plane ultrasonic probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210075799.5A CN114699168B (en) | 2022-01-23 | 2022-01-23 | A calibration system and calibration method for a dual-plane ultrasonic probe |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114699168A true CN114699168A (en) | 2022-07-05 |
CN114699168B CN114699168B (en) | 2025-04-18 |
Family
ID=82167359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210075799.5A Active CN114699168B (en) | 2022-01-23 | 2022-01-23 | A calibration system and calibration method for a dual-plane ultrasonic probe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114699168B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117224208A (en) * | 2023-09-11 | 2023-12-15 | 北京索诺普科技有限公司 | Interventional magnetic navigation system and navigation method under ultrasonic guidance |
CN117281551A (en) * | 2023-10-19 | 2023-12-26 | 苏州大学附属第二医院 | Improved reproduction ultrasonic detection system and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104207801A (en) * | 2013-06-05 | 2014-12-17 | 上海工程技术大学 | Ultrasonic detection image three-dimensional calibration method |
CN105193445A (en) * | 2015-09-01 | 2015-12-30 | 中国科学院深圳先进技术研究院 | Ultrasonic probe calibration phantom and system as well as ultrasonic probe calibration method |
CN106725595A (en) * | 2016-12-05 | 2017-05-31 | 华南理工大学 | A kind of electromagnetic location and B ultrasonic integrated probe caliberating device and its scaling method |
CN107928705A (en) * | 2017-12-14 | 2018-04-20 | 暨南大学 | A kind of ultrasonic probe scaling method and caliberating device based on magnetic tracking |
-
2022
- 2022-01-23 CN CN202210075799.5A patent/CN114699168B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104207801A (en) * | 2013-06-05 | 2014-12-17 | 上海工程技术大学 | Ultrasonic detection image three-dimensional calibration method |
CN105193445A (en) * | 2015-09-01 | 2015-12-30 | 中国科学院深圳先进技术研究院 | Ultrasonic probe calibration phantom and system as well as ultrasonic probe calibration method |
CN106725595A (en) * | 2016-12-05 | 2017-05-31 | 华南理工大学 | A kind of electromagnetic location and B ultrasonic integrated probe caliberating device and its scaling method |
CN107928705A (en) * | 2017-12-14 | 2018-04-20 | 暨南大学 | A kind of ultrasonic probe scaling method and caliberating device based on magnetic tracking |
Non-Patent Citations (3)
Title |
---|
朱立人;李文骏;丁辉;王广志;: "一种提高N线模型探头标定精度的解算方法", 中国生物医学工程学报, no. 03, 20 June 2012 (2012-06-20) * |
毕卉;杨冠羽;唐慧;舒华忠;: "基于改进主动形状模型的前列腺超声图像分割算法", 东南大学学报(自然科学版), no. 05, 20 September 2017 (2017-09-20) * |
王秀芝;李凌;郭建: "基于光学定位系统的超声探头标定方法", 中国医疗器械杂志, vol. 40, no. 002, 31 December 2016 (2016-12-31) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117224208A (en) * | 2023-09-11 | 2023-12-15 | 北京索诺普科技有限公司 | Interventional magnetic navigation system and navigation method under ultrasonic guidance |
CN117224208B (en) * | 2023-09-11 | 2024-03-12 | 北京索诺普科技有限公司 | Interventional magnetic navigation system and navigation method under ultrasonic guidance |
CN117281551A (en) * | 2023-10-19 | 2023-12-26 | 苏州大学附属第二医院 | Improved reproduction ultrasonic detection system and method |
Also Published As
Publication number | Publication date |
---|---|
CN114699168B (en) | 2025-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017036044A1 (en) | Ultrasound probe calibration phantom, ultrasound probe calibration system and calibration method thereof | |
CN103325143B (en) | Labelling point automatic registration method based on Model Matching | |
CN103230283B (en) | Method for optimizing ultrasonic probe imaging plane space position calibration | |
CN114699168A (en) | Calibration system and calibration method of biplane ultrasonic probe | |
Hsu et al. | Freehand 3D ultrasound calibration: a review | |
CN102497821B (en) | Three-dimensional (3D) ultrasound imaging system for assessing scoliosis | |
CN101320473B (en) | Free multi-vision angle, real-time three-dimensional reconstruction system and method | |
CN107928705A (en) | A kind of ultrasonic probe scaling method and caliberating device based on magnetic tracking | |
KR20220159359A (en) | Alignment of medical images in augmented reality displays | |
RU2253952C1 (en) | Device and method for stereoscopic radiography with multiple observation angles | |
CN115429326A (en) | A kind of ultrasonic imaging method and ultrasonic imaging equipment | |
CN101499177A (en) | 3D model building method and system | |
WO2008100623A2 (en) | Robust and accurate freehand 3d ultrasound | |
CN102592283A (en) | Method for processing scalp positioning images of brain tumors | |
CN104771189B (en) | Three-dimensional head image aligns method and device | |
CN106646304A (en) | Body model for testing magnetic resonance function imaging geometry distortion and method thereof | |
CN106725595B (en) | Electromagnetic positioning and B-ultrasonic integrated probe calibration device and calibration method thereof | |
AU2018301580B2 (en) | Three-dimensional ultrasound image display method | |
CN102499701A (en) | Geometrical calibrating method for X-ray and fluorescent double-mode living body imaging system | |
CN208447639U (en) | A kind of ultrasonic probe caliberating device based on magnetic tracking | |
WO2012149055A1 (en) | Systems, methods, and computer-readable media for three-dimensional fluid scanning | |
CN115005864B (en) | Ultrasonic probe calibration method based on electromagnetic positioning | |
Seifert et al. | Stitching of 3D ultrasound datasets for the determination of large thyroid volumes–phantom study part II: mechanically-swept probes | |
CN119074045A (en) | Spatial calibration method and system for free-arm ultrasound probe with collinear constraint | |
CN111671519A (en) | Ultrasonic image calibration system and calibration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |