CN114695833B - A lithium dendrite suppression device, system and method for lithium metal battery negative electrode material - Google Patents
A lithium dendrite suppression device, system and method for lithium metal battery negative electrode material Download PDFInfo
- Publication number
- CN114695833B CN114695833B CN202210195443.5A CN202210195443A CN114695833B CN 114695833 B CN114695833 B CN 114695833B CN 202210195443 A CN202210195443 A CN 202210195443A CN 114695833 B CN114695833 B CN 114695833B
- Authority
- CN
- China
- Prior art keywords
- lithium
- negative electrode
- lithium metal
- metal battery
- energy medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 167
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 210000001787 dendrite Anatomy 0.000 title claims abstract description 57
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 39
- 230000001629 suppression Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 42
- 238000009792 diffusion process Methods 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims description 62
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 37
- 239000004744 fabric Substances 0.000 claims description 37
- 239000002994 raw material Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 230000032258 transport Effects 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 17
- 239000010410 layer Substances 0.000 abstract description 16
- 230000004888 barrier function Effects 0.000 abstract description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 239000011229 interlayer Substances 0.000 abstract description 7
- 230000006911 nucleation Effects 0.000 abstract description 5
- 238000010899 nucleation Methods 0.000 abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 3
- 208000020960 lithium transport Diseases 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 8
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 150000001721 carbon Chemical group 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002641 lithium Chemical class 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供一种锂金属电池负极材料的锂枝晶抑制装置、系统及方法,依据增加材料的亲锂性可以降低金属锂的成核与扩散势垒,扩大的层间距可提供锂在材料内部扩散通道,从而加快锂输运动力学抑制负极锂枝晶生长的理论基础,采用高能介质使碳原子层活化膨胀,增大的层间距可提供碳原子层内空间作为锂的体相扩散通道,可以加速电极界面的电化学动力学。高能介质处理后的锂金属电池负极材料表面与内部均具有稳定分散金属锂、调节锂扩散的功能,可以抑制锂枝晶的产生,提高锂金属电池负极的循环稳定性。
The present invention provides a lithium dendrite suppression device, system and method for negative electrode materials of lithium metal batteries, based on the theoretical basis that increasing the lithium affinity of the material can reduce the nucleation and diffusion barriers of metal lithium, and the enlarged interlayer spacing can provide a diffusion channel for lithium inside the material, thereby accelerating the lithium transport kinetics to suppress the growth of negative electrode lithium dendrites, and using high-energy media to activate and expand the carbon atom layer, the enlarged interlayer spacing can provide the space inside the carbon atom layer as a bulk diffusion channel for lithium, and can accelerate the electrochemical kinetics of the electrode interface. The surface and interior of the negative electrode material of the lithium metal battery treated with high-energy media have the functions of stably dispersing metal lithium and regulating lithium diffusion, which can suppress the generation of lithium dendrites and improve the cycle stability of the negative electrode of the lithium metal battery.
Description
技术领域Technical Field
本发明涉及新能源电池材料设计领域,更具体的,涉及一种锂金属电池负极材料的锂枝晶抑制装置、系统及方法。The present invention relates to the field of new energy battery material design, and more specifically, to a lithium dendrite suppression device, system and method for a lithium metal battery negative electrode material.
背景技术Background technique
使用锂金属作为负极的储能系统被认为是商用锂离子电池的替代品,由于锂金属的高比容量(3860mA h g-1),低氧化还原电位(-3.040V vs.标准氢电极)的特点,锂金属二次电池体系的能量密度最为可观,成为下一代高能量密度电池的有效解决方案。尽管锂金属电池有着极好的应用前景,但是金属锂在阳极的沉积不均匀,导致其在充电过程中形成不规整的锂枝晶而刺穿固体电解质界面(SEI)膜造成电池短路,引发一系列安全问题。此外,锂枝晶的生长使得金属锂比表面积不断增加,增加了和电解液发生副反应的选择性,从而不可逆地消耗电解液并形成无电子活性的死锂影响正常的电化学行为,使得电池的容量在日常使用过程中持续下降。这些缺点会降低锂金属二次电池的稳定性、循环寿命和安全性。因此,目前急需解决金属锂的界面稳定性的问题。Energy storage systems using lithium metal as negative electrodes are considered to be alternatives to commercial lithium-ion batteries. Due to the high specific capacity (3860mA h g-1) and low redox potential (-3.040V vs. standard hydrogen electrode) of lithium metal, the energy density of lithium metal secondary battery systems is the most impressive, becoming an effective solution for the next generation of high energy density batteries. Although lithium metal batteries have excellent application prospects, the uneven deposition of metal lithium at the anode leads to the formation of irregular lithium dendrites during charging, which pierce the solid electrolyte interface (SEI) membrane and cause battery short circuits, causing a series of safety issues. In addition, the growth of lithium dendrites causes the specific surface area of metal lithium to increase continuously, increasing the selectivity of side reactions with the electrolyte, thereby irreversibly consuming the electrolyte and forming dead lithium with no electronic activity, affecting normal electrochemical behavior, and causing the capacity of the battery to continue to decline during daily use. These shortcomings will reduce the stability, cycle life and safety of lithium metal secondary batteries. Therefore, it is urgent to solve the problem of interface stability of metal lithium.
由于锂在负极中的表面扩散比体扩散快得多,调谐锂在负极表面的扩散/沉积被认为是促使锂均匀沉积的主流方法。常用的方法是在电解液中加入添加剂,或者是在负极表面进行修饰。Qiang Zhang团队(Adv.Funct.Mater.2017,27,1605989)在碳酸酯类电解液中加入氟代乙烯碳酸脂诱导形成致密稳定的SEI层,有利于获得均匀的Li沉积形态。Yi Cui团队(Nano Lett.2015,15,5,2910–2916)将三维(3D)氧化聚丙烯腈纳米纤维网络放置在集流体的顶部,含有极性表面官能团的聚合物纤维可以引导锂金属在表面均匀的沉积。专利CN202011629545.0在负极进行多级功能修饰,使用亲锂金属层以及制备人工锂离子扩散层来抑制锂枝晶的产生。这些结果表明对负极表面或者电解液进行修饰可以改善其性能,可是这些方法往往具有工艺复杂、修饰层厚度不均匀、难以利用材料体相扩散途径以及循环过程中形成的SEI不够稳定等问题。Since the surface diffusion of lithium in the negative electrode is much faster than the bulk diffusion, tuning the diffusion/deposition of lithium on the negative electrode surface is considered to be the mainstream method to promote uniform lithium deposition. The commonly used method is to add additives to the electrolyte or to modify the surface of the negative electrode. Qiang Zhang's team (Adv. Funct. Mater. 2017, 27, 1605989) added fluoroethylene carbonate to the carbonate electrolyte to induce the formation of a dense and stable SEI layer, which is conducive to obtaining a uniform Li deposition morphology. Yi Cui's team (Nano Lett. 2015, 15, 5, 2910–2916) placed a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fibers containing polar surface functional groups can guide the uniform deposition of lithium metal on the surface. Patent CN202011629545.0 performs multi-level functional modification on the negative electrode, using a lithium-philic metal layer and preparing an artificial lithium ion diffusion layer to inhibit the generation of lithium dendrites. These results indicate that modifying the negative electrode surface or electrolyte can improve its performance, but these methods often have problems such as complex processes, uneven thickness of the modified layer, difficulty in utilizing the bulk diffusion pathway of the material, and insufficient stability of the SEI formed during the cycle.
发明内容Summary of the invention
本发明的目的在于提供一种锂金属电池负极材料的锂枝晶抑制装置、系统及方法,对锂金属电池负极材料(碳布)进行等离子体处理,可以在负极材料表面以及内部进行元素掺杂与结构缺陷化,改善碳布与锂之间的亲和性。The purpose of the present invention is to provide a lithium dendrite suppression device, system and method for lithium metal battery negative electrode materials. The negative electrode material (carbon cloth) of the lithium metal battery is subjected to plasma treatment, and element doping and structural defects can be performed on the surface and inside of the negative electrode material to improve the affinity between the carbon cloth and lithium.
为了解决上述问题中的至少一个,本发明第一方面提供一种锂金属电池负极材料的锂枝晶抑制装置,包括:In order to solve at least one of the above problems, the first aspect of the present invention provides a lithium dendrite suppression device for a negative electrode material of a lithium metal battery, comprising:
壳体,所述壳体内可置入锂金属电池负极元件;以及A housing in which a negative electrode element of a lithium metal battery can be placed; and
高能介质形成组件,可在所述壳体内形成高能介质,使所述锂金属电池负极元件的负极材料原子处于活化膨胀状态,进而形成锂金属的体相扩散通道,以抑制所述锂枝晶。The high-energy medium forming component can form a high-energy medium in the shell, so that the negative electrode material atoms of the negative electrode element of the lithium metal battery are in an activated and expanded state, thereby forming a bulk diffusion channel of lithium metal to inhibit the lithium dendrites.
进一步地,所述高能介质形成组件包括:气体管路、高频交流电源以及加热冷却板;Further, the high-energy medium forming assembly includes: a gas pipeline, a high-frequency AC power supply, and a heating and cooling plate;
所述气体管路包括一个气体入口以及两个出口,其中一个出口连接一真空泵,另一个出口连接一排气阀,所述气体入口连接一气瓶;The gas pipeline comprises a gas inlet and two outlets, one of which is connected to a vacuum pump, the other is connected to an exhaust valve, and the gas inlet is connected to a gas cylinder;
所述高频交流电源与所述气体管路气体入口端以及所述高能介质形成组件内壁耦接,其中所述高能介质形成组件内壁耦接一接地导线;The high-frequency AC power source is coupled to the gas inlet end of the gas pipeline and the inner wall of the high-energy medium forming component, wherein the inner wall of the high-energy medium forming component is coupled to a grounding wire;
所述等离子体组件的两端分别设有一加热冷却板,所述加热冷却板耦接一温控系统。Two ends of the plasma assembly are respectively provided with a heating and cooling plate, and the heating and cooling plate is coupled to a temperature control system.
进一步地,所述锂枝晶抑制装置还包括:Furthermore, the lithium dendrite suppression device further comprises:
支撑组件,所述支撑组件以及所述高能介质形成组件以所述气体管路为轴同轴设置,其中所述锂金属电池负极元件可置于所述支撑组件上。A support assembly, wherein the support assembly and the high-energy medium forming assembly are coaxially arranged with the gas pipeline as the axis, wherein the lithium metal battery negative electrode element can be placed on the support assembly.
进一步地,所述气体管路位于所述等离子体组件内部的部分管路上设有多个通孔。Furthermore, a portion of the gas pipeline located inside the plasma component is provided with a plurality of through holes.
进一步地,所述气体管路入口处设有流量控制器。Furthermore, a flow controller is provided at the inlet of the gas pipeline.
进一步地,所述支撑组件上下表面设有一压力传感器。Furthermore, a pressure sensor is provided on the upper and lower surfaces of the support assembly.
进一步地,所述高能介质可以是氮气、氧气、氨气中的一种。Furthermore, the high-energy medium may be one of nitrogen, oxygen and ammonia.
第二方面,本发明提供一种锂金属电池负极材料的锂枝晶抑制系统,包括:锂金属电池负极材料的锂枝晶抑制装置、原料柱以及产品柱;In a second aspect, the present invention provides a lithium dendrite suppression system for a lithium metal battery negative electrode material, comprising: a lithium dendrite suppression device for a lithium metal battery negative electrode material, a raw material column, and a product column;
所述原料柱将锂金属电池负极元件传送至所述锂枝晶抑制装置,以使所述锂金属电池负极元件的负极材料原子处于活化膨胀状态,进而形成锂金属的体相扩散通道,以抑制所述锂枝晶;The raw material column transports the negative electrode element of the lithium metal battery to the lithium dendrite suppression device, so that the negative electrode material atoms of the negative electrode element of the lithium metal battery are in an activated and expanded state, thereby forming a bulk diffusion channel of lithium metal to suppress the lithium dendrite;
所述支撑组件将膨胀后的所述锂金属电池负极元件传送至所述产品柱。The support assembly transfers the expanded negative electrode element of the lithium metal battery to the product column.
第三方面,本发明提供一种锂金属电池负极材料的锂枝晶抑制方法,包括:In a third aspect, the present invention provides a method for inhibiting lithium dendrites of a negative electrode material of a lithium metal battery, comprising:
将锂金属电池负极元件通过原料柱入一壳体内;Inserting the negative electrode element of the lithium metal battery into a shell through the raw material column;
在所述壳体内形成高能介质,使所述锂金属电池负极元件的负极材料原子处于活化膨胀状态,进而形成锂金属的体相扩散通道,以抑制所述锂枝晶。A high-energy medium is formed in the shell, so that the negative electrode material atoms of the negative electrode element of the lithium metal battery are in an activated and expanded state, thereby forming a bulk diffusion channel of lithium metal to inhibit the lithium dendrites.
进一步地,所述锂枝晶抑制方法还包括:Furthermore, the lithium dendrite suppression method further comprises:
在所述锂金属电池负极元件的负极材料原子之间的空隙掺杂改性介质,以提高所述锂金属电池负极元件与锂的亲和度。The gaps between the negative electrode material atoms of the negative electrode element of the lithium metal battery are doped with a modified medium to improve the affinity between the negative electrode element of the lithium metal battery and lithium.
本发明的有益效果Beneficial Effects of the Invention
本发明提供一种锂金属电池负极材料的锂枝晶抑制装置、系统及方法,依据增加材料的亲锂性可以降低金属锂的成核与扩散势垒,扩大的层间距可提供锂在材料内部扩散通道,从而加快锂输运动力学抑制负极锂枝晶生长的理论基础,采用高能介质使碳原子层活化膨胀,增大的层间距可提供碳原子层内空间作为锂的体相扩散通道,可以加速电极界面的电化学动力学。高能介质处理后的锂金属电池负极材料表面与内部均具有稳定分散金属锂、调节锂扩散的功能,可以抑制锂枝晶的产生,提高锂金属电池负极的循环稳定性。The present invention provides a lithium dendrite suppression device, system and method for negative electrode materials of lithium metal batteries, based on the theoretical basis that increasing the lithium affinity of the material can reduce the nucleation and diffusion barriers of metal lithium, and the enlarged interlayer spacing can provide a diffusion channel for lithium inside the material, thereby accelerating the lithium transport kinetics to suppress the growth of negative electrode lithium dendrites, and using high-energy media to activate and expand the carbon atom layer, the enlarged interlayer spacing can provide the space inside the carbon atom layer as a bulk diffusion channel for lithium, and can accelerate the electrochemical kinetics of the electrode interface. The surface and interior of the negative electrode material of the lithium metal battery treated with high-energy media have the functions of stably dispersing metal lithium and regulating lithium diffusion, which can suppress the generation of lithium dendrites and improve the cycle stability of the negative electrode of the lithium metal battery.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施方式中锂金属电池负极材料的锂枝晶抑制装置整体结构示意图;FIG1 is a schematic diagram of the overall structure of a lithium dendrite suppression device for a negative electrode material of a lithium metal battery according to an embodiment of the present invention;
图2为本发明实施方式中锂金属电池负极材料的锂枝晶抑制系统结构示意图。FIG. 2 is a schematic diagram of the structure of a lithium dendrite suppression system for a negative electrode material of a lithium metal battery in an embodiment of the present invention.
附图说明:1、壳体;2、高能介质形成组件;21、加热冷却板;3、支撑组件、4原料柱;5、产品柱;6高频交流电源;7、光学传感器;8、气瓶;9、流量控制器;10、真空泵;11排气阀;12、驱动电机。Description of the drawings: 1. Shell; 2. High-energy medium forming assembly; 21. Heating and cooling plate; 3. Support assembly, 4. Raw material column; 5. Product column; 6. High-frequency AC power supply; 7. Optical sensor; 8. Gas cylinder; 9. Flow controller; 10. Vacuum pump; 11. Exhaust valve; 12. Drive motor.
具体实施方式Detailed ways
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
为便于描述,在本发明中涉及“第一”、“第二”等的描述仅设置为描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。For the convenience of description, the descriptions of "first", "second", etc. in the present invention are only set for descriptive purposes and cannot be understood as indicating or suggesting their relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include at least one of the features. In addition, the technical solutions between the various implementation methods can be combined with each other, but they must be based on the ability of ordinary technicians in the field to implement them. When the combination of technical solutions is contradictory or cannot be implemented, it should be deemed that such a combination of technical solutions does not exist and is not within the scope of protection required by the present invention.
为了解决现有锂金属电池中抑制锂枝晶方法或工艺的诸多不足,且易于生产放大的装置还未出现。In order to solve the many shortcomings of the existing methods or processes for inhibiting lithium dendrites in lithium metal batteries, a device that is easy to produce and scale up has not yet appeared.
基于此,本发明提供一种锂金属电池负极材料的锂枝晶抑制装置,如图1所示,包括:Based on this, the present invention provides a lithium dendrite suppression device for a negative electrode material of a lithium metal battery, as shown in FIG1 , comprising:
壳体,所述壳体内可置入锂金属电池负极元件;以及A housing in which a negative electrode element of a lithium metal battery can be placed; and
高能介质形成组件,可在所述可体内形成高能介质,使所述锂金属电池负极元件的负极材料原子处于膨胀化状态,进而形成锂金属的体相扩散通道,以抑制所述锂枝晶。The high-energy medium forming component can form a high-energy medium in the body, so that the negative electrode material atoms of the negative electrode element of the lithium metal battery are in an expanded state, thereby forming a bulk diffusion channel of lithium metal to inhibit the lithium dendrites.
可以理解的是,锂金属电池负极元件为碳布,高能介质形成组件2优选等离子体反应器,将碳布置于锂枝晶抑制装置内,开启等离子体反应器,生成等离子体,等离子体不断从内外冲击碳布,对碳布材料表面与内部进行元素掺杂与缺陷化,打开锂金属的体相扩散通道。作为优选地,壳体、高能介质形成组件2器壁材质为陶瓷或者聚甲基丙烯酸甲酯等绝缘材料以耐等离子体侵蚀,也可以选择内表面经过阳极氧化处理的铝材。It is understandable that the negative electrode element of the lithium metal battery is carbon cloth, and the high-energy medium forming component 2 is preferably a plasma reactor. Carbon is arranged in the lithium dendrite suppression device, and the plasma reactor is turned on to generate plasma. The plasma continuously impacts the carbon cloth from the inside and outside, and the surface and the inside of the carbon cloth material are doped and defected, and the bulk diffusion channel of lithium metal is opened. Preferably, the shell and the wall of the high-energy medium forming component 2 are made of ceramic or insulating materials such as polymethyl methacrylate to resist plasma erosion, and aluminum with an anodized inner surface can also be selected.
在一些具体实施方式中,如图1所示,所述高能介质形成组件包括:气体管路、高频交流电源以及加热冷却板;In some specific embodiments, as shown in FIG1 , the high energy medium forming assembly includes: a gas pipeline, a high frequency AC power source, and a heating and cooling plate;
所述气体管路包括一个气体入口以及两个出口,其中一个出口连接一真空泵,另一个出口连接一排气阀,所述气体入口连接一气瓶;The gas pipeline comprises a gas inlet and two outlets, one of which is connected to a vacuum pump, the other is connected to an exhaust valve, and the gas inlet is connected to a gas cylinder;
所述高频交流电源与所述气体管路气体入口端以及所述高能介质形成组件内壁耦接,其中所述高能介质形成组件内壁耦接一接地导线;The high-frequency AC power source is coupled to the gas inlet end of the gas pipeline and the inner wall of the high-energy medium forming component, wherein the inner wall of the high-energy medium forming component is coupled to a grounding wire;
所述等离子体组件的两端分别设有一加热冷却板,所述加热冷却板耦接一温控系统。Two ends of the plasma assembly are respectively provided with a heating and cooling plate, and the heating and cooling plate is coupled to a temperature control system.
可以理解的是,高能介质形成组件2以气体管路为轴,并且其内壁器壁耦接一接地设置的导线,气体管路下方开设两个排气孔,其一连接真空泵10,另一个连接排气阀11,气体管路气体入口连接一气瓶8;高频交流电源6耦接气体管路的气体入口空心圆管以及高能介质形成组件2内壁,用于对所述及高能介质形成组件2内部施加高频交流电场,形成高能介质,高频交流电源6需支持无线电频率,一般交流电频率需要满足无线电频率范围,较为优选的是10-1000kHz;而高频交流电源功率通常在50W-50kW之间,依据装置大小以及处理需求而变。高能介质形成组件2的温度控制功能通过两块热耦合在高能介质形成组件上下盖板上的加热冷却板21实现,用于对高能介质形成组件2腔体控温,并且由一个控制系统控制。高能介质形成组件2优选等离子体反应器,加热冷却板21通常为多个物理层组合构成,即热垫圈、加热器块、热隔断和冷却块的夹层结构,提供对反应器腔室的加热冷却操作,与腔室内置的热传感器组合成温度控制系统。通常等离子体反应器腔室温度控制为20-200℃,更高的温度需要保证材料在等离子体氛围中的稳定性,此处不做限制。It can be understood that the high-energy medium forming component 2 is axially connected to the gas pipeline, and its inner wall is coupled to a grounded wire. Two exhaust holes are opened below the gas pipeline, one of which is connected to the vacuum pump 10, and the other is connected to the exhaust valve 11. The gas inlet of the gas pipeline is connected to a gas cylinder 8; the high-frequency AC power supply 6 is coupled to the gas inlet hollow tube of the gas pipeline and the inner wall of the high-energy medium forming component 2, and is used to apply a high-frequency AC electric field to the high-energy medium forming component 2 to form a high-energy medium. The high-frequency AC power supply 6 needs to support radio frequency. Generally, the AC frequency needs to meet the radio frequency range, and 10-1000kHz is more preferred; and the power of the high-frequency AC power supply is usually between 50W-50kW, depending on the size of the device and the processing requirements. The temperature control function of the high-energy medium forming component 2 is realized by two heating and cooling plates 21 thermally coupled to the upper and lower cover plates of the high-energy medium forming component, which are used to control the temperature of the cavity of the high-energy medium forming component 2 and are controlled by a control system. The high energy medium forming assembly 2 is preferably a plasma reactor, and the heating and cooling plate 21 is usually composed of a plurality of physical layers, i.e., a sandwich structure of a thermal gasket, a heater block, a thermal barrier and a cooling block, which provides heating and cooling operations for the reactor chamber, and is combined with a thermal sensor built into the chamber to form a temperature control system. The temperature of the plasma reactor chamber is usually controlled at 20-200°C, and a higher temperature is required to ensure the stability of the material in the plasma atmosphere, which is not limited here.
在一些具体实施方式中,如图1所示,所述锂枝晶抑制装置还包括:In some specific embodiments, as shown in FIG1 , the lithium dendrite suppression device further comprises:
支撑组件,所述支撑组件以及所述高能介质形成组件以所述气体管路为轴同轴设置,其中所述锂金属电池负极元件可置于所述支撑组件上。A support assembly, wherein the support assembly and the high-energy medium forming assembly are coaxially arranged with the gas pipeline as the axis, wherein the lithium metal battery negative electrode element can be placed on the support assembly.
可以理解的是,支撑组件3内置于高能介质形成组件2,可以是与高能介质形成组件同轴设置的加工转筒,采用柱状支撑,用以传送加工的锂金属电池负极元件(碳布),作为优选的,高能介质形成组件2内支撑组件3材质为刚玉或聚四氟乙烯。支撑组件3的所有支撑柱改为多孔的圆筒支撑壁面,材质优选为聚四氟乙烯。It can be understood that the support assembly 3 is built into the high-energy medium forming assembly 2, and can be a processing drum coaxially arranged with the high-energy medium forming assembly, using a columnar support to convey the processed lithium metal battery negative electrode element (carbon cloth). Preferably, the material of the support assembly 3 in the high-energy medium forming assembly 2 is corundum or polytetrafluoroethylene. All support columns of the support assembly 3 are changed to porous cylindrical support walls, and the material is preferably polytetrafluoroethylene.
在一些其它实施方式中,如图1所示,所述气体管路位于所述等离子体组件内部的部分管路上设有多个通孔。In some other embodiments, as shown in FIG. 1 , a portion of the gas pipeline located inside the plasma assembly is provided with a plurality of through holes.
可以理解的是,在高能介质形成组件2与其气体管路之间的高频交流电场的作用下,可以电离气体,进而电离形成的等离子体可以进行材料改性,在一些优选的实施例中,高能介质形成组件2内气体管路选用铝材质,表面阳极氧化处理气体入口空心圆管选用铝材质,表面阳极氧化处理,为了使电离更加充分,改性效果更好,气体管路置于高能介质形成组件2内的位置区间具有均匀分布的多个通孔用于使气体均匀输入高能介质形成组件2内。在具体的实施方式中,气体管路入口处设有流量控制器9,通过流量控制器9与真空泵10调控输送到高能介质形成组件2内的气体流量以及气压。高能介质所用气体可以是较为纯净的单种气体,如氮气、氧气、氨气等,也可以是由稀有气体稀释的相应气体,本发明不做限制。It can be understood that under the action of the high-frequency AC electric field between the high-energy medium forming component 2 and its gas pipeline, the gas can be ionized, and the plasma formed by the ionization can be used for material modification. In some preferred embodiments, the gas pipeline in the high-energy medium forming component 2 is made of aluminum material, and the surface is anodized. The hollow round tube of the gas inlet is made of aluminum material, and the surface is anodized. In order to make the ionization more sufficient and the modification effect better, the gas pipeline is placed in the position interval of the high-energy medium forming component 2 with a plurality of evenly distributed through holes for evenly inputting the gas into the high-energy medium forming component 2. In a specific embodiment, a flow controller 9 is provided at the inlet of the gas pipeline, and the flow controller 9 and the vacuum pump 10 are used to regulate the gas flow and pressure delivered to the high-energy medium forming component 2. The gas used for the high-energy medium can be a relatively pure single gas, such as nitrogen, oxygen, ammonia, etc., or a corresponding gas diluted by a rare gas, which is not limited by the present invention.
在一些其它实施方式中,所述支撑组件上下表面设有一压力传感器。In some other embodiments, a pressure sensor is disposed on the upper and lower surfaces of the support assembly.
可以理解的是,支撑组件3的上下盖与气体管路之间安装弹性装置,便于碳布的初始缠绕,以及控制碳布由于多个柱体转动输送过程中的受力情况,防止碳布受力过大而破损,压力传感器安装在上述弹性装置处;压力传感器耦接一控制器,根据压力传感器输出弹性装置的受力值来调控驱动电机以及高频交流电源6的开启或关闭。It can be understood that an elastic device is installed between the upper and lower covers of the support assembly 3 and the gas pipeline to facilitate the initial winding of the carbon cloth and control the force applied to the carbon cloth during the rotation and transportation of multiple cylinders to prevent the carbon cloth from being damaged due to excessive force. A pressure sensor is installed at the above-mentioned elastic device; the pressure sensor is coupled to a controller to regulate the opening or closing of the drive motor and the high-frequency AC power supply 6 according to the force value of the elastic device output by the pressure sensor.
在一些具体的实施方式中,锂枝晶抑制装置壳体1上设有电机传动密封口,可以分隔内部等离子体环境与外部环境,壳体1上表面设置可开关的密封性良好的壳盖,用于加入原材料、取出产品、加工开始前的碳布缠绕以及定期检查维护等等。In some specific embodiments, a motor transmission sealing port is provided on the shell 1 of the lithium dendrite suppression device, which can separate the internal plasma environment from the external environment. A switchable shell cover with good sealing performance is provided on the upper surface of the shell 1, which is used for adding raw materials, taking out products, carbon cloth winding before processing, regular inspection and maintenance, etc.
在优选的实施例中,在气体输入高能介质形成组件2前,对高能介质形成组件2抽真空20分钟以上,以确保没有其它气体残留;高能介质形成组件2通入气体后,高能介质形成组件2内的压强控制为1-30Pa。In a preferred embodiment, before the gas is input into the high-energy medium forming component 2, the high-energy medium forming component 2 is evacuated for more than 20 minutes to ensure that no other gas remains; after the gas is introduced into the high-energy medium forming component 2, the pressure inside the high-energy medium forming component 2 is controlled to be 1-30Pa.
本发明还提供一种锂金属电池负极材料的锂枝晶抑制系统,如图2所示,包括:锂金属电池负极材料的锂枝晶抑制装置、原料柱以及产品柱;The present invention also provides a lithium dendrite suppression system for a lithium metal battery negative electrode material, as shown in FIG2 , comprising: a lithium dendrite suppression device for a lithium metal battery negative electrode material, a raw material column, and a product column;
所述原料柱将锂金属电池负极元件传送至所述锂枝晶抑制装置,以使所述锂金属电池负极元件的负极材料原子处于活化膨胀状态,进而形成锂金属的体相扩散通道,以抑制所述锂枝晶;The raw material column transports the negative electrode element of the lithium metal battery to the lithium dendrite suppression device, so that the negative electrode material atoms of the negative electrode element of the lithium metal battery are in an activated and expanded state, thereby forming a bulk diffusion channel of lithium metal to suppress the lithium dendrite;
所述锂金属电池负极元件将膨胀后的所述锂金属电池负极元件传送至所述产品柱。The lithium metal battery negative electrode component transfers the expanded lithium metal battery negative electrode component to the product column.
可以理解的是,原料柱4与产品柱5分别位于高能介质形成组件2右后方与右前方,并且均与变频电机耦接传动;锂枝晶抑制系统内靠近原料柱4和产品柱5位置安装光学传感器7,用于识别原料柱上的碳布临界余量,以切换原料柱4和产品柱5驱动电机12并反转传送碳布,反复进行等离子体加工;高能介质处理时间通过产品柱5的驱动电机12控制,通常产品柱5转过一周所需的时间控制在0.1-10分钟,而在一些优选的实施例中,高能介质处理时间为1-100分钟。It can be understood that the raw material column 4 and the product column 5 are respectively located at the right rear and right front of the high-energy medium forming component 2, and are both coupled to the variable frequency motor for transmission; an optical sensor 7 is installed near the raw material column 4 and the product column 5 in the lithium dendrite suppression system to identify the critical margin of carbon cloth on the raw material column, so as to switch the driving motors 12 of the raw material column 4 and the product column 5 and reverse the transmission of the carbon cloth to repeatedly perform plasma processing; the high-energy medium processing time is controlled by the driving motor 12 of the product column 5, and usually the time required for the product column 5 to rotate one circle is controlled to be 0.1-10 minutes, and in some preferred embodiments, the high-energy medium processing time is 1-100 minutes.
在一些具体的实施方式中,生产锂金属电池负极材料通过将商用碳布从原料柱4到支撑组件3再到产品柱5的卷对卷传送,在高能介质形成组件2内由高频交流电源6耦接的高能介质形成组件壳体2与中心的气体管路形成沿径向的高频交流电场,电离从多孔的气体管路输入的气体形成等离子体,反复交变的电场会相应地诱导等离子体的运动方向,不断从内外冲击支撑组件3上的碳布,进行改性;通过高能介质形成组件上下盖板热耦合的加热冷却板21对体系进行温度控制;通过流量控制器9与真空泵10调控输送到高能介质形成组件2内的气体流量以及气压;驱动电机12用以调节产品柱5的转速,控制碳布在高能介质形成组件2内的停留时间;光学传感器7用于检测原料柱4的碳布余量,当检测到剩余量不足的位置时会自动关闭产品柱5驱动电机12或者切换到原料柱4驱动电机12,将其打开,反向输送碳布进行反复处理改性。In some specific embodiments, the production of negative electrode materials for lithium metal batteries is carried out by rolling commercial carbon cloth from the raw material column 4 to the support assembly 3 and then to the product column 5. The high-energy medium forming assembly shell 2 coupled by the high-frequency AC power supply 6 and the central gas pipeline in the high-energy medium forming assembly 2 form a high-frequency AC electric field in the radial direction, ionizes the gas input from the porous gas pipeline to form plasma, and the repeatedly alternating electric field will induce the movement direction of the plasma accordingly, continuously impacting the carbon cloth on the support assembly 3 from the inside and outside to modify it; the system is temperature controlled by the heating and cooling plates 21 thermally coupled to the upper and lower cover plates of the high-energy medium forming assembly; the gas flow and air pressure delivered to the high-energy medium forming assembly 2 are regulated by the flow controller 9 and the vacuum pump 10; the drive motor 12 is used to adjust the rotation speed of the product column 5 and control the residence time of the carbon cloth in the high-energy medium forming assembly 2; the optical sensor 7 is used to detect the carbon cloth residue of the raw material column 4, and when the position of insufficient residue is detected, it will automatically turn off the product column 5 drive motor 12 or switch to the raw material column 4 drive motor 12, turn it on, and reversely transport the carbon cloth for repeated processing and modification.
本发明的实施例中,整个系统操作的具体流程如下:首先放入原料柱4,经过高能介质形成组件2内支撑组件3以及产品柱5缠绕碳布,关闭壳体1上表面壳盖密封。系统中的控制器根据压力传感器反馈的受力数据,确定出高能介质形成组件2内支撑组件3上是否已经缠绕碳布,然后生成控制指令,如果确定已有碳布缠绕,则控制打开真空泵10对高能介质形成组件2抽真空20分钟以上,同时打开温度控制系统进行预热,随后按照提示设定气体流量,待反应体系压强稳定在1-30Pa区间后,设置转速以及循环圈数(即光学传感器7识别到原料柱剩余碳布小于临界值后切换驱动电机12,以产品柱5为原料柱4,反转传输碳布进行加工的循环次数)开启原料柱4驱动电机,同步开启高频交流电源6,开始等离子体改性。如果确定无碳布缠绕,则发出蜂鸣警告声,提示确认碳布的装载。在处理完成后,控制器自动关闭驱动电机12、高频交流电源6以及控温系统并发出蜂鸣提示音,操作人员关闭气瓶8流量与真空泵10,打开排气阀使反应器内部压强与外界一致后方可取出产品柱5。In the embodiment of the present invention, the specific process of the whole system operation is as follows: firstly, the raw material column 4 is put in, and the carbon cloth is wound through the support component 3 in the high-energy medium forming component 2 and the product column 5, and the upper surface shell cover of the shell 1 is closed and sealed. The controller in the system determines whether the carbon cloth has been wound on the support component 3 in the high-energy medium forming component 2 according to the force data fed back by the pressure sensor, and then generates a control instruction. If it is determined that the carbon cloth has been wound, the vacuum pump 10 is controlled to vacuum the high-energy medium forming component 2 for more than 20 minutes, and the temperature control system is turned on for preheating, and then the gas flow rate is set according to the prompt. After the pressure of the reaction system is stabilized in the range of 1-30Pa, the speed and the number of cycles (that is, the optical sensor 7 switches the drive motor 12 after recognizing that the remaining carbon cloth in the raw material column is less than the critical value, and the product column 5 is used as the raw material column 4, and the number of cycles for reverse transmission of carbon cloth for processing) is turned on the raw material column 4 drive motor, and the high-frequency AC power supply 6 is turned on synchronously to start plasma modification. If it is determined that there is no carbon cloth wound, a buzzer warning sound is issued to prompt confirmation of the loading of the carbon cloth. After the processing is completed, the controller automatically turns off the drive motor 12, the high-frequency AC power supply 6 and the temperature control system and emits a buzzer prompt sound. The operator turns off the flow of the gas cylinder 8 and the vacuum pump 10, opens the exhaust valve to make the internal pressure of the reactor consistent with the external pressure before taking out the product column 5.
本发明还提供一种锂金属电池负极材料的锂枝晶抑制方法,包括:The present invention also provides a method for inhibiting lithium dendrites of a negative electrode material of a lithium metal battery, comprising:
将锂金属电池负极元件置入一壳体内;Placing a negative electrode component of a lithium metal battery into a casing;
在所述壳体内形成高能介质,使所述锂金属电池负极元件的负极材料原子处于活化膨胀状态,进而形成锂金属的体相扩散通道,以抑制所述锂枝晶。A high-energy medium is formed in the shell, so that the negative electrode material atoms of the negative electrode element of the lithium metal battery are in an activated and expanded state, thereby forming a bulk diffusion channel of lithium metal to inhibit the lithium dendrites.
可以理解的是,锂金属电池负极元件为碳布,高能介质形成组件优选等离子体反应器,将碳布置于等离子体反应器内,开启等离子体反应器,生成等离子体,等离子体不断从内外冲击碳布,对碳布材料表面与内部进行元素掺杂与缺陷化,打开锂金属的体相扩散通道,进而形成锂金属的体相扩散通道,以抑制锂枝晶。It can be understood that the negative electrode element of the lithium metal battery is carbon cloth, and the high-energy medium forming component is preferably a plasma reactor. The carbon is arranged in the plasma reactor, and the plasma reactor is turned on to generate plasma. The plasma continuously impacts the carbon cloth from the inside and outside, and elements are doped and defected on the surface and inside of the carbon cloth material, opening the bulk diffusion channel of lithium metal, and then forming the bulk diffusion channel of lithium metal to inhibit lithium dendrites.
在一些具体实施方式中,所述锂枝晶抑制方法还包括:In some specific embodiments, the lithium dendrite inhibition method further comprises:
在所述锂金属电池负极元件的负极材料原子之间的空隙掺杂改性介质,以提高所述锂金属电池负极元件与锂的亲和度。The gaps between the negative electrode material atoms of the negative electrode element of the lithium metal battery are doped with a modified medium to improve the affinity between the negative electrode element of the lithium metal battery and lithium.
可以理解的是,利用高频交流电池电离气体产生的等离子体氛围对碳布进行改性,在碳布的表面以及内部均可以引入元素掺杂与原子级缺陷位点,从而大大增强碳原子层与锂之间的亲和性,可以降低锂的成核与扩散能垒;此外,等离子体改性的碳布内部原子层由于高能离子的引入会出现结构层膨胀,层间距扩大的情况,这也为锂在碳布材料体相输运提供了可能,降低了层内的迁移能垒。It can be understood that by modifying the carbon cloth using the plasma atmosphere generated by the ionized gas of a high-frequency AC battery, element doping and atomic-level defect sites can be introduced on the surface and inside of the carbon cloth, thereby greatly enhancing the affinity between the carbon atomic layer and lithium, and reducing the nucleation and diffusion energy barriers of lithium; in addition, the internal atomic layer of the plasma-modified carbon cloth will expand the structural layer and the interlayer spacing due to the introduction of high-energy ions, which also provides the possibility for lithium transport in the bulk of the carbon cloth material and reduces the migration energy barrier within the layer.
本发明提供一种锂金属电池负极材料的锂枝晶抑制装置、系统及方法,通过设置高能介质形成组件,支撑组件,原料柱,产品柱,结合负极集流体亲锂改性抑制锂枝晶的理论基础,利用高频交流电池电离气体产生的等离子体氛围对碳布进行改性,在碳布的表面以及内部均可以引入元素掺杂与原子级缺陷位点,从而大大增强碳原子层与锂之间的亲和性,可以降低锂的成核与扩散能垒;此外,等离子体改性的碳布内部原子层由于高能离子的引入会出现结构层膨胀,层间距扩大的情况,这也为锂在碳布材料体相输运提供了可能,降低了层内的迁移能垒。总的来说,等离子体改性的碳布可以通过提供亲锂性位点降低锂的成核与扩散能垒,并且具备大的碳原子层间距,可以降低锂在体相的迁移能垒。等离子体处理不会引入化学处理带来的杂质污染物,并且所述加工转筒的转动提供了更加均匀可控的处理效果,在适当工艺条件下对电极本身的结构强度以及导电性等的影响可以忽略不计。The present invention provides a lithium dendrite suppression device, system and method for negative electrode materials of lithium metal batteries. By setting a high-energy medium forming component, a supporting component, a raw material column and a product column, combined with the theoretical basis of lithium-philic modification of negative electrode current collector to suppress lithium dendrites, the plasma atmosphere generated by the ionized gas of a high-frequency alternating current battery is used to modify the carbon cloth, and element doping and atomic-level defect sites can be introduced on the surface and inside of the carbon cloth, thereby greatly enhancing the affinity between the carbon atom layer and lithium, and reducing the nucleation and diffusion energy barriers of lithium; in addition, the internal atomic layer of the plasma-modified carbon cloth will expand due to the introduction of high-energy ions, and the interlayer spacing will expand, which also provides the possibility for lithium to be transported in the bulk phase of the carbon cloth material, and reduces the migration energy barrier in the layer. In general, the plasma-modified carbon cloth can reduce the nucleation and diffusion energy barriers of lithium by providing lithium-philic sites, and has a large interlayer spacing of carbon atoms, which can reduce the migration energy barrier of lithium in the bulk phase. Plasma treatment will not introduce impurities and pollutants brought by chemical treatment, and the rotation of the processing drum provides a more uniform and controllable treatment effect, and the influence on the structural strength and conductivity of the electrode itself under appropriate process conditions can be ignored.
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施方式或示例描述的具体特征、结构、材料或者特点包含于本说明书实施方式的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施方式或示例。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" means that the specific features, structures, materials, or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the embodiment of this specification. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施方式或示例以及不同实施方式或示例的特征进行结合和组合。以上所述仅为本说明书实施方式的实施方式而已,并不用于限制本说明书实施方式。对于本领域技术人员来说,本说明书实施方式可以有各种更改和变化。凡在本说明书实施方式的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书实施方式的权利要求范围之内。In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction. The above description is only an embodiment of the embodiment of this specification and is not intended to limit the embodiment of this specification. For those skilled in the art, the embodiment of this specification may have various changes and variations. Any modification, equivalent substitution, improvement, etc. made within the spirit and principle of the embodiment of this specification shall be included in the scope of the claims of the embodiment of this specification.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210195443.5A CN114695833B (en) | 2022-03-01 | 2022-03-01 | A lithium dendrite suppression device, system and method for lithium metal battery negative electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210195443.5A CN114695833B (en) | 2022-03-01 | 2022-03-01 | A lithium dendrite suppression device, system and method for lithium metal battery negative electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114695833A CN114695833A (en) | 2022-07-01 |
CN114695833B true CN114695833B (en) | 2024-04-26 |
Family
ID=82137228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210195443.5A Active CN114695833B (en) | 2022-03-01 | 2022-03-01 | A lithium dendrite suppression device, system and method for lithium metal battery negative electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114695833B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118315682B (en) * | 2024-04-26 | 2024-11-19 | 咸宁市红阳科技有限公司 | Third electrode and cleaning method for removing battery dendrites |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102610804A (en) * | 2012-03-31 | 2012-07-25 | 苏州大学 | Preparing method of negative electrode material for lithium ion battery, negative electrode of lithium ion battery, and lithium ion battery |
CN105428655A (en) * | 2015-12-29 | 2016-03-23 | 湖州创亚动力电池材料有限公司 | Method for improving utilization rate of carbon negative electrode active substance |
CN108232117A (en) * | 2018-01-27 | 2018-06-29 | 浙江大学 | A kind of lithium metal battery negative material and its preparation method and application |
CN108365229A (en) * | 2018-02-08 | 2018-08-03 | 成都理工大学 | A kind of bigger serface N doping carbon cloth electrode and preparation method thereof, application |
CN110416554A (en) * | 2018-04-26 | 2019-11-05 | 大连融科储能装备有限公司 | A kind of method of modifying of vanadium redox flow battery electrode carbon felt |
CN112421048A (en) * | 2020-11-30 | 2021-02-26 | 成都新柯力化工科技有限公司 | Method for preparing graphite-coated nano-silicon lithium battery negative electrode material at low cost |
CN112467147A (en) * | 2021-02-01 | 2021-03-09 | 南京航空航天大学 | Lithium metal battery negative electrode current collector for inhibiting dendritic crystal growth and modification method thereof |
CN112750982A (en) * | 2020-12-30 | 2021-05-04 | 复旦大学 | Laminated lithium metal battery negative electrode material, preparation method thereof and lithium metal secondary battery |
CN113571687A (en) * | 2021-07-23 | 2021-10-29 | 江南大学 | Preparation and application of zinc ion battery negative electrode material |
-
2022
- 2022-03-01 CN CN202210195443.5A patent/CN114695833B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102610804A (en) * | 2012-03-31 | 2012-07-25 | 苏州大学 | Preparing method of negative electrode material for lithium ion battery, negative electrode of lithium ion battery, and lithium ion battery |
CN105428655A (en) * | 2015-12-29 | 2016-03-23 | 湖州创亚动力电池材料有限公司 | Method for improving utilization rate of carbon negative electrode active substance |
CN108232117A (en) * | 2018-01-27 | 2018-06-29 | 浙江大学 | A kind of lithium metal battery negative material and its preparation method and application |
CN108365229A (en) * | 2018-02-08 | 2018-08-03 | 成都理工大学 | A kind of bigger serface N doping carbon cloth electrode and preparation method thereof, application |
CN109244483A (en) * | 2018-02-08 | 2019-01-18 | 成都理工大学 | A kind of bigger serface N doping carbon cloth electrode and preparation method thereof, application |
CN110416554A (en) * | 2018-04-26 | 2019-11-05 | 大连融科储能装备有限公司 | A kind of method of modifying of vanadium redox flow battery electrode carbon felt |
CN112421048A (en) * | 2020-11-30 | 2021-02-26 | 成都新柯力化工科技有限公司 | Method for preparing graphite-coated nano-silicon lithium battery negative electrode material at low cost |
CN112750982A (en) * | 2020-12-30 | 2021-05-04 | 复旦大学 | Laminated lithium metal battery negative electrode material, preparation method thereof and lithium metal secondary battery |
CN112467147A (en) * | 2021-02-01 | 2021-03-09 | 南京航空航天大学 | Lithium metal battery negative electrode current collector for inhibiting dendritic crystal growth and modification method thereof |
CN113571687A (en) * | 2021-07-23 | 2021-10-29 | 江南大学 | Preparation and application of zinc ion battery negative electrode material |
Also Published As
Publication number | Publication date |
---|---|
CN114695833A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Controllable interface engineering for the preparation of high rate silicon anode | |
CN104617281B (en) | Method for preparing sodium-ion battery antimony/nitrogen-doped carbon nanosheet negative electrode composite material | |
CN107732205B (en) | A method for preparing sulfur-nitrogen co-doped carbon-coated nano-flower-like lithium titanate composite anode material | |
CN114695833B (en) | A lithium dendrite suppression device, system and method for lithium metal battery negative electrode material | |
JP2009179867A (en) | Parallel flat plate type magnetron sputtering apparatus, method for producing solid electrolyte thin film, and method for producing thin film solid lithium ion secondary battery | |
JP2011258913A (en) | Device for fabricating electrode by roll to roll process and method for fabricating electrode | |
JP2009158416A (en) | Manufacturing method for solid electrolyte thin film, parallel flat-plate type magnetron sputtering device, and manufacturing method for thin-film solid lithium ion secondary battery | |
CN110010879A (en) | A kind of nickelic positive electrode and preparation method thereof with uniform clad | |
CN109524656A (en) | A kind of preparation method of lithium ion battery titanium oxide/silica negative electrode material | |
CN207596952U (en) | A kind of polynary magnetic control sputtering device and the equipment for preparing electrode | |
WO2022259871A1 (en) | Negative electrode for lithium-ion secondary battery, manufacturing method and manufacturing device therefor, and lithium-ion secondary battery | |
CN112408383A (en) | Plasma stripping graphite material and preparation method thereof | |
CN118888722A (en) | Silicon negative electrode material with double coating layer, preparation method and application thereof | |
CN103825033B (en) | A kind of electrode material processing method for liquid flow battery | |
CN106340626A (en) | High-capacity lithium-stored oxide nano-film composite expanded graphite material and preparation method thereof | |
CN114620778B (en) | A method for rapidly processing lithium-rich manganese-based cathode materials using induced plasma technology | |
CN116314627A (en) | A kind of composite lithium metal negative electrode and its preparation method and application | |
JPH09315808A (en) | Graphite thin film, production of graphite thin film and secondary battery and capacitor using the same | |
CN118579770B (en) | Lithium ion battery negative electrode material and preparation method thereof | |
JP2006273645A (en) | Apparatus and method for continuously firing organic substance, carbon material, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell | |
CN216980618U (en) | Preparation system of graphene coated electrode material | |
CN110112409B (en) | High-specific-capacity aluminum air battery anode and preparation method thereof | |
KR20130013876A (en) | Method of deposition solid electrolyte film and apparatus for the same | |
CN120126992A (en) | Device and method for doping nitrogen atoms in carbon layer on surface of lithium iron manganese phosphate anode material | |
CN116344749A (en) | Plasma in-situ generation of nitride layer complex lithium and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |