CN114693807B - A mapping data reconstruction method and system for transmission line images and point clouds - Google Patents

A mapping data reconstruction method and system for transmission line images and point clouds Download PDF

Info

Publication number
CN114693807B
CN114693807B CN202210405718.3A CN202210405718A CN114693807B CN 114693807 B CN114693807 B CN 114693807B CN 202210405718 A CN202210405718 A CN 202210405718A CN 114693807 B CN114693807 B CN 114693807B
Authority
CN
China
Prior art keywords
image
pixel coordinates
current image
coordinates
mapping data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210405718.3A
Other languages
Chinese (zh)
Other versions
CN114693807A (en
Inventor
毛锋
戴永东
王茂飞
姚建光
高超
吴奇伟
王神玉
仲坚
张泽
鞠玲
翁蓓蓓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Jiangsu Electric Power Co ltd Innovation And Innovation Center
State Grid Jiangsu Electric Power Co Ltd
Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Jiangsu Electric Power Co ltd Innovation And Innovation Center
State Grid Jiangsu Electric Power Co Ltd
Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Jiangsu Electric Power Co ltd Innovation And Innovation Center, State Grid Jiangsu Electric Power Co Ltd, Taizhou Power Supply Co of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Jiangsu Electric Power Co ltd Innovation And Innovation Center
Priority to CN202210405718.3A priority Critical patent/CN114693807B/en
Publication of CN114693807A publication Critical patent/CN114693807A/en
Application granted granted Critical
Publication of CN114693807B publication Critical patent/CN114693807B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Data Mining & Analysis (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种输电线路图像与点云的映射数据的重构方法及系统,包括:通过拍摄装置采集当前图像;获取预先存储的映射数据,所述映射数据包括已建立的参考图像的像素坐标与点云数据的点云空间坐标的映射关系;将所述当前图像与所述参考图像进行比较,判断当前图像是否异常;所述当前图像异常时,对所述拍摄装置进行标定,获得参数信息;根据所述参数信息,对所述映射数据进行重构;该方法能够提升利用当前图像所进行的测距任务的精度,修正测距误差。

The invention discloses a method and system for reconstructing mapping data of transmission line images and point clouds, which include: collecting current images through a shooting device; acquiring pre-stored mapping data, where the mapping data includes pixels of an established reference image The mapping relationship between the coordinates and the point cloud space coordinates of the point cloud data; comparing the current image with the reference image to determine whether the current image is abnormal; when the current image is abnormal, calibrating the shooting device to obtain parameters information; reconstruct the mapping data according to the parameter information; this method can improve the accuracy of the ranging task using the current image and correct the ranging error.

Description

一种输电线路图像与点云的映射数据重构方法及系统A mapping data reconstruction method and system for transmission line images and point clouds

技术领域Technical field

本发明涉及数据处理技术领域,尤其涉及一种输电线路图像与点云的映射数据重构方法及系统。The present invention relates to the field of data processing technology, and in particular to a mapping data reconstruction method and system for transmission line images and point clouds.

背景技术Background technique

激光雷达扫描技术是一种新兴的三维数据获取技术,利用搭载在三脚架、汽车、飞机及卫星等不同平台上的激光雷达扫描仪能够快速获取海量点云数据。点云数据中包含了每个点的经纬度坐标、强度、多次回波及颜色等丰富的信息,在测绘、林业、农业及数字城市等领域均有相关应用。LiDAR scanning technology is an emerging three-dimensional data acquisition technology. LiDAR scanners mounted on different platforms such as tripods, cars, airplanes, and satellites can quickly obtain massive point cloud data. Point cloud data contains rich information such as the longitude and latitude coordinates, intensity, multiple echoes and color of each point, and has relevant applications in fields such as surveying and mapping, forestry, agriculture and digital cities.

无人机采集到的可见光二维图片需要经过重建过程才能还原出三维电力场景,其与实际情况间会存在一定偏差。激光雷达点云测绘的技术优势在于它可以精确还原电力场景的空间信息并进行距离测量,而激光雷达点云测绘的缺点在于它不能还原出电力场景中的颜色信息、可视化效果差,利用激光雷达点云数据很难进行精确的电力物体分类。因此,在实际应用中常常将二维图像中的像素与激光点云数据中的点云空间坐标进行对应,针对同一个输电线路现场的图像与点云数据,图像中目标像素坐标可以与目标点的点云数据(目标点的空间坐标)建立映射关系,基于此映射关系可以进行测距任务,例如可以确定与图像中两个目标像素点对应的目标之间在现实世界中的实际距离。The two-dimensional visible light images collected by drones need to undergo a reconstruction process to restore the three-dimensional power scene, and there will be a certain deviation from the actual situation. The technical advantage of lidar point cloud mapping is that it can accurately restore the spatial information of power scenes and perform distance measurements. However, the disadvantage of lidar point cloud mapping is that it cannot restore the color information in power scenes and has poor visualization effects. Using lidar Point cloud data is difficult to accurately classify electrical objects. Therefore, in practical applications, the pixels in the two-dimensional image are often corresponding to the point cloud spatial coordinates in the laser point cloud data. For the image and point cloud data of the same transmission line site, the target pixel coordinates in the image can be matched with the target point. The point cloud data (spatial coordinates of the target point) establishes a mapping relationship. Based on this mapping relationship, ranging tasks can be performed. For example, the actual distance in the real world between targets corresponding to two target pixels in the image can be determined.

然而,在拍摄装置因老化、位移等原因导致异常后,拍摄装置将输出异常的图像,原先点云数据与图像之间所建立的映射关系将无法适用于此时异常的图像,利用异常的图像进行测距任务,会出现较大测距误差,测距精度无法保障。专利文献CN102982548A提供一种多目立体视频采集系统及其相机参数标定方法:获取系统中各个相机的内外参数;通过各个相机在同一时刻采集普通场景的多视点图像,对多视点图像进行特征点检测和匹配获取各视点图像间的匹配点;利用相机参数重构获取各视点图像间的匹配点的三维空间点云坐标;根据三维空间点云坐标和相机的内外参数利用稀疏捆集调整优化获得重投影误差,并优化重投影误差和相机的内外参数;根据优化后重投影误差判断是否进行二次优化;以及根据二次优化结果判断是否进行参数的重新标定。但是该方法不能够解决拍摄装置因老化、位移等原因导致异常图像对于点云坐标获取不准确而影响测距任务的问题。However, after the shooting device becomes abnormal due to aging, displacement, etc., the shooting device will output abnormal images, and the mapping relationship established between the original point cloud data and the image will not be applicable to the abnormal image at this time. Using the abnormal image When performing ranging tasks, large ranging errors will occur, and ranging accuracy cannot be guaranteed. Patent document CN102982548A provides a multi-view stereo video acquisition system and its camera parameter calibration method: obtain the internal and external parameters of each camera in the system; collect multi-viewpoint images of ordinary scenes through each camera at the same time, and perform feature point detection on the multi-viewpoint images and matching to obtain the matching points between each viewpoint image; use camera parameter reconstruction to obtain the three-dimensional space point cloud coordinates of the matching points between each viewpoint image; use sparse bundle adjustment and optimization to obtain the weight based on the three-dimensional space point cloud coordinates and the internal and external parameters of the camera projection error, and optimize the reprojection error and the internal and external parameters of the camera; determine whether to perform secondary optimization based on the optimized reprojection error; and determine whether to perform parameter recalibration based on the secondary optimization results. However, this method cannot solve the problem of inaccurate acquisition of point cloud coordinates in abnormal images due to aging, displacement and other reasons of the shooting device, which affects the ranging task.

发明内容Contents of the invention

本发明提供了一种输电线路图像与点云的映射数据重构方法及系统,能够针能够对已有的映射数据进行调整,重新建立针对当前图像的映射关系,提升利用当前图像所进行的测距任务的精度,修正测距误差。The present invention provides a mapping data reconstruction method and system for transmission line images and point clouds, which can adjust existing mapping data, re-establish the mapping relationship for the current image, and improve the measurement results using the current image. distance task accuracy, correcting the ranging error.

一种输电线路图像与点云的映射数据的重构方法,包括:A method for reconstructing mapping data of transmission line images and point clouds, including:

通过拍摄装置采集当前图像;Collect the current image through the shooting device;

获取预先存储的映射数据,所述映射数据包括已建立的参考图像的像素坐标与点云数据的点云空间坐标的映射关系;Obtain pre-stored mapping data, which includes the established mapping relationship between the pixel coordinates of the reference image and the point cloud spatial coordinates of the point cloud data;

将所述当前图像与所述参考图像进行比较,判断当前图像是否异常;Compare the current image with the reference image to determine whether the current image is abnormal;

所述当前图像异常时,对所述拍摄装置进行标定,获得参数信息;When the current image is abnormal, calibrate the shooting device to obtain parameter information;

根据所述参数信息,对所述映射数据进行重构。The mapping data is reconstructed according to the parameter information.

进一步地,将所述当前图像与所述参考图像进行比较,判断当前图像是否异常,包括:Further, comparing the current image with the reference image to determine whether the current image is abnormal includes:

选取当前图像中的特征点,将当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标进行比较,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标相等,则当前图像为正常,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标不相等,则确定当前图像为异常图像。Select the feature points in the current image and compare the pixel coordinates of the feature points in the current image with the pixel coordinates of the corresponding feature points in the reference image. If the pixel coordinates of the feature points in the current image are consistent with the pixels of the corresponding feature points in the reference image If the coordinates are equal, the current image is normal. If the pixel coordinates of the feature points in the current image are not equal to the pixel coordinates of the corresponding feature points in the reference image, the current image is determined to be an abnormal image.

进一步地,判断当前图像是否异常,还包括:Further, determining whether the current image is abnormal also includes:

计算当前图像中多个特征点的像素坐标与参考图像中对应的多特征点的像素坐标的多组偏移量,若多组偏移量相等,则确定当前图像发生偏移,若多组偏移量不相等,则确定当前图像发生畸变。Calculate multiple sets of offsets between the pixel coordinates of multiple feature points in the current image and the pixel coordinates of the corresponding multiple feature points in the reference image. If the offsets in the multiple sets are equal, it is determined that the current image is offset. If the offsets in the multiple sets are equal, If the shift amounts are not equal, it is determined that the current image is distorted.

进一步地,所述参数信息包括拍摄装置的内参、外参以及畸变参数。Further, the parameter information includes internal parameters, external parameters and distortion parameters of the shooting device.

进一步地,根据所述参数信息,对所述映射数据进行重构,包括:Further, reconstructing the mapping data according to the parameter information includes:

对发生偏移的当前图像,根据所述外参、内参、当前图像中的多个特征点的像素坐标及其对应的点云数据中点云的空间坐标,重构所述映射数据。For the current image that has been shifted, the mapping data is reconstructed based on the external parameters, internal parameters, pixel coordinates of multiple feature points in the current image and the spatial coordinates of the corresponding point clouds in the point cloud data.

进一步地,根据所述参数信息,对所述映射数据进行重构,包括:Further, reconstructing the mapping data according to the parameter information includes:

对发生畸变的当前图像,根据所述内参、外参以及畸变参数,对所述映射数据进行重构。For the current distorted image, the mapping data is reconstructed according to the internal parameters, external parameters and distortion parameters.

进一步地,根据所述内参、外参以及畸变参数,对所述映射数据进行重构,包括:Further, reconstructing the mapping data according to the internal parameters, external parameters and distortion parameters includes:

根据所述内参和外参,计算点云数据中特征点云的空间坐标对应于正常图像中的正常像素坐标;According to the internal parameters and external parameters, the spatial coordinates of the characteristic point cloud in the calculated point cloud data correspond to the normal pixel coordinates in the normal image;

根据所述畸变参数,计算所述正常像素坐标对应于畸变的当前图像中的目标像素坐标;According to the distortion parameter, calculate the normal pixel coordinates corresponding to the target pixel coordinates in the distorted current image;

根据所述内参、外参、目标像素坐标以及特征点云的空间坐标,重构所述映射数据。The mapping data is reconstructed according to the internal parameters, external parameters, target pixel coordinates and spatial coordinates of the feature point cloud.

进一步地,所述畸变参数包括径向形变系数和切向形变系数,所述目标像素坐标通过以下公式进行计算:Further, the distortion parameters include a radial deformation coefficient and a tangential deformation coefficient, and the target pixel coordinates are calculated by the following formula:

x”=x'×(1+k1×r2+k2×r4)+2×p1×x'×y'+p2×(r2+2×x'2);x”=x'×(1+k 1 ×r 2 +k 2 ×r 4 )+2×p 1 ×x'×y'+p 2 ×(r 2 +2×x '2 );

y”=y'×(1+k1×r2+k2×r4)+2×p2×x'×y'+p1×(r2+2×y'2);y”=y'×(1+k 1 ×r 2 +k 2 ×r 4 )+2×p 2 ×x'×y'+p 1 ×(r 2 +2×y '2 );

其中,r2=x'2+y'2,r表示图像物理坐标的扭曲因子,k1、k2是径向形变系数,p1、p2是切向形变系数,ud、vd为畸变后的当前图像中的像素坐标,u,v为正常图像中的正常像素坐标,x'、y'为相机坐标系到图像坐标系的中间量,x”和y”为畸变位置的坐标,cx,cy为光轴对于投影平面坐标中心的偏移量,fx和fy为拍摄装置的焦距。Among them, r 2 =x '2 + y '2 , r represents the distortion factor of the physical coordinates of the image, k1 and k2 are the radial deformation coefficients, p1 and p2 are the tangential deformation coefficients, u d and v d are the current distortion coefficients The pixel coordinates in the image, u, v are the normal pixel coordinates in the normal image, x', y' are the intermediate quantities from the camera coordinate system to the image coordinate system, x" and y" are the coordinates of the distortion position, c x , c y is the offset of the optical axis from the coordinate center of the projection plane, f x and f y are the focal lengths of the shooting device.

进一步地,计算所述正常像素坐标对应于畸变的当前图像中的目标像素坐标之后,还包括:Further, after calculating that the normal pixel coordinates correspond to the target pixel coordinates in the distorted current image, the method further includes:

对非整数的目标像素坐标取整。Rounds non-integer target pixel coordinates.

一种输电线路图像与点云的映射数据重构系统,包括拍摄装置和服务器,所述服务器包括处理器和存储装置,所述存储装置存储有多条指令,所述处理器用于读取所述多条指令并执行上述的方法。A mapping data reconstruction system for transmission line images and point clouds, including a shooting device and a server. The server includes a processor and a storage device. The storage device stores a plurality of instructions. The processor is used to read the Multiple instructions and execute the above method.

本发明提供的输电线路图像与点云的映射数据重构方法及系统,至少包括如下有益效果:The mapping data reconstruction method and system of transmission line images and point clouds provided by the present invention at least include the following beneficial effects:

对于拍摄装置采集的当前图像能够进行有效的异常识别,从而根据异常的情况(偏移或者畸变),对映射数据进行重构,重新建立拍摄装置备所拍摄的当前图像与点云数据之间的映射关系,提升利用当前图像所进行的测距任务的精度,修正测距误差。Effective abnormality identification can be performed on the current image collected by the shooting device, so that the mapping data can be reconstructed according to the abnormal situation (offset or distortion), and the relationship between the current image captured by the shooting device and the point cloud data can be re-established. Mapping relationship, improves the accuracy of ranging tasks using the current image, and corrects ranging errors.

附图说明Description of drawings

图1为本发明提供的输电线路图像与点云的映射数据的重构方法一种实施例的流程图。Figure 1 is a flow chart of an embodiment of the reconstruction method of mapping data of transmission line images and point clouds provided by the present invention.

图2为本发明提供的输电线路图像与点云的映射数据的重构方法一种应用场景下畸变图像的示意图。Figure 2 is a schematic diagram of a distorted image in an application scenario of the reconstruction method of mapping data of transmission line images and point clouds provided by the present invention.

图3为本发明提供的输电线路图像与点云的映射数据的重构装置一种实施例的结构示意图。Figure 3 is a schematic structural diagram of an embodiment of a reconstruction device for mapping data of transmission line images and point clouds provided by the present invention.

图4为本发明提供的输电线路图像与点云的映射数据的重构系统一种实施例的流程图。Figure 4 is a flow chart of an embodiment of the reconstruction system for mapping data of transmission line images and point clouds provided by the present invention.

具体实施方式Detailed ways

为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案做详细的说明。In order to better understand the above technical solution, the above technical solution will be described in detail below with reference to the accompanying drawings and specific implementation modes.

为了便于对本申请的理解,先对本申请涉及的部分概念进行说明。In order to facilitate the understanding of this application, some concepts involved in this application are first described.

激光雷达(Laser Imaging Detection and Ranging,简称LIDAR):通过发射如900nm左右波长的出射光(如激光束),出射光遇到障碍物后会被障碍物反射,处理单元根据反射光和出射光之间的时间差计算障碍物与激光雷达之间的距离。此外,处理单元还可以根据接收反射光后得到的反射光信号的横截面情况估算目标的反射率。机载激光雷达由于体积小,集成程度高,应用场景越来越多。Lidar (Laser Imaging Detection and Ranging, referred to as LIDAR): By emitting outgoing light (such as a laser beam) with a wavelength of about 900nm, the outgoing light will be reflected by the obstacle when it encounters an obstacle. Calculate the distance between the obstacle and the lidar using the time difference between them. In addition, the processing unit can also estimate the reflectivity of the target based on the cross-sectional condition of the reflected light signal obtained after receiving the reflected light. Due to its small size and high degree of integration, airborne lidar has more and more application scenarios.

点云数据(point cloud data)是指在一个三维坐标系统中的一组向量的集合。扫描资料以点的形式记录,每一个点包含有三维坐标,有些可能含有颜色信息(如红绿蓝)或反射强度信息(Intensity)。Point cloud data refers to a set of vectors in a three-dimensional coordinate system. Scanning data is recorded in the form of points. Each point contains three-dimensional coordinates, and some may contain color information (such as red, green, and blue) or reflection intensity information (Intensity).

相关技术中可以采用机载激光雷达等方式进行地图测绘,地图中有多个对象的位置信息。然而,点云数据没有图像数据的直观性好,如果可以直接采用图像数据对目标对象进行测距,则可以有效提升输电线路检测的便捷度。In related technologies, airborne lidar and other methods can be used for map surveying, and the map contains location information of multiple objects. However, point cloud data is not as intuitive as image data. If image data can be directly used to measure target objects, it can effectively improve the convenience of transmission line detection.

为了实现直接使用输电线路图像进行精准测量,需要使得图像中的每一个像素都具有空间坐标信息。将针对同一目标对象的两类数据(图像数据和点云数据)进行融合,使得可以利用经融合后的输电线路图像用于测量输电线路的净空距离等,精度达到亚米级。In order to directly use transmission line images for accurate measurement, each pixel in the image needs to have spatial coordinate information. By fusing two types of data (image data and point cloud data) for the same target object, the fused transmission line image can be used to measure the clearance distance of the transmission line, etc., with an accuracy reaching sub-meter level.

参考图1,在一些实施例中,提供一种输电线路图像与点云的映射数据的重构方法,包括:Referring to Figure 1, in some embodiments, a method for reconstructing mapping data of transmission line images and point clouds is provided, including:

S1、通过拍摄装置采集当前图像;S1. Collect the current image through the shooting device;

S2、获取预先存储的映射数据,所述映射数据包括已建立的参考图像的像素坐标与点云数据的点云空间坐标的映射关系;S2. Obtain pre-stored mapping data, which includes the established mapping relationship between the pixel coordinates of the reference image and the point cloud spatial coordinates of the point cloud data;

S3、将所述当前图像与所述参考图像进行比较,判断当前图像是否异常;S3. Compare the current image with the reference image to determine whether the current image is abnormal;

S4、所述当前图像异常时,对所述拍摄装置进行标定,获得参数信息;S4. When the current image is abnormal, calibrate the shooting device to obtain parameter information;

S5、根据所述参数信息,对所述映射数据进行重构。S5. Reconstruct the mapping data according to the parameter information.

具体地,步骤S1中,拍摄装置可以安装在输电线路上的电塔上,可以拍摄对应输电线路的图像。Specifically, in step S1, the photographing device can be installed on a power tower on the transmission line, and can capture images corresponding to the transmission line.

进一步地,步骤S2中,拍摄装置在正常的状态下拍摄图像,用于建立与点云数据的映射关系,该图像为参考图像,通过激光雷达获取点云数据,建立参考图像的像素坐标与点云数据的点云空间坐标的映射关系并形成映射数据进行存储。Further, in step S2, the shooting device captures an image in a normal state to establish a mapping relationship with the point cloud data. The image is a reference image. The point cloud data is obtained through lidar and the pixel coordinates and points of the reference image are established. The mapping relationship of the point cloud spatial coordinates of the cloud data is formed into mapping data for storage.

在该步骤中,参考图像与点云数据之间的映射关系,包括参考图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。其中,目标点可以是输电线路现场上的设备(例如横担、绝缘子等)的特征点(例如角点、端点、顶点、中心点等)。举例来说,映射数据可以包括:参考图像中绝缘子的中心点的像素坐标与点云数据中该绝缘子的中心点的空间坐标(如世界坐标,包括经度、纬度和高度)之间的映射关系,例如,绝缘子的中心点在参考图像中的像素坐标(u1,v1)对应绝缘子的中心点在点云数据中的空间坐标(X1,Y1,Z1)。映射关系可以是一种函数关系,在获得参考图像中目标像素坐标后,根据映射关系可以对应获得点云数据中目标点的空间坐标。在获得点云数据中目标点的空间坐标后,根据映射关系也可以对应获得参考图像中目标像素坐标。In this step, the mapping relationship between the reference image and the point cloud data includes the mapping relationship between the target pixel coordinates in the reference image and the spatial coordinates of the target point in the point cloud data. The target points may be characteristic points (such as corner points, end points, vertices, center points, etc.) of equipment (such as cross arms, insulators, etc.) on the transmission line site. For example, the mapping data may include: a mapping relationship between the pixel coordinates of the center point of the insulator in the reference image and the spatial coordinates of the center point of the insulator in the point cloud data (such as world coordinates, including longitude, latitude and altitude), For example, the pixel coordinates (u 1 , v 1 ) of the center point of the insulator in the reference image correspond to the spatial coordinates (X 1 , Y 1 , Z 1 ) of the center point of the insulator in the point cloud data. The mapping relationship can be a functional relationship. After obtaining the target pixel coordinates in the reference image, the spatial coordinates of the target point in the point cloud data can be obtained correspondingly according to the mapping relationship. After obtaining the spatial coordinates of the target point in the point cloud data, the target pixel coordinates in the reference image can also be obtained correspondingly according to the mapping relationship.

可以理解,得到了映射数据后,可以获知参考图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。也就是说,在参考图像中选择一个目标像素点,利用映射数据可以获知与该目标像素点对应的空间坐标,进而可以确定参考图像中两个目标像素点之间在现实世界中的实际距离。这样,根据参考图像可以进行测距任务,可以适用于对输电线路现场的监控。当拍摄装置作为安装在输电线路现场上的监控摄像头时,在拍摄装置没有因老化、位移等原因导致异常的情况下,拍摄装置所拍摄的图像是相对稳定不变的。也就是说,在拍摄装置没有因老化、位移等原因导致异常的情况下,拍摄装置所拍摄的当前图像等同于参考图像。因此,可以根据已建立的拍摄装置所拍摄的参考图像与点云数据之间的映射关系,利用拍摄装置所拍摄的当前图像来进行测距任务。然而,在拍摄装置因老化、位移等原因导致异常后,拍摄装置所拍摄的当前图像将是异常的,拍摄装置所拍摄的当前图像不等同于参考图像,若利用异常的当前图像来进行测距任务,会出现较大测距误差,测距精度无法保障。It can be understood that after obtaining the mapping data, the mapping relationship between the target pixel coordinates in the reference image and the spatial coordinates of the target point in the point cloud data can be learned. That is to say, select a target pixel point in the reference image, and use the mapping data to obtain the spatial coordinates corresponding to the target pixel point, and then determine the actual distance in the real world between the two target pixel points in the reference image. In this way, ranging tasks can be performed based on the reference image, which can be applied to on-site monitoring of transmission lines. When the photographing device is used as a surveillance camera installed on a power transmission line site, the images captured by the photographing device are relatively stable unless there is any abnormality in the photographing device due to aging, displacement, or other reasons. That is to say, when there is no abnormality in the photographing device due to aging, displacement, etc., the current image captured by the photographing device is equivalent to the reference image. Therefore, according to the established mapping relationship between the reference image captured by the capturing device and the point cloud data, the current image captured by the capturing device can be used to perform the ranging task. However, after the shooting device becomes abnormal due to aging, displacement, etc., the current image captured by the shooting device will be abnormal. The current image captured by the shooting device is not equal to the reference image. If the abnormal current image is used for ranging Tasks, large ranging errors will occur, and ranging accuracy cannot be guaranteed.

因此,需要通过对拍摄装置采集的当前图像判断拍摄装置是否发生了异常。Therefore, it is necessary to determine whether an abnormality has occurred in the photographing device based on the current image collected by the photographing device.

进一步地,步骤S3中,将所述当前图像与所述参考图像进行比较,判断当前图像是否异常,包括:Further, in step S3, the current image is compared with the reference image to determine whether the current image is abnormal, including:

选取当前图像中的特征点,将当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标进行比较,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标相等,则当前图像为正常,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标不相等,则确定当前图像为异常图像。Select the feature points in the current image and compare the pixel coordinates of the feature points in the current image with the pixel coordinates of the corresponding feature points in the reference image. If the pixel coordinates of the feature points in the current image are consistent with the pixels of the corresponding feature points in the reference image If the coordinates are equal, the current image is normal. If the pixel coordinates of the feature points in the current image are not equal to the pixel coordinates of the corresponding feature points in the reference image, the current image is determined to be an abnormal image.

进一步地,判断当前图像是否异常,还包括:Further, determining whether the current image is abnormal also includes:

计算当前图像中多个特征点的像素坐标与参考图像中对应的多特征点的像素坐标的多组偏移量,若多组偏移量相等,则确定当前图像发生偏移,若多组偏移量不相等,则确定当前图像发生畸变。Calculate multiple sets of offsets between the pixel coordinates of multiple feature points in the current image and the pixel coordinates of the corresponding multiple feature points in the reference image. If the offsets in the multiple sets are equal, it is determined that the current image is offset. If the offsets in the multiple sets are equal, If the shift amounts are not equal, it is determined that the current image is distorted.

其中,畸变可以包括镜头畸变,例如,桶形畸变和枕形畸变。镜头畸变是光学透镜固有的透视失真的总称,也就是因为透视原因造成的失真。参见图2,示出了桶形畸变和枕形畸变。The distortion may include lens distortion, such as barrel distortion and pincushion distortion. Lens distortion is the general term for the inherent perspective distortion of optical lenses, which is the distortion caused by perspective. Referring to Figure 2, barrel distortion and pincushion distortion are shown.

广角镜头在获得宽视场和特殊拍摄效果的同时,带来了桶形畸变。桶形畸变虽然不影响成像清晰度,但却影响成像的位置精度,这会给图像分析和图像测量带来误差,甚至是误判。广角镜头给视觉系统带来的桶形畸变是非线形的,在图像的中心形变比较小,离图像的中心越远形变越大。枕形畸变,是由镜头引起的画面向中间“收缩”的现象。在使用长焦镜头或使用变焦镜头的长焦端时,最容易察觉枕形失真现象。在输电线路监测的场景中,由于电塔之间的距离较远,经常需要使用长焦镜头或者广角镜头,导致镜头畸变导致的图像失真现象比较明显。The wide-angle lens brings barrel distortion while achieving a wide field of view and special shooting effects. Although barrel distortion does not affect imaging clarity, it does affect the positional accuracy of imaging, which can bring errors or even misjudgments to image analysis and image measurement. The barrel distortion that a wide-angle lens brings to the visual system is non-linear. The deformation is relatively small at the center of the image, and the farther away from the center of the image, the greater the distortion. Pincushion distortion is the phenomenon of the image "shrinking" to the middle caused by the lens. Pincushion distortion is most easily noticeable when using a telephoto lens or when using the telephoto end of a zoom lens. In transmission line monitoring scenarios, due to the long distance between power towers, it is often necessary to use telephoto lenses or wide-angle lenses, resulting in obvious image distortion caused by lens distortion.

进一步地,步骤S4中,所述当前图像异常时,对所述拍摄装置进行标定,获得参数信息。在该步骤中,可以利用棋盘格标定法对拍摄装置进行标定,以得到该拍摄装置的参数信息。Further, in step S4, when the current image is abnormal, the shooting device is calibrated to obtain parameter information. In this step, the photographing device can be calibrated using a checkerboard calibration method to obtain parameter information of the photographing device.

具体地,利用棋盘格标定法对拍摄装置进行标定,包括:准备一个棋盘格,棋盘格大小已知,用拍摄装置对其进行不同角度的拍摄,得到一组图像,对图像中的特征点如标定板角点进行检测,得到标定板角点的像素坐标值,根据已知的棋盘格大小和世界坐标系原点,计算得到标定板角点的物理坐标值,每一个角点的像素坐标、每一个角点在世界坐标系下的物理坐标,来进行相机的标定,获得相机的内外参矩阵、畸变参数。Specifically, the checkerboard calibration method is used to calibrate the shooting device, which includes: preparing a checkerboard with a known size, shooting it from different angles with the shooting device, and obtaining a set of images, and comparing the feature points in the image. For example, if the corner points of the calibration board are detected, the pixel coordinates of the corners of the calibration board are obtained. Based on the known checkerboard size and the origin of the world coordinate system, the physical coordinates of the corners of the calibration board are calculated. The pixel coordinates of each corner point, The physical coordinates of each corner point in the world coordinate system are used to calibrate the camera and obtain the internal and external parameter matrix and distortion parameters of the camera.

参数信息包括拍摄装置的内参、外参以及畸变参数。Parameter information includes internal parameters, external parameters and distortion parameters of the shooting device.

进一步地,步骤S5中,对发生了偏移但未发生畸变的当前图像,根据所述参数信息,对所述映射数据进行重构,包括:Further, in step S5, for the current image that has been shifted but not distorted, the mapping data is reconstructed according to the parameter information, including:

对发生偏移的当前图像,根据所述外参、内参、当前图像中的多个特征点的像素坐标及其对应的点云数据中点云的空间坐标,重构所述映射数据。For the current image that has been shifted, the mapping data is reconstructed based on the external parameters, internal parameters, pixel coordinates of multiple feature points in the current image and the spatial coordinates of the corresponding point clouds in the point cloud data.

具体地,内参包括每个像素在图像横轴x上的物理尺寸dx、每个像素在图像纵轴y上的物理尺寸dy、图像物理坐标的扭曲因子r、焦距f、图像的中心像素坐标和图像原点像素坐标之间相差的横向像素数u0、图像的中心像素坐标和图像原点像素坐标之间相差的横纵向像素数v0,也就是说,(u0,v0)表示摄像机光轴与图像平面的交点像素坐标。Specifically, the internal parameters include the physical size dx of each pixel on the horizontal axis x of the image, the physical size dy of each pixel on the vertical axis y of the image, the distortion factor r of the physical coordinates of the image, the focal length f, the central pixel coordinates of the image and The number of horizontal pixels u 0 that differs between the pixel coordinates of the origin of the image, the number of horizontal and vertical pixels v 0 that differs between the center pixel coordinates of the image and the pixel coordinates of the origin of the image, that is to say, (u 0 , v 0 ) represents the optical axis of the camera Pixel coordinates of intersection with the image plane.

外参包括空间坐标系转换到相机坐标系的旋转矩阵R和平移向量T。The external parameters include the rotation matrix R and the translation vector T that transform the spatial coordinate system into the camera coordinate system.

进一步地,在当前图像未发生畸变的情况下,对于同一个目标,该目标在点云数据中的空间坐标、拍摄装置的摄像中点、该目标在当前图像中的像素坐标,此三者是共线的,基于此共线关系,构建如式(1)所示的表达式:Further, when the current image is not distorted, for the same target, the spatial coordinates of the target in the point cloud data, the imaging midpoint of the shooting device, and the pixel coordinates of the target in the current image are: Collinear, based on this collinear relationship, construct an expression as shown in equation (1):

在式(1)中,(x,y)为目标点的图像平面坐标。(u0,v0)为拍摄装置光轴与图像平面交点的像素坐标,f表示焦距。(Xs,YS,ZS)为拍摄装置中心在点云坐标系下的坐标,(XA,YA,ZA)表示点云数据中目标点的空间坐标。ai,bi,ci(i=1,2,3)为影像的旋转矩阵。In formula (1), (x, y) is the image plane coordinate of the target point. (u 0 , v 0 ) are the pixel coordinates of the intersection between the optical axis of the shooting device and the image plane, and f represents the focal length. (X s , Y S , Z S ) are the coordinates of the center of the shooting device in the point cloud coordinate system, and (X A , Y A , Z A ) represent the spatial coordinates of the target point in the point cloud data. a i , b i , c i (i=1,2,3) are the rotation matrices of the image.

其中,旋转矩阵R的表达式如式(2)所示:Among them, the expression of the rotation matrix R is as shown in Equation (2):

由于目标点的图像平面坐标(x,y)与目标点的像素坐标(u,v)可以进行对应变换。通过对拍摄装置进行标定,已知内参与外参,即已知(u0,v0)、f、(Xs,YS,ZS)。这样,根据点云数据中的目标点的空间坐标(XA,YA,ZA),则可以确定在当前图像中的目标像素坐标(u,v)。如此,构建了拍摄装置所拍摄的当前图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。Since the image plane coordinates (x, y) of the target point and the pixel coordinates (u, v) of the target point can be transformed accordingly. By calibrating the shooting device, the intrinsic and extrinsic parameters are known, that is, (u 0 , v 0 ), f, (X s , Y S , Z S ) are known. In this way, according to the spatial coordinates (X A , Y A , Z A ) of the target point in the point cloud data, the target pixel coordinates (u, v) in the current image can be determined. In this way, the mapping relationship between the target pixel coordinates in the current image captured by the shooting device and the spatial coordinates of the target point in the point cloud data is constructed.

在另一实施方式中,根据参数信息中的内参与外参,可以根据空间变换关系,构建拍摄装置所拍摄的当前图像与点云数据之间的映射关系。In another embodiment, according to the intrinsic and extrinsic parameters in the parameter information, the mapping relationship between the current image captured by the shooting device and the point cloud data can be constructed according to the spatial transformation relationship.

像素坐标与空间坐标之间的转换关系,可以如式(3)所示的表达式:The conversion relationship between pixel coordinates and spatial coordinates can be expressed as shown in equation (3):

在式(3)中,dx与dy分别表示每个像素在图像横轴x和纵轴y上的物理尺寸,(u0,v0)为拍摄装置光轴与图像平面的交点像素坐标,f表示拍摄装置的焦距,以上参数均为内参。(u,v)为目标点的像素坐标,(Xw,YW,ZW)为点云数据中目标点的空间坐标。R表示旋转矩阵,T表示平移向量。In formula (3), d x and d y represent the physical size of each pixel on the horizontal axis x and vertical axis y of the image respectively, and (u 0 , v 0 ) is the pixel coordinate of the intersection of the optical axis of the shooting device and the image plane. , f represents the focal length of the shooting device, and the above parameters are all internal parameters. (u, v) are the pixel coordinates of the target point, (X w , Y W , Z W ) are the spatial coordinates of the target point in the point cloud data. R represents the rotation matrix and T represents the translation vector.

在某些实施例中,旋转矩阵R也可以表示为如式(4)所示:In some embodiments, the rotation matrix R can also be expressed as shown in equation (4):

例如,表示摄像机坐标轴分别绕点云坐标系y轴、x轴和z轴旋转的角度,即姿态角,如式(5)所示。For example, Indicates the angle at which the camera coordinate axis rotates around the y-axis, x-axis and z-axis of the point cloud coordinate system respectively, that is, the attitude angle, as shown in Equation (5).

T=[tx,ty,tz]; (5)T=[t x , t y , t z ]; (5)

其中,tx、ty、tz分别表示摄像机中心在点云坐标系下的位置坐标值。Among them, t x , t y , and t z respectively represent the position coordinate values of the camera center in the point cloud coordinate system.

由于已知拍摄装置的内参与外参,根据点云数据中的目标点的空间坐标(Xw,YW,ZW),则可以确定在当前图像中的目标像素坐标(u,v)。如此,构建了拍摄装置所拍摄的当前图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。Since the intrinsic and extrinsic parameters of the shooting device are known, according to the spatial coordinates (X w , Y W , Z W ) of the target point in the point cloud data, the target pixel coordinates (u, v) in the current image can be determined. In this way, the mapping relationship between the target pixel coordinates in the current image captured by the shooting device and the spatial coordinates of the target point in the point cloud data is constructed.

进一步地,步骤S5中,若当前图像已经发生畸变,根据所述参数信息,对所述映射数据进行重构,包括:Further, in step S5, if the current image has been distorted, reconstruct the mapping data according to the parameter information, including:

对发生畸变的当前图像,根据所述内参、外参以及畸变参数,对所述映射数据进行重构。For the current distorted image, the mapping data is reconstructed according to the internal parameters, external parameters and distortion parameters.

具体地,根据所述内参、外参以及畸变参数,对所述映射数据进行重构,包括:Specifically, reconstructing the mapping data according to the internal parameters, external parameters and distortion parameters includes:

根据所述内参和外参,计算点云数据中特征点云的空间坐标对应于正常图像中的正常像素坐标,具体地,在该步骤中,根据参数信息中的内参与外参,利用上述表达式或式(3),可以计算点云数据中目标点的空间坐标对应在正常图像中的正常像素坐标;According to the internal and external parameters, the spatial coordinates of the characteristic point cloud in the calculated point cloud data correspond to the normal pixel coordinates in the normal image. Specifically, in this step, according to the internal and external parameters in the parameter information, the above expression is used Formula or Formula (3) can calculate the spatial coordinates of the target point in the point cloud data corresponding to the normal pixel coordinates in the normal image;

根据所述畸变参数,计算所述正常像素坐标对应于畸变的当前图像中的目标像素坐标;According to the distortion parameter, calculate the normal pixel coordinates corresponding to the target pixel coordinates in the distorted current image;

根据所述内参、外参、目标像素坐标以及特征点云的空间坐标,重构所述映射数据,具体地,可以根据上述表达式(1)-(5)进行映射数据的重构。The mapping data is reconstructed according to the internal parameters, external parameters, target pixel coordinates and spatial coordinates of the feature point cloud. Specifically, the mapping data can be reconstructed according to the above expressions (1)-(5).

以下对畸变数学模型进行说明。The mathematical model of distortion is explained below.

相机的内参矩阵A(dx,dy,r,u,v,f),外参矩阵[R|T]、畸变系数[k1,k2,k3,p1,p2],一个像素的物理尺寸dx和dy,焦距f,图像物理坐标的扭曲因子r。The camera's internal parameter matrix A(dx,dy,r,u,v,f), external parameter matrix [R|T], distortion coefficient [k1,k2,k3,p1,p2], the physical size dx and dy of a pixel , focal length f, distortion factor r of the physical coordinates of the image.

径向畸变数学模型,如式(6)所示:The mathematical model of radial distortion is shown in Equation (6):

其中,r2=x'2+y'2,图像边缘处的径向畸变较大。Among them, r 2 = x'2 + y'2 , the radial distortion at the edge of the image is large.

切向畸变数学模型,如式(7)所示:The mathematical model of tangential distortion is shown in Equation (7):

其中,上述五个向量k1、k2、k3、P1、P2均为畸变参数,u、v为畸变图像中的像素坐标,u'、v'为校正后的像素坐标。Among them, the above five vectors k1, k2, k3, P1, and P2 are all distortion parameters, u and v are the pixel coordinates in the distorted image, and u' and v' are the corrected pixel coordinates.

可以理解,xc、yc、zc是像素点在摄像机坐标系中坐标,x',y'是相机坐标系到图像坐标系的中间量,一个像素在图像的像素坐标系中的正常位置坐标可以表示如式(8)~式(10):It can be understood that x c , y c , z c are the coordinates of the pixel point in the camera coordinate system, x', y' are the intermediate quantities from the camera coordinate system to the image coordinate system, and the normal position of a pixel in the pixel coordinate system of the image The coordinates can be expressed as equations (8) to (10):

x'=xc/zc; (8)x'=x c /z c ; (8)

y'=yc/zc; (9)y'=y c /z c ; (9)

x”和y”为畸变位置坐标,可以表示如式(11)~式(13):x” and y” are the distortion position coordinates, which can be expressed as equations (11) to (13):

x”=x'×(1+k1×r2+k2×r4)+2×p1×x'×y'+p2×(r2+2×x'2); (11)x”=x'×(1+k 1 ×r 2 +k 2 ×r 4 )+2×p 1 ×x'×y'+p 2 ×(r 2 +2×x '2 ); (11)

y”=y'×(1+k1×r2+k2×r4)+2×p2×x'×y'+p1×(r2+2×y'2); (12)y”=y'×(1+k 1 ×r 2 +k 2 ×r 4 )+2×p 2 ×x'×y'+p 1 ×(r 2 +2×y '2 ); (12)

其中,r2=x'2+y'2,r表示图像物理坐标的扭曲因子,k1、k2是径向形变系数,p1、p2是切向形变系数,ud、vd为畸变后的当前图像中的像素坐标,u,v为正常图像中的正常像素坐标,x'、y'为相机坐标系到图像坐标系的中间量,x”和y”为畸变位置的坐标,cx,cy为光轴对于投影平面坐标中心的偏移量,fx和fy为拍摄装置的焦距。Among them, r 2 =x '2 + y '2 , r represents the distortion factor of the physical coordinates of the image, k1 and k2 are the radial deformation coefficients, p1 and p2 are the tangential deformation coefficients, u d and v d are the current distortion coefficients The pixel coordinates in the image, u, v are the normal pixel coordinates in the normal image, x', y' are the intermediate quantities from the camera coordinate system to the image coordinate system, x" and y" are the coordinates of the distortion position, c x , c y is the offset of the optical axis from the coordinate center of the projection plane, f x and f y are the focal lengths of the shooting device.

为了基于已知畸变后的图像确定没有畸变的图像,可以通过畸变模型推导其映射关系。In order to determine an image without distortion based on a known distorted image, its mapping relationship can be derived through a distortion model.

正常图像imgR与畸变图像imgD之间的关系如式(14)~式(16)所示:The relationship between the normal image imgR and the distorted image imgD is as shown in Equations (14) to Equations (16):

其中,r2=x'2+y'2,r表示图像物理坐标的扭曲因子,k1、k2是径向形变系数,p1、p2是切向形变系数,ud、vd为畸变后的当前图像中的像素坐标,u,v为正常图像中的正常像素坐标,x'、y'为相机坐标系到图像坐标系的中间量,x”和y”为畸变位置的坐标,cx,cy为光轴对于投影平面坐标中心的偏移量,fx和fy为拍摄装置的焦距,一般情况下二者相等。Among them, r 2 =x '2 + y '2 , r represents the distortion factor of the physical coordinates of the image, k1 and k2 are the radial deformation coefficients, p1 and p2 are the tangential deformation coefficients, u d and v d are the current distortion coefficients The pixel coordinates in the image, u, v are the normal pixel coordinates in the normal image, x', y' are the intermediate quantities from the camera coordinate system to the image coordinate system, x" and y" are the coordinates of the distortion position, c x , c y is the offset of the optical axis from the coordinate center of the projection plane, f x and f y are the focal lengths of the shooting device, and generally they are equal.

由于已经确定拍摄装置所拍摄的当前图像发生了畸变,当前图像即为畸变的异常图像。如此,在上述步骤中计算得到正常图像中的正常像素坐标(u,v)后,可以根据上述式(14)~式(16),计算得到正常像素坐标(u,v)对应在当前图像中的目标像素坐标(ud,vd),从而构建了拍摄装置所拍摄的当前图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。Since it has been determined that the current image captured by the shooting device is distorted, the current image is a distorted abnormal image. In this way, after the normal pixel coordinates (u, v) in the normal image are calculated in the above steps, the normal pixel coordinates (u, v) corresponding to the current image can be calculated according to the above equations (14) to (16). The target pixel coordinates (u d , v d ) are thus constructed to construct a mapping relationship between the target pixel coordinates in the current image captured by the shooting device and the spatial coordinates of the target point in the point cloud data.

可以理解,正常图像的正常像素坐标(u,v)为整数,例如,正常像素坐标(1,1),但是,计算得到的对应正常像素坐标的当前图像中的目标像素坐标可能为非整数,例如,计算得到目标像素坐标(1.1,1.4)。It can be understood that the normal pixel coordinates (u, v) of a normal image are integers, for example, the normal pixel coordinates (1,1). However, the calculated target pixel coordinates in the current image corresponding to the normal pixel coordinates may be non-integers. For example, the target pixel coordinates (1.1, 1.4) are calculated.

在某些实施例方式中,当计算到的目标像素坐标为非整数像素坐标时,将当前图像中邻近非整数像素坐标的一个整数像素坐标作为目标像素坐标。例如,可以通过四舍五入的方式区近似值。如当计算到的目标像素坐标为(1.1,1.2)时,可以将当前图像中的整数像素坐标(1,1)作为目标像素坐标。这样,可以构建当前图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。In some embodiments, when the calculated target pixel coordinate is a non-integer pixel coordinate, an integer pixel coordinate adjacent to the non-integer pixel coordinate in the current image is used as the target pixel coordinate. For example, you can approximate values by rounding. For example, when the calculated target pixel coordinate is (1.1, 1.2), the integer pixel coordinate (1, 1) in the current image can be used as the target pixel coordinate. In this way, the mapping relationship between the target pixel coordinates in the current image and the spatial coordinates of the target point in the point cloud data can be constructed.

在另一种实施方式中,当计算到的目标像素坐标为非整数像素坐标时,按比例放大当前图像,并在放大后的当前图像中选取与非整数像素坐标对应的一个整数像素坐标作为目标像素坐标。例如,当计算到的目标像素坐标为(1.1,1.2)时,可以将当前图像放大10倍,选取放大后的当前图像中的整数像素坐标(11,12)作为目标像素坐标。这样,可以构建放大后的当前图像中目标像素坐标与点云数据中目标点的空间坐标之间的映射关系。In another implementation, when the calculated target pixel coordinate is a non-integer pixel coordinate, the current image is enlarged proportionally, and an integer pixel coordinate corresponding to the non-integer pixel coordinate is selected as the target in the enlarged current image. Pixel coordinates. For example, when the calculated target pixel coordinate is (1.1, 1.2), the current image can be enlarged 10 times, and the integer pixel coordinate (11, 12) in the enlarged current image is selected as the target pixel coordinate. In this way, the mapping relationship between the target pixel coordinates in the enlarged current image and the spatial coordinates of the target point in the point cloud data can be constructed.

从该实施例可以看出,本申请实施例提供的方法,可以利用新构建的当前图像与点云数据之间的映射关系,调整原先映射数据中已建立的参考图像与点云数据之间的映射关系,得到调整后的映射数据。基于调整后的映射数据中当前图像与点云数据之间的映射关系,可以利用拍摄装置所拍摄的当前图像来进行测距任务,并且测距精度高,误差小。It can be seen from this embodiment that the method provided by the embodiment of the present application can use the newly constructed mapping relationship between the current image and the point cloud data to adjust the relationship between the established reference image and the point cloud data in the original mapping data. Mapping relationship to obtain adjusted mapping data. Based on the mapping relationship between the current image and the point cloud data in the adjusted mapping data, the current image captured by the shooting device can be used to perform the ranging task, and the ranging accuracy is high and the error is small.

上述实施例提供的方法,至少包括如下有益效果:The method provided by the above embodiments at least includes the following beneficial effects:

对于拍摄装置采集的当前图像能够进行有效的异常识别,从而根据异常的情况(偏移或者畸变),对映射数据进行重构,重新建立拍摄装置备所拍摄的当前图像与点云数据之间的映射关系,提升利用当前图像所进行的测距任务的精度,修正测距误差。Effective abnormality identification can be performed on the current image collected by the shooting device, so that the mapping data can be reconstructed according to the abnormal situation (offset or distortion), and the relationship between the current image captured by the shooting device and the point cloud data can be re-established. Mapping relationship, improves the accuracy of ranging tasks using the current image, and corrects ranging errors.

进一步地,参考图3,在一些实施例中,还提供一种输电线路图像与点云的映射数据的重构装置,包括:Further, referring to Figure 3, in some embodiments, a device for reconstructing mapping data of transmission line images and point clouds is also provided, including:

采集模块201,用于通过拍摄装置采集当前图像;The collection module 201 is used to collect the current image through the shooting device;

数据获取模块202,用于获取预先存储的映射数据,所述映射数据包括已建立的参考图像的像素坐标与点云数据的点云空间坐标的映射关系;The data acquisition module 202 is used to acquire pre-stored mapping data, which includes the established mapping relationship between the pixel coordinates of the reference image and the point cloud spatial coordinates of the point cloud data;

判断模块203,用于将所述当前图像与所述参考图像进行比较,判断当前图像是否异常;Determination module 203 is used to compare the current image with the reference image and determine whether the current image is abnormal;

标定模块204,所述当前图像异常时,对所述拍摄装置进行标定,获得参数信息;Calibration module 204: when the current image is abnormal, calibrate the shooting device to obtain parameter information;

重构模块205,用于根据所述参数信息,对所述映射数据进行重构。The reconstruction module 205 is configured to reconstruct the mapping data according to the parameter information.

具体地,判断模块203还用于:Specifically, the judgment module 203 is also used to:

选取当前图像中的特征点,将当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标进行比较,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标相等,则当前图像为正常,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标不相等,则确定当前图像为异常图像。Select the feature points in the current image and compare the pixel coordinates of the feature points in the current image with the pixel coordinates of the corresponding feature points in the reference image. If the pixel coordinates of the feature points in the current image are consistent with the pixels of the corresponding feature points in the reference image If the coordinates are equal, the current image is normal. If the pixel coordinates of the feature points in the current image are not equal to the pixel coordinates of the corresponding feature points in the reference image, the current image is determined to be an abnormal image.

判断模块203还用于::The judgment module 203 is also used for::

计算当前图像中多个特征点的像素坐标与参考图像中对应的多特征点的像素坐标的多组偏移量,若多组偏移量相等,则确定当前图像发生偏移,若多组偏移量不相等,则确定当前图像发生畸变。Calculate multiple sets of offsets between the pixel coordinates of multiple feature points in the current image and the pixel coordinates of the corresponding multiple feature points in the reference image. If the offsets in the multiple sets are equal, it is determined that the current image is offset. If the offsets in the multiple sets are equal, If the shift amounts are not equal, it is determined that the current image is distorted.

所述参数信息包括拍摄装置的内参、外参以及畸变参数。The parameter information includes internal parameters, external parameters and distortion parameters of the shooting device.

进一步地,重构模块205还用于:Further, the reconstruction module 205 is also used to:

对发生偏移的当前图像,根据所述外参、内参、当前图像中的多个特征点的像素坐标及其对应的点云数据中点云的空间坐标,重构所述映射数据。For the current image that has been shifted, the mapping data is reconstructed based on the external parameters, internal parameters, pixel coordinates of multiple feature points in the current image and the spatial coordinates of the corresponding point clouds in the point cloud data.

进一步地,重构模块205还用于:Further, the reconstruction module 205 is also used to:

对发生畸变的当前图像,根据所述内参、外参以及畸变参数,对所述映射数据进行重构。For the current distorted image, the mapping data is reconstructed according to the internal parameters, external parameters and distortion parameters.

进一步地,重构模块205还用于:Further, the reconstruction module 205 is also used to:

根据所述内参和外参,计算点云数据中特征点云的空间坐标对应于正常图像中的正常像素坐标;According to the internal parameters and external parameters, the spatial coordinates of the characteristic point cloud in the calculated point cloud data correspond to the normal pixel coordinates in the normal image;

根据所述畸变参数,计算所述正常像素坐标对应于畸变的当前图像中的目标像素坐标;According to the distortion parameter, calculate the normal pixel coordinates corresponding to the target pixel coordinates in the distorted current image;

根据所述内参、外参、目标像素坐标以及特征点云的空间坐标,重构所述映射数据。The mapping data is reconstructed according to the internal parameters, external parameters, target pixel coordinates and spatial coordinates of the feature point cloud.

具体重构方法请参考上述实施例,在此不再赘述。Please refer to the above embodiment for the specific reconstruction method, which will not be described again here.

参考图4,在一些实施例中,还提供一种输电线路图像与点云的映射数据重构系统,包括拍摄装置301和服务器302,服务器302包括处理器3021和存储装置3022,存储装置3022存储有多条指令,处理器3021用于读取所述多条指令并执行上述的方法。Referring to Figure 4, in some embodiments, a mapping data reconstruction system for transmission line images and point clouds is also provided, including a shooting device 301 and a server 302. The server 302 includes a processor 3021 and a storage device 3022. The storage device 3022 stores There are multiple instructions, and the processor 3021 is used to read the multiple instructions and execute the above method.

处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), field programmable Gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.

存储装置可以包括各种类型的存储单元,例如系统内存、只读存储器(ROM)和永久存储装置。Storage may include various types of storage units, such as system memory, read-only memory (ROM), and persistent storage.

尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Although the preferred embodiments of the present invention have been described, those skilled in the art will be able to make additional changes and modifications to these embodiments once the basic inventive concepts are apparent. Therefore, it is intended that the appended claims be construed to include the preferred embodiments and all changes and modifications that fall within the scope of the invention. Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the invention. In this way, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies, the present invention is also intended to include these modifications and variations.

Claims (10)

1.一种输电线路图像与点云的映射数据的重构方法,其特征在于,包括:1. A method for reconstructing mapping data of transmission line images and point clouds, which is characterized by including: 通过拍摄装置采集当前图像;Collect the current image through the shooting device; 获取预先存储的映射数据,所述映射数据包括已建立的参考图像的像素坐标与点云数据的点云空间坐标的映射关系;Obtain pre-stored mapping data, which includes the established mapping relationship between the pixel coordinates of the reference image and the point cloud spatial coordinates of the point cloud data; 将所述当前图像与所述参考图像进行比较,判断当前图像是否异常;Compare the current image with the reference image to determine whether the current image is abnormal; 所述当前图像异常时,对所述拍摄装置进行标定,获得参数信息;When the current image is abnormal, calibrate the shooting device to obtain parameter information; 根据所述参数信息,对所述映射数据进行重构;reconstruct the mapping data according to the parameter information; 将所述当前图像与所述参考图像进行比较,判断当前图像是否异常,包括:Compare the current image with the reference image to determine whether the current image is abnormal, including: 选取当前图像中的特征点,将当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标进行比较,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标相等,则当前图像为正常,若当前图像中特征点的像素坐标与参考图像中对应的特征点的像素坐标不相等,则确定当前图像为异常图像;Select the feature points in the current image and compare the pixel coordinates of the feature points in the current image with the pixel coordinates of the corresponding feature points in the reference image. If the pixel coordinates of the feature points in the current image are consistent with the pixels of the corresponding feature points in the reference image If the coordinates are equal, the current image is normal. If the pixel coordinates of the feature points in the current image are not equal to the pixel coordinates of the corresponding feature points in the reference image, the current image is determined to be an abnormal image; 判断当前图像是否异常,还包括:Determining whether the current image is abnormal also includes: 计算当前图像中多个特征点的像素坐标与参考图像中对应的多特征点的像素坐标的多组偏移量,若多组偏移量相等,则确定当前图像发生偏移,若多组偏移量不相等,则确定当前图像发生畸变;Calculate multiple sets of offsets between the pixel coordinates of multiple feature points in the current image and the pixel coordinates of the corresponding multiple feature points in the reference image. If the offsets in the multiple sets are equal, it is determined that the current image is offset. If the offsets in the multiple sets are equal, If the shift amounts are not equal, it is determined that the current image is distorted; 所述参数信息包括拍摄装置的内参、外参以及畸变参数;The parameter information includes internal parameters, external parameters and distortion parameters of the shooting device; 根据所述参数信息,对所述映射数据进行重构,包括:Reconstructing the mapping data according to the parameter information includes: 对发生畸变的当前图像,根据所述内参、外参以及畸变参数,对所述映射数据进行重构;For the current distorted image, reconstruct the mapping data according to the internal parameters, external parameters and distortion parameters; 根据所述内参、外参以及畸变参数,对所述映射数据进行重构,包括:According to the internal parameters, external parameters and distortion parameters, the mapping data is reconstructed, including: 根据所述内参和外参,计算点云数据中特征点云的空间坐标对应于正常图像中的正常像素坐标;According to the internal parameters and external parameters, the spatial coordinates of the characteristic point cloud in the calculated point cloud data correspond to the normal pixel coordinates in the normal image; 根据所述畸变参数,计算所述正常像素坐标对应于畸变的当前图像中的目标像素坐标;According to the distortion parameter, calculate the normal pixel coordinates corresponding to the target pixel coordinates in the distorted current image; 根据所述内参、外参、目标像素坐标以及特征点云的空间坐标,重构所述映射数据;Reconstruct the mapping data according to the internal parameters, external parameters, target pixel coordinates and spatial coordinates of the feature point cloud; 所述畸变参数包括径向形变系数和切向形变系数,所述目标像素坐标通过以下公式进行计算:The distortion parameters include radial deformation coefficients and tangential deformation coefficients, and the target pixel coordinates are calculated by the following formula: x″=x′×(1+k1×r2+k2×r4)+2×p1×x′×y′+p2×(r2+2×x′2);x″=x′×(1+k 1 ×r 2 +k 2 ×r 4 )+2×p 1 ×x′×y′+p 2 ×(r 2 +2×x′ 2 ); y″=y′×(1+k1×r2+k2×r4)+2×p2×x′×y′+p1×(r2+2×y′2);y″=y′×(1+k 1 ×r 2 +k 2 ×r 4 )+2×p 2 ×x′×y′+p 1 ×(r 2 +2×y′ 2 ); 其中,r2=x′2+y′2,r表示图像物理坐标的扭曲因子,k1、k2是径向形变系数,p1、p2是切向形变系数,ud、vd为畸变后的当前图像中的像素坐标,u,v为正常图像中的正常像素坐标,x′、y′为相机坐标系到图像坐标系的中间量,x″和y″为畸变位置的坐标,cx,cy为光轴对于投影平面坐标中心的偏移量,fx和fy为拍摄装置的焦距。Among them, r 2 =x′ 2 +y′ 2 , r represents the distortion factor of the physical coordinates of the image, k1 and k2 are the radial deformation coefficients, p1 and p2 are the tangential deformation coefficients, u d and v d are the current distortion coefficients The pixel coordinates in the image, u, v are the normal pixel coordinates in the normal image, x′, y′ are the intermediate quantities from the camera coordinate system to the image coordinate system, x″ and y″ are the coordinates of the distortion position, c x , c y is the offset of the optical axis from the coordinate center of the projection plane, f x and f y are the focal lengths of the shooting device. 2.根据权利要求1所述的方法,其特征在于,根据所述参数信息,对所述映射数据进行重构,包括:2. The method according to claim 1, characterized in that, reconstructing the mapping data according to the parameter information includes: 对发生偏移的当前图像,根据所述外参、内参、当前图像中的多个特征点的像素坐标及其对应的点云数据中点云的空间坐标,重构所述映射数据。For the current image that has been shifted, the mapping data is reconstructed based on the external parameters, internal parameters, pixel coordinates of multiple feature points in the current image and the spatial coordinates of the corresponding point clouds in the point cloud data. 3.根据权利要求1所述的方法,其特征在于,计算所述正常像素坐标对应于畸变的当前图像中的目标像素坐标之后,还包括:3. The method according to claim 1, characterized in that after calculating that the normal pixel coordinates correspond to the target pixel coordinates in the distorted current image, it further includes: 对非整数的目标像素坐标取整。Rounds non-integer target pixel coordinates. 4.根据权利要求1所述的方法,其特征在于,所述拍摄装置安装于输电线路的电塔上。4. The method according to claim 1, characterized in that the photographing device is installed on a power tower of a power transmission line. 5.根据权利要求1所述的方法,其特征在于,所述点云数据通过激光雷达获取。5. The method according to claim 1, characterized in that the point cloud data is obtained by laser radar. 6.根据权利要求1所述的方法,其特征在于,利用棋盘格标定法对所述拍摄装置进行标定,获得参数信息。6. The method according to claim 1, characterized in that the photographing device is calibrated using a checkerboard calibration method to obtain parameter information. 7.根据权利要求6所述的方法,其特征在于,利用棋盘格标定法对所述拍摄装置进行标定,包括:7. The method according to claim 6, characterized in that using a checkerboard calibration method to calibrate the shooting device includes: 准备一个棋盘格,棋盘格大小已知,用拍摄装置对其进行不同角度的拍摄,得到一组图像,对图像中的标定板角点进行检测,得到标定板角点的像素坐标值,根据已知的棋盘格大小和世界坐标系原点,计算得到标定板角点的物理坐标值,每一个标定板角点的像素坐标、每一个标定板角点在世界坐标系下的物理坐标,来进行拍摄装置的标定,获得拍摄装置的内外参矩阵、畸变参数。Prepare a checkerboard with a known size. Use a shooting device to shoot it from different angles to obtain a set of images. Detect the corner points of the calibration plate in the image and obtain the pixel coordinates of the corner points of the calibration plate. According to With the known checkerboard size and the origin of the world coordinate system, we can calculate the physical coordinate values of the corner points of the calibration board, the pixel coordinates of each corner point of the calibration board, and the physical coordinates of each corner point of the calibration board in the world coordinate system. Calibration of the shooting device to obtain the internal and external parameter matrix and distortion parameters of the shooting device. 8.根据权利要求1所述的方法,其特征在于,内参包括每个像素在图像横轴上的物理尺寸、每个像素在图像纵轴上的物理尺寸、图像物理坐标的扭曲因子r、焦距f、图像的中心像素坐标和图像原点像素坐标之间相差的横向像素数、图像的中心像素坐标和图像原点像素坐标之间相差的横纵向像素数。8. The method according to claim 1, characterized in that the internal parameters include the physical size of each pixel on the horizontal axis of the image, the physical size of each pixel on the vertical axis of the image, the distortion factor r of the physical coordinates of the image, and the focal length. f. The number of horizontal pixels that differ between the center pixel coordinates of the image and the pixel coordinates of the origin of the image, and the number of horizontal and vertical pixels that differ between the center pixel coordinates of the image and the pixel coordinates of the origin of the image. 9.根据权利要求1所述的方法,其特征在于,外参包括空间坐标系转换到相机坐标系的旋转矩阵和平移向量。9. The method according to claim 1, characterized in that the external parameters include a rotation matrix and a translation vector for converting the spatial coordinate system into the camera coordinate system. 10.一种输电线路图像与点云的映射数据重构系统,其特征在于,包括拍摄装置和服务器,所述服务器包括处理器和存储装置,所述存储装置存储有多条指令,所述处理器用于读取所述多条指令并执行如权利要求1-9任一所述的方法。10. A mapping data reconstruction system for transmission line images and point clouds, characterized in that it includes a shooting device and a server, the server includes a processor and a storage device, the storage device stores a plurality of instructions, and the processing The processor is used to read the plurality of instructions and execute the method according to any one of claims 1-9.
CN202210405718.3A 2022-04-18 2022-04-18 A mapping data reconstruction method and system for transmission line images and point clouds Active CN114693807B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210405718.3A CN114693807B (en) 2022-04-18 2022-04-18 A mapping data reconstruction method and system for transmission line images and point clouds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210405718.3A CN114693807B (en) 2022-04-18 2022-04-18 A mapping data reconstruction method and system for transmission line images and point clouds

Publications (2)

Publication Number Publication Date
CN114693807A CN114693807A (en) 2022-07-01
CN114693807B true CN114693807B (en) 2024-02-06

Family

ID=82142473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210405718.3A Active CN114693807B (en) 2022-04-18 2022-04-18 A mapping data reconstruction method and system for transmission line images and point clouds

Country Status (1)

Country Link
CN (1) CN114693807B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117437303B (en) * 2023-12-18 2024-02-23 江苏尚诚能源科技有限公司 Method and system for calibrating camera external parameters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436660A (en) * 2011-11-08 2012-05-02 北京新岸线网络技术有限公司 Automatic 3D camera image correction method and device
CN105222788A (en) * 2015-09-30 2016-01-06 清华大学 The automatic correcting method of the aircraft course deviation shift error of feature based coupling
CN109410207A (en) * 2018-11-12 2019-03-01 贵州电网有限责任公司 A kind of unmanned plane line walking image transmission line faultlocating method based on NCC feature
CN113887641A (en) * 2021-10-11 2022-01-04 山东信通电子股份有限公司 Hidden danger target determination method, device and medium based on power transmission channel
CN114050650A (en) * 2021-11-12 2022-02-15 国网冀北电力有限公司电力科学研究院 An intelligent tower based on the regional autonomous system architecture of transmission lines
CN114255396A (en) * 2021-11-01 2022-03-29 南方电网数字电网研究院有限公司 Power transmission line environment reconstruction method, system and device and controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194936B2 (en) * 2008-04-25 2012-06-05 University Of Iowa Research Foundation Optimal registration of multiple deformed images using a physical model of the imaging distortion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436660A (en) * 2011-11-08 2012-05-02 北京新岸线网络技术有限公司 Automatic 3D camera image correction method and device
CN105222788A (en) * 2015-09-30 2016-01-06 清华大学 The automatic correcting method of the aircraft course deviation shift error of feature based coupling
CN109410207A (en) * 2018-11-12 2019-03-01 贵州电网有限责任公司 A kind of unmanned plane line walking image transmission line faultlocating method based on NCC feature
CN113887641A (en) * 2021-10-11 2022-01-04 山东信通电子股份有限公司 Hidden danger target determination method, device and medium based on power transmission channel
CN114255396A (en) * 2021-11-01 2022-03-29 南方电网数字电网研究院有限公司 Power transmission line environment reconstruction method, system and device and controller
CN114050650A (en) * 2021-11-12 2022-02-15 国网冀北电力有限公司电力科学研究院 An intelligent tower based on the regional autonomous system architecture of transmission lines

Also Published As

Publication number Publication date
CN114693807A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
CN110689581B (en) Structured light module calibration method, electronic device, and computer-readable storage medium
CN110517303B (en) Binocular camera and millimeter wave radar based SLAM fusion method and system
CN109961468B (en) Volume measurement method and device based on binocular vision and storage medium
EP2847741B1 (en) Camera scene fitting of real world scenes for camera pose determination
JP2019149809A (en) System and method for imaging device modeling and calibration
CN110345921B (en) Stereo visual field vision measurement and vertical axis aberration and axial aberration correction method and system
CN111862180B (en) Camera set pose acquisition method and device, storage medium and electronic equipment
CN112634374A (en) Binocular camera three-dimensional calibration method, device and system and binocular camera
CN110084785B (en) A method and system for sag measurement of power lines based on aerial images
CN102750697A (en) Parameter calibration method and device
CN110874854B (en) Camera binocular photogrammetry method based on small baseline condition
CN111062131A (en) Power transmission line sag calculation method and related device
CN110940312A (en) Monocular camera ranging method and system combined with laser equipment
CN112598747A (en) Combined calibration method for monocular camera and projector
CN111383264B (en) Positioning method, positioning device, terminal and computer storage medium
CN114485953A (en) Temperature measuring method, device and system
CN114037768A (en) Method and device for joint calibration of multiple sets of tracking scanners
CN114693807B (en) A mapping data reconstruction method and system for transmission line images and point clouds
CN116912251A (en) Detection method for improving detection sensitivity of infrared hunting camera
CN112419427A (en) Methods for improving the accuracy of time-of-flight cameras
CN114445583A (en) Data processing method and device, electronic equipment and storage medium
CN112614194B (en) Data processing method, system and device of image acquisition equipment
CN113421300B (en) Method and device for determining actual position of object in fisheye camera image
CN117994326A (en) Image processing method, device, electronic equipment and storage medium
CN110232715B (en) Method, device and system for self calibration of multi-depth camera

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant