CN114693193A - Equipment scientific research project risk factor evaluation system and method - Google Patents
Equipment scientific research project risk factor evaluation system and method Download PDFInfo
- Publication number
- CN114693193A CN114693193A CN202210621850.8A CN202210621850A CN114693193A CN 114693193 A CN114693193 A CN 114693193A CN 202210621850 A CN202210621850 A CN 202210621850A CN 114693193 A CN114693193 A CN 114693193A
- Authority
- CN
- China
- Prior art keywords
- risk
- project
- magnitude
- server
- scientific research
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 108
- 238000011160 research Methods 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000005516 engineering process Methods 0.000 claims abstract description 28
- 238000004364 calculation method Methods 0.000 claims description 40
- 238000000354 decomposition reaction Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 238000012790 confirmation Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 2
- 238000011161 development Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 11
- 238000007726 management method Methods 0.000 description 10
- 238000012827 research and development Methods 0.000 description 9
- 238000012502 risk assessment Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 108010014173 Factor X Proteins 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000013058 risk prediction model Methods 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0635—Risk analysis of enterprise or organisation activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/02—Computing arrangements based on specific mathematical models using fuzzy logic
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Software Systems (AREA)
- Pure & Applied Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Fuzzy Systems (AREA)
- Development Economics (AREA)
- Biomedical Technology (AREA)
- Educational Administration (AREA)
- Automation & Control Theory (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及装备科研项目的风险评价技术领域,具体地指一种装备科研项目风险因子评估系统及方法。The invention relates to the technical field of risk assessment of equipment scientific research projects, in particular to a risk factor assessment system and method for equipment scientific research projects.
背景技术Background technique
装备科研项目不确定性大、费用高昂,研制的各类风险会进行链条式传导,最终对军方和承研单位发生作用。将项目研制过程中的各种风险转换为可量化表达的超支额度,对影响项目风险的主要因素及发生条件进行识别,根据其特点运用定性与定量相结合的分析方法,测算项目风险发生的概率和影响程度,计算子系统潜在风险大小,最终确定项目总体风险等级,能够为激励约束条款和成本补偿方案的设计提供依据。Equipment scientific research projects have great uncertainty and high costs, and all kinds of risks in the development will be transmitted in a chain, which will eventually affect the military and the research institutes. Convert various risks in the process of project development into quantifiable overspending limits, identify the main factors and conditions that affect project risks, and use qualitative and quantitative analysis methods according to their characteristics to measure the probability of project risks occurring And the impact degree, calculate the potential risk of the subsystem, and finally determine the overall risk level of the project, which can provide a basis for the design of incentive constraints and cost compensation schemes.
当前费用风险领域的研究主要集中于仿真模拟方法的运用上。在建筑工程造价费用风险估计方面,有学者提出运用蒙特卡罗模拟和敏感性分析等方法,对建筑工程中时间和费用的风险进行了识别和分析,找出成本方差指导项目决策;王英磊等提出建立工程项目进度-费用联合风险估计模型,通过对仿真结果统计分析,得到进度费用组合下的风险概率分布;杨宝森等提出建立动态的随机活动网络仿真模型,着重研究串行迭代对进度费用风险的影响,认为串行迭代是造成工期费用分布呈现右偏倾向和正相关的主要原因。在装备科研项目研发费用估计方面,Bielecki使用逻辑回归来预测研发成本是否会增长,并对增长的科研项目采用具有多元回归模型来预测成本增长量;徐哲等提出联合风险概率估计方法,通过对蒙特卡洛仿真输出结果进行统计分析和回归分析,实现对费用和进度联合约束下不能完成科研项目计划的风险估计;魏东涛等提出构建基于熵理论的加权回归测算模型以提高为大型复杂装备研发的费用预测精度,以减小实际研制过程中成本变动的影响;徐吉辉等提出了利用基于风险驱动理论的改进蒙特卡洛处理飞机研制费用的风险建模,并对改进方法的合理性和有效性进行了验证;何明等提出构建基于灰关联度的大型科研项目费用风险预测模型,较好地解决了相似项目选取、项目总费用和各期费用估算,以及费用波动的预测问题。The current research in the field of expense risk mainly focuses on the application of simulation method. In terms of cost risk estimation of construction project cost, some scholars proposed to use methods such as Monte Carlo simulation and sensitivity analysis to identify and analyze the risks of time and cost in construction projects, and find out the cost variance to guide project decision-making; Wang Yinglei et al. A joint risk estimation model of project schedule and cost was established, and the risk probability distribution under the schedule cost combination was obtained by statistical analysis of the simulation results; Yang Baosen et al. It is believed that the serial iteration is the main reason for the right-biased tendency and positive correlation of the construction period cost distribution. In terms of estimating the R&D cost of equipment scientific research projects, Bielecki used logistic regression to predict whether the R&D cost would increase, and used a multiple regression model for the increasing scientific research projects to predict the cost increase; Xu Zhe et al. proposed a joint risk probability estimation method. Statistical analysis and regression analysis were carried out on the Monte Carlo simulation output results to realize the risk estimation of the inability to complete the scientific research project plan under the joint constraints of cost and schedule; Wei Dongtao et al. The accuracy of cost prediction can reduce the impact of cost changes in the actual development process; Xu Jihui et al. proposed an improved Monte Carlo method based on risk-driven theory to deal with the risk modeling of aircraft development costs, and conducted a study on the rationality and effectiveness of the improved method. He Ming et al. proposed to build a large-scale scientific research project cost risk prediction model based on gray correlation degree, which can better solve the problem of similar project selection, total project cost and cost estimation of each period, and cost fluctuation prediction.
上述研究和技术的不足之处主要体现在:①对项目风险的研究侧重于采用仿真模拟方法给出定量分析结果,并不关注风险相关影响因素的分析,缺少对风险发生来源的识别使得结果难以验证,仿真所需的参数也较依赖主观的判断;②大部分研究仅将项目研制后果界定为成功或失败两种情况,单纯地认定费用超支概率为费用风险,对影响后果研究不足;③项目风险涉及技术、经济、项目管理等多学科,一位专家难以同时具备多种跨学科背景并且给出准确评分,而专家评分的准确性直接影响评估结果的有效性,技术领域的匹配度是专家评分准确性的关键因素,现有评价方法缺乏能将专家技术领域与风险因子适配的相关技术方案。The deficiencies of the above researches and technologies are mainly reflected in: (1) The research on project risk focuses on using simulation method to give quantitative analysis results, and does not pay attention to the analysis of risk-related influencing factors. The lack of identification of risk sources makes the results difficult. The parameters required for verification and simulation also rely more on subjective judgments; ② Most of the research only defines the consequences of project development as two situations of success or failure, and simply identifies the probability of cost overrun as cost risk, and there is insufficient research on impact consequences; ③ Projects Risk involves multiple disciplines such as technology, economics, project management, etc. It is difficult for an expert to have multiple interdisciplinary backgrounds and give accurate scores at the same time, and the accuracy of expert scores directly affects the validity of evaluation results. The key factor of scoring accuracy, existing evaluation methods lack relevant technical solutions that can adapt expert technical fields to risk factors.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提出一种装备科研项目风险因子评估系统及方法,通过对各级子系统风险发生概率和项目整体完成情况的影响进行评估,将风险因子发送至具有相对应技术匹配度的指定对象进行评价赋值,利用信息化技术提高装备科研项目风险因子评估的管理效率和结果有效性。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose a risk factor evaluation system and method for equipment scientific research projects. The designated object corresponding to the technical matching degree is evaluated and assigned, and the information technology is used to improve the management efficiency and result effectiveness of the risk factor evaluation of equipment scientific research projects.
为实现上述目的,本发明所设计的所述系统包括服务器、至少一个用户终端和至少一个客户终端;To achieve the above objects, the system designed by the present invention includes a server, at least one user terminal and at least one client terminal;
所述用户终端:用于将待评价装备科研项目分解为若干个量级单元,将项目风险细分为若干个二级风险因子,将待评估的装备科研项目的量级单元和二级风险因子发送给服务器,接收来自服务器的风险量值,划分风险等级,输出评价结果;The user terminal: used to decompose the equipment scientific research project to be evaluated into several magnitude units, subdivide the project risk into several secondary risk factors, and divide the magnitude units and secondary risk factors of the equipment scientific research project to be evaluated. Send to the server, receive the risk value from the server, divide the risk level, and output the evaluation result;
所述客户终端:用于从服务器下载量级单元和二级风险因子,对项目的二级风险因子赋予评价量值,输出评价量值传输至服务器;The client terminal: used to download the magnitude unit and the secondary risk factor from the server, assign an evaluation value to the secondary risk factor of the project, and output the evaluation value and transmit it to the server;
所述服务器:用于将量级单元和二级风险因子发送给客户终端,所述二级风险因子具有不同类型,所述服务器根据二级风险因子的类型发送至具有相对应类型的客户终端;所述服务器接收来自客户终端的评价量值,分别计算不同层级的量级单元风险量值,并传输至用户终端。The server: used to send the magnitude unit and the secondary risk factor to the client terminal, the secondary risk factor has different types, and the server sends to the client terminal with the corresponding type according to the type of the secondary risk factor; The server receives the evaluation value from the client terminal, calculates the risk value of the unit of magnitude at different levels, and transmits it to the user terminal.
进一步地,所述用户终端包括系统分解模块、风险指标模块、风险等级输出模块;Further, the user terminal includes a system decomposition module, a risk index module, and a risk level output module;
所述系统分解模块:基于WBS技术,对装备科研项目进行纵向分解,形成量级单元;The system decomposition module: based on the WBS technology, the equipment scientific research projects are longitudinally decomposed to form units of magnitude;
所述风险指标模块:从项目超支概率风险、影响后果风险两个维度将待评估装备科研项目分解为若干个二级风险因子,每个二级风险因子具有指定的专业类型用以匹配对应类型的客户终端;The risk index module: decomposes the equipment scientific research project to be evaluated into several secondary risk factors from the two dimensions of project overrun probability risk and impact consequence risk, and each secondary risk factor has a designated professional type to match the corresponding type of risk factor. client terminal;
所述风险等级输出模块:将服务器输出的量级单元的风险量值与设定风险曲线进行匹配,得到对应风险等级和应对措施,输出评价结果。The risk level output module: matches the risk magnitude of the magnitude unit output by the server with the set risk curve, obtains the corresponding risk level and countermeasures, and outputs the evaluation result.
更进一步地,所述客户终端对项目的二级风险因子对项目风险赋予的评价量值为二级因子对各项目影响因素作用程度的权重值,分数越高代表风险越大。Further, the evaluation value assigned by the client terminal to the project risk by the secondary risk factor of the project is the weight value of the effect degree of the secondary factor on the influencing factors of each project, and the higher the score, the greater the risk.
更进一步地,所述服务器包括评价量值发送采集模块、项目超支概率量值计算模块、项目影响后果量值计算模块、项目风险量值计算模块;Further, the server includes an evaluation value sending and collecting module, a project overrun probability value calculation module, a project impact consequence value calculation module, and a project risk value calculation module;
所述评价量值发送采集模块:将用户终端输出的量级单元和二级风险因子发送至对应类型的客户终端;The evaluation value sending and collecting module: sending the magnitude unit and the secondary risk factor output by the user terminal to the corresponding type of client terminal;
所述项目超支概率量值计算模块:根据用户终端输出的量级单元和客户终端输出的评价量值,分别计算量级单元中不同层级的量级单元的项目超支概率量值P f ;The project overrun probability magnitude calculation module: according to the magnitude unit output by the user terminal and the evaluation magnitude output by the client terminal, respectively calculate the project overrun probability magnitude P f of the magnitude units of different levels in the magnitude unit;
所述项目影响后果量值计算模块:根据用户终端输出的量级单元和客户终端输出的评价量值,分别计算量级单元中不同层级的量级单元的项目影响后果量值C f ;Described project influence consequence magnitude calculation module: according to the magnitude unit output by the user terminal and the evaluation magnitude output by the client terminal, respectively calculate the item influence consequence magnitude C f of the magnitude units of different levels in the magnitude unit;
所述项目风险量值计算模块:根据输出的量级单元和客户终端输出的评价量值,分别计算量级单元中不同层级的量级单元的项目风险量值F f 。The project risk value calculation module: according to the output magnitude unit and the evaluation value output by the client terminal, respectively calculate the project risk value F f of the magnitude units at different levels in the magnitude unit.
更进一步地,所述项目超支概率量值P f 的计算方法为:Further, the calculation method of the project overrun probability value P f is:
式中,W i 表示第i个因素的项目超支发生概率,m ij 表示第i个因素的第j个量级单元出现的比例,V j 表示评价量值,W表示超支发生概率权重集,M表示项目超支概率评估矩阵,V表示项目超支概率评价量值向量,T为转置符号。In the formula, Wi represents the probability of project overrun of the ith factor, m ij represents the proportion of the jth unit of magnitude of the ith factor, V j represents the evaluation value, W represents the weight set of the probability of overrun, M Represents the project overrun probability evaluation matrix, V represents the project overrun probability evaluation value vector, and T is the transpose symbol.
更进一步地,所述项目影响后果量值C f 的计算方法为:Further, the calculation method of the project impact consequence value C f is:
C f = E’·Y T C f = E' · Y T
式中,E’表示归一化处理后的模糊综合评估矩阵,Y表示项目影响后果量值向量,T为转置符号。In the formula, E' represents the fuzzy comprehensive evaluation matrix after normalization, Y represents the magnitude vector of project impact consequences, and T represents the transpose symbol.
更进一步地,所述项目风险量值F f 的计算方法为:Further, the calculation method of the project risk value F f is:
F f =1-P s C s =1-(1-P f )(1-C f )= P f +C f - P f C f F f =1- P s C s =1-(1- P f )(1- C f )= P f + C f - P f C f
式中:Ps表示预算不超支发生概率;Cs表示预算不超支对项目产生的影响。In the formula: Ps represents the probability of budget overruns; Cs represents the impact of budget overruns on the project.
更进一步地,所述二级风险因子的类型包括技术因子、经济因子、进度因子和影响后果因子,其中技术因子包括技术先进性、技术创新性、技术继承性、技术复杂度、承研单位情况,经济因子包括国民经济情况与通货膨胀率、国际局势情况与汇率变化情况、国内政策导向、行业环境情况、产品供求关系,进度因子包括子系统进度、项目整体进度;影响后果因子包括补超支、降指标、项目中止。Further, the types of the secondary risk factors include technical factors, economic factors, progress factors and impact and consequence factors, wherein the technical factors include technological advancement, technological innovation, technological inheritance, technological complexity, and the situation of the research unit. , economic factors include national economic situation and inflation rate, international situation and exchange rate changes, domestic policy orientation, industry environment, product supply and demand relationship, progress factors include subsystem progress, overall project progress; Decrease the target and stop the project.
本发明还提出一种装备科研项目风险因子评估方法,所述方法基于一种装备科研项目风险因子评估系统实现,包括如下步骤:The present invention also provides a risk factor evaluation method for equipment scientific research projects. The method is implemented based on a risk factor evaluation system for equipment scientific research projects, and includes the following steps:
1)用户终端将待评价装备科研项目分解为若干个量级单元,将项目风险细分为若干个二级风险因子,将待评估的装备科研项目的量级单元和二级风险因子发送给服务器;1) The user terminal decomposes the equipment scientific research project to be evaluated into several magnitude units, subdivides the project risk into several secondary risk factors, and sends the magnitude unit and secondary risk factors of the equipment scientific research project to be evaluated to the server ;
2)服务器根据二级风险因子的类型将量级单元和二级风险因子发送至具有相对应类型的客户终端;2) The server sends the magnitude unit and the second-level risk factor to the client terminal with the corresponding type according to the type of the second-level risk factor;
3)客户终端从服务器下载量级单元和二级风险因子,对项目的二级风险因子赋予评价量值,输出评价量值传输至服务器;3) The client terminal downloads the magnitude unit and the secondary risk factor from the server, assigns the evaluation value to the secondary risk factor of the project, and transmits the output evaluation value to the server;
4)服务器接收来自客户终端的评价量值,分别计算不同层级的量级单元风险量值,并传输至用户终端;4) The server receives the evaluation value from the client terminal, calculates the magnitude unit risk value of different levels, and transmits it to the user terminal;
5)用户终端接收来自服务器的风险量值,划分风险等级,输出评价结果。5) The user terminal receives the risk value from the server, divides the risk level, and outputs the evaluation result.
优选地,所述服务器按照预先存储的列表顺序将量级单元和二级风险因子分发至对应的客户终端,并设置任务期限,评价用户通过客户终端向服务器发送确认接收指令;若服务器指定时间内未收到确认接收指令,则发送至列表中下一个对应的客户终端,若列表中备选客户终端为0,则向用户终端发送分配失败指令和请求延期指令。Preferably, the server distributes the order of magnitude units and secondary risk factors to the corresponding client terminals according to the pre-stored list sequence, and sets the task period, and the evaluation user sends the confirmation reception instruction to the server through the client terminal; If the confirmation reception instruction is not received, it is sent to the next corresponding client terminal in the list. If the candidate client terminal in the list is 0, the allocation failure instruction and the request for extension instruction are sent to the user terminal.
本发明提出的一种装备科研项目风险因子评估系统的有益效果为:The beneficial effects of the risk factor evaluation system for equipment scientific research projects proposed by the present invention are:
1、本发明基于WBS进行影响因素识别,针对项目风险数据的难以精准计量的特点,引入风险因子概念,采取定性与定量相结合的风险评估手段;1. The present invention identifies influencing factors based on WBS, introduces the concept of risk factors, and adopts a combination of qualitative and quantitative risk assessment methods for the characteristics of project risk data that are difficult to accurately measure;
2、本发明将直接对风险大小的评估转化为对风险因子的评估,将风险因子发送至具有相对应技术匹配度的指定对象进行评价赋值,利用信息化技术提高装备科研项目风险因子评估的管理效率和结果有效性2. The present invention converts the direct assessment of risk size into the assessment of risk factors, sends the risk factors to designated objects with corresponding technical matching degrees for evaluation and assignment, and uses information technology to improve the management of risk factor assessment of equipment scientific research projects. Efficiency and Results Effectiveness
3、本发明对超支发生的可能性和项目完成情况的影响两个方面进行量值评估;从技术、经济、进度这三个角度分析费用超支概率,对超支发生的可能性进行内外部分析;项目完成情况的影响后果,补充补超支、降指标、项目中止等情况;3. The present invention conducts quantitative evaluation on the possibility of overruns and the impact of project completion; analyzes the probability of cost overruns from the perspectives of technology, economy, and progress, and conducts internal and external analysis on the possibility of overruns; The impact and consequences of the completion of the project, supplementary overruns, reduction of indicators, project suspension, etc.;
4、本发明借助等风险曲线逐级确认风险等级,依次获得子系统风险量值,加权子系统风险量值得到项目整体风险量值,为激励约束系数的设计提供参考;4. The present invention confirms the risk level step by step by means of the iso-risk curve, obtains the subsystem risk value in turn, and weights the subsystem risk value to obtain the overall risk value of the project, which provides a reference for the design of the incentive constraint coefficient;
5、本发明利用信息化技术通过客户终端、用户终端和服务器之间的信息交互提高装备科研项目风险因子评估的管理效率和结果有效性。5. The present invention utilizes the information technology to improve the management efficiency and result effectiveness of the risk factor evaluation of equipment scientific research projects through the information interaction between the client terminal, the user terminal and the server.
附图说明Description of drawings
图1为本发明一种装备科研项目风险因子评估系统的结构框图。FIG. 1 is a structural block diagram of a risk factor evaluation system for equipment scientific research projects according to the present invention.
图2 为实施例2中某型反水雷系统分解示意图。FIG. 2 is a schematic exploded view of a certain type of anti-mine system in Example 2. FIG.
图3为实施例2中某型反水雷系统权重。FIG. 3 shows the weight of a certain type of anti-mine system in Example 2.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作进一步的详细描述。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
装备科研项目系统结构复杂,包括分系统、子系统、部件和组件等。WBS技术是项目管理的普遍做法,是一种适应重大工程项目建设的现代管理手段。运用WBS技术开展装备科研项目费用风险量化分析,根据任务包特点对装备科研项目逐级、逐项地开展系统分解,可以较为清晰地展示装备科研经费的投向和投量,直观有效地分辨重大风险源,以此建立费用风险指标体系,完成装备科研项目费用风险评估的前置过程。The system structure of equipment scientific research projects is complex, including subsystems, subsystems, components and assemblies. WBS technology is a common practice of project management and a modern management method adapted to the construction of major engineering projects. Use WBS technology to carry out quantitative risk analysis of equipment scientific research project costs, and systematically decompose equipment scientific research projects step by step and item by item according to the characteristics of the task package, which can clearly display the investment direction and amount of equipment scientific research funds, and intuitively and effectively distinguish major risks. In order to establish the cost risk index system and complete the pre-process of the cost risk assessment of equipment scientific research projects.
传统的装备科研项目风险评估系统,是用软件直接模拟原有的项目评估模式,旨在利用信息化技术提高人员的沟通效率和事务的管理效率。随着信息技术的不断发展和软硬件性能的持续提升,新一代的工程项目管理系统将在云计算、移动互联网、物联网、人工智能等为代表的新技术的基础上进行构建,这也将影响现有的项目风险评估管理模式和机制。The traditional risk assessment system for equipment scientific research projects uses software to directly simulate the original project assessment mode, aiming to improve the communication efficiency of personnel and the management efficiency of affairs by using information technology. With the continuous development of information technology and the continuous improvement of software and hardware performance, a new generation of engineering project management systems will be constructed on the basis of new technologies represented by cloud computing, mobile Internet, Internet of Things, artificial intelligence, etc. Affect existing project risk assessment management models and mechanisms.
实施例1Example 1
如图1所示,本发明提出的一种装备科研项目风险因子评估系统,包括服务器3、至少一个用户终端1和至少一个客户终端2。该系统中,用户终端1供项目管理人员使用,用于创建待评价科研项目,分解项目的量级单元,确定二级风险因子,根据风险量值划分风险等级,输出评价结果。用户终端2供作为评价用户的项目专家使用,用于对项目的二级风险因子赋予评价量值,服务器3用于数据传输和计算。As shown in FIG. 1 , a risk factor evaluation system for equipment scientific research projects proposed by the present invention includes a
用户终端1包括系统分解模块11、风险指标模块12、风险等级输出模块13。系统分解模块11:基于WBS技术,对装备科研项目进行纵向分解,形成量级单元;风险指标模块12:从项目超支概率风险、影响后果风险两个维度将待评估装备科研项目分解为若干个二级风险因子,每个二级风险因子具有指定的专业类型用以匹配对应类型的客户终端2;风险等级输出模块13:将服务器3输出的量级单元的风险量值与设定风险曲线进行匹配,得到对应风险等级和应对措施,输出评价结果。The
系统分解模块11运用WBS技术逐层分解成多个量级单元,形成树状结构的任务组织形式。在装备科研项目的风险因子评估的信息化管理系统中,将装备科研项目按照量级单元进行纵向分解,分解过程逐层深入、递进,直至工作单元层次的颗粒度不宜再细分为止。分解颗粒度常以前三级为主,从顶层开始固化前三级,往下逐层分解形成分系统、子系统、工作单元,形成从属于整个系统的量级单元体系。据此开展风险分解,测算出每个量级单元的风险量值,形成一个风险量值与科研工作内容相对应的多层次结构体系。划分出地各层级均被视为具有独立属性的总系统组成元素,并在评价指标中予以明确的定义。The
风险指标模块12在项目系统分解的基础上,根据项目风险的定义,从超支概率与影响程度两个层面构建费用风险指标体系。The
超支概率风险指标包括技术因子、经济因子和进度因子。Overrun probability risk indicators include technical factors, economic factors and progress factors.
技术因子方面首先要预测项目所需技术的先进性,这与战术技术指标紧密相关,战术技术指标越高其实现难度越大,此时就要考虑新旧技术的占比问题,即技术创新和继承的关系。若依托现有的技术不能实现目标功能,就要进行新技术的开发,投入大量的研发成本与工时成本以实现关键技术的突破;若现有的技术能够满足目标所需,则应考虑与目标技术的关联程度,是否需要进行材料或者工艺的调整以适应新的项目系统。同时,也要注意到技术的复杂程度,不同类型的多个技术同时运用到系统中能否适应需要,若技术联调无法通过也势必带来费用的上升。此外承研单位人员资质、工作环境、组织结构以及信誉情况等资质情况也会影响到技术在项目中的实现水平,通过期间费用、设备耗损等体现在成本费用上。本实施例中提出的技术因子的二级因子及评价依据如表1所示。In terms of technical factors, first of all, it is necessary to predict the advancement of the technology required by the project, which is closely related to the tactical technical indicators. Relationship. If the target function cannot be achieved by relying on the existing technology, it is necessary to develop new technologies and invest a lot of R&D costs and labor costs to achieve breakthroughs in key technologies; if the existing technology can meet the needs of the target, the The degree of technical relevance and whether material or process adjustments need to be made to accommodate the new project system. At the same time, it is necessary to pay attention to the complexity of the technology, and whether multiple technologies of different types can be applied to the system at the same time can meet the needs. In addition, the qualifications of the personnel, working environment, organizational structure and reputation of the research unit will also affect the realization level of the technology in the project, and the cost of passing through the period and equipment loss are reflected in the cost. The secondary factors and evaluation basis of the technical factors proposed in this embodiment are shown in Table 1.
经济因子方面主要由宏观经济、市场行业以及微观经济等外部环境引起采购成本的变化。其中,国民经济中通货膨胀率,物价上涨幅度和货币贬值率会直接作用于项目研制采购成本的变化;国际格局的重构、国家关系的调整带动国际汇率的涨跌,进出口所需货币的兑换是影响部分尚不能国产化元器件成本的重要因素;同时,国家通过减免承研单位项目研制有关的税收、加大配套设备国产化力度降低、鼓励外协单位提高服务保障化水平能间接反映在交易价格上。此外行业内有能力的承研单位数量与采购方式相关联,比如只有一家有能力的承研单位,军方不得不实行单一来源采购,承研单位可以利用成本信息掌握的不对等,使得装备科研价格偏离实际成本向对自身有利的方向倾斜。市场环境中供求决定价格,一旦军方的需求超过承研单位所能供给的正常水平,则军方在供求双方动态博弈的过程中处于弱势地位,军方不得不付出更多以满足承研单位的要求。本实施例中提出的经济因子的二级因子及评价依据如表2所示。In terms of economic factors, changes in procurement costs are mainly caused by external environments such as macroeconomics, market industries, and microeconomics. Among them, the inflation rate, price increase rate and currency depreciation rate in the national economy will directly affect the changes in the cost of project development and procurement; the reconstruction of the international structure and the adjustment of state relations will drive the rise and fall of the international exchange rate, and the currency required for import and export will rise and fall. Exchange is an important factor affecting the cost of some components that cannot yet be localized; at the same time, the state can indirectly reflect the reduction or exemption of taxes related to the research and development of research units, increase the localization of supporting equipment, and encourage outsourcing units to improve the level of service guarantee. at the transaction price. In addition, the number of capable R&D units in the industry is related to the procurement method. For example, there is only one capable R&D unit. The military has to implement single-source procurement. The price deviates from the actual cost and tilts in its own favor. In the market environment, supply and demand determine the price. Once the military's demand exceeds the normal level that can be supplied by the research institute, the military is in a weak position in the dynamic game between supply and demand, and the military has to pay more to satisfy the research institute. requirements. The secondary factors and evaluation basis of the economic factors proposed in this embodiment are shown in Table 2.
进度因子方面指项目开始研制前进行系统结构分解,根据整体项目和各子项目的工期制定进度计划,以确保项目活动能够按照计划压茬推进。采用网络计划图可以清楚地反映项目在各个阶段的进度,需要的各种资源数量、费用开支以及整个项目的关键活动和关键路线,整合各子系统进度实现项目整体项目的统筹规划、合理安排,达到以最少的时间和资源来完成项目的预期目标。若某个子系统前期进度规划不合理,可能影响到其他相关子系统的研制,在实际研制过程中导致项目整体进程中断;子系统进度安排与项目整体进度的匹配性也至关重要,只有实现合理的配置才能通过关键路径找出最优方案。一旦项目延期甚至中断,引发费用增加的链式效应,产生额外的职工薪酬、生产设备运营、违约金等误期成本。本实施例中提出的进度因子的二级因子及评价依据如表3所示。In terms of progress factor, the system structure is decomposed before the project starts to develop, and the progress plan is formulated according to the construction period of the overall project and each sub-project to ensure that the project activities can be pushed forward according to the plan. The use of the network plan chart can clearly reflect the progress of the project at each stage, the amount of various resources required, expenses, and the key activities and key routes of the entire project. Achieving the desired goal of completing the project with the least amount of time and resources. If the preliminary schedule of a certain subsystem is unreasonable, it may affect the development of other related subsystems, and cause the overall project process to be interrupted in the actual development process; the matching of the subsystem schedule with the overall project schedule is also crucial, and only reasonable implementation can be achieved. Only the configuration can find the optimal solution through the critical path. Once the project is delayed or even interrupted, it will cause a chain effect of increased costs, resulting in additional delay costs such as employee compensation, production equipment operation, and liquidated damages. The secondary factors and evaluation basis of the progress factor proposed in this embodiment are shown in Table 3.
影响后果风险指标:Impact Consequence Risk Indicator:
实际当中成本费用超支所带来的影响后果不只有研制成功和失败两种状态,也涉及到补超支、降指标、项目中止等表现形式。In practice, the consequences of cost overruns are not only two states of development success and failure, but also include overruns, reductions in targets, and project suspension.
补超支是指因技术攻关难度过高、经济条件变动或工期延误等原因,需要组织技术攻关、技术协调和有关试验,必要时还要添置相应的试验设备或者外协,增加直接研制费用,导致现有的实际开支费用过高,超过了预定的概算限制。此时只有追加人力、物力、财力以弥补成本增加造成的超支额度,项目才可实现预期研制要求。Supplementary overrun refers to the need to organize technical research, technical coordination and related tests due to the high difficulty of technical research, changes in economic conditions or delays in the construction period. Existing actual expenditures are too costly and exceed the pre-determined budgetary limit. At this time, only by adding manpower, material and financial resources to make up for the overspending caused by the increase in cost, can the project achieve the expected development requirements.
降指标是指在可预期的时限内,通过推迟进度和追加经费仍无法达到预期要求,只能降性能使用。凭借现有的生产工艺、设备设施等研发条件难以攻克技术瓶颈,或进口元器件受国际政治格局影响难以获得,短期内该元器件不能实现国产化,科研项目成品达不到规定的性能水平,实现不了原定的技术要求,只能通过降低性能指标完成项目研制。Decreased indicators refer to the fact that within a predictable time limit, the expected requirements cannot be met by delaying the progress and additional funds, and the performance can only be reduced. It is difficult to overcome the technical bottleneck by virtue of the existing R&D conditions such as production technology, equipment and facilities, or the imported components are difficult to obtain due to the influence of the international political situation. The original technical requirements cannot be achieved, and the project development can only be completed by reducing the performance indicators.
项目中止是指因技术攻关难度过高,预期的资金链供应不足,不能在规定的时间内完成研制项目,推迟进度、追加经费过多使得项目继续研制失去意义;或以现有条件研制的成品功能实现效费比过低,新的更为低价替代品已经出现,只能将项目中止,评估是否有继续研制价值。Project suspension refers to the fact that the technical difficulty of tackling key problems is too high, the expected capital chain supply is insufficient, the development project cannot be completed within the specified time, the delay of progress, and excessive additional funds make it meaningless to continue the development of the project; or the finished product developed under the existing conditions The cost-effectiveness ratio of function realization is too low, and new and lower-cost alternatives have emerged, so the project can only be suspended to evaluate whether it has the value of continuing development.
风险等级输出模块13:借助等风险曲线,将服务器3输出的量级单元的风险量值与设定风险曲线进行匹配,得到整个项目的风险等级并形成风险评估结果。将项目风险划分为低风险、中风险和高风险,确定该装备科研项目的项目风险所处等级。一般认为,F f <0.3为低风险,对装备的研制计划目标影响较小,出现性能下降、采购成本增加、进度中断的现象少;介于0.3<F f <0.7两者之间的为中风险,影响装备研制计划目标,导致某种性能下降、某项采购成本增长;F f >0.7为高风险,风险发生概率很高,对装备研制计划目标产生重大影响,带来明显的性能下降、采购成本增加和进度中断现象。Risk level output module 13: Match the risk magnitude of the magnitude unit output by the
客户终端2对项目的二级风险因子对项目风险赋予的评价量值为二级因子对各项目影响因素作用程度的权重值。客户终端2供技术领域专家、经济成本专家和进度分析专家使用,作为不同技术领域的专家分别对项目中技术领域对应的二级风险因子在[0,1]区间内进行打分,分数越高代表风险越大,分值分别为V 1j ,V 2j ,V 3i ,(j=1,2,3,4,5;i=1,2,3)。The evaluation value given to the project risk by the secondary risk factor of the project by the
服务器3包括评价量值发送采集模块31、项目超支概率量值计算模块32、项目影响后果量值计算模块33、项目风险量值计算模块34。评价量值发送采集模块31:将用户终端1输出的量级单元和二级风险因子发送至对应类型的客户终端2。The
评价量值发送采集模块31将用户终端1输出的量级单元和二级风险因子发送至对应类型的客户终端2。评价量值发送采集模块31按照预先存储的列表顺序将量级单元和二级风险因子分发至对应的客户终端2,并设置任务期限,评价用户通过客户终端2向服务器3发送确认接收指令;若服务器3指定时间内未收到确认接收指令,则发送至列表中下一个对应的客户终端2,若列表中备选客户终端2为0,则向用户终端1发送分配失败指令和请求延期指令。The evaluation magnitude sending and collecting
项目超支概率量值计算模块32:根据用户终端1输出的量级单元和客户终端2输出的评价量值,分别计算量级单元中不同层级的量级单元的项目超支概率量值P f 。Item overrun probability value calculation module 32: According to the magnitude unit output by the
费用风险发生的概率主要受技术依赖性、采购成本变化幅度和进度周期安排的影响。因此,设超支发生概率的影响因素集A={技术,经济,进度}={A 1 , A 2 ,A 3 },结合装备科研项目类型中各影响因素作用程度赋予不同的权重,具体的权重值由专家根据项目实际情况设定,假设各因素对应的权重集W={W 1 ,W 2 ,W 3 },W 1 +W 2 +W 3 =1。The probability of expense risk is mainly affected by technology dependency, change range of procurement cost and schedule cycle arrangement. Therefore, set the factor set A = {technology, economy, progress}={ A 1 , A 2 , A 3 } for the probability of overruns, and assign different weights according to the degree of effect of each influencing factor in the type of equipment scientific research project. The value is set by experts according to the actual situation of the project. It is assumed that the weight set corresponding to each factor W = { W 1 , W 2 , W 3 }, W 1 +W 2 +W 3 =1.
影响因素集又可根据二级因子指标继续细分为:A 1 ={技术先进性,技术创新性,技术继承性,技术复杂度,承研单位情况}={a 11 ,a 12 ,a 13 ,a 14 ,a 15 },A 2 ={国民经济情况,国际局势情况,国内政策导向,行业环境变动,产品供求关系}={a 21 ,a 22 ,a 23 ,a 24 ,a 25 },A 3 ={子系统进度,项目整体进度}={a 31 ,a 32 }。各二级因子权重W ij 根据重要性程度进行设定,满足∑W 1j =1,∑W 2j =1,∑W 3i =1,(j=1,2,3,4,5;i=1,2,3)。The influencing factor set can be further subdivided according to the secondary factor indicators: A 1 = {technological advancement, technological innovation, technological inheritance, technological complexity, and the situation of the research unit}={ a 11 , a 12 , a 13 , a 14 , a 15 }, A 2 = {national economic situation, international situation, domestic policy orientation, industry environment changes, product supply and demand}={ a 21 , a 22 , a 23 , a 24 , a 25 }, A 3 ={subsystem progress, overall project progress}={ a 31 , a 32 }. Each secondary factor weight W ij is set according to the degree of importance, satisfying ∑ W 1 j =1, ∑ W 2 j =1, ∑ W 3 i =1, (j=1,2,3,4,5; i=1,2,3).
项目超支概率量值计算模块32接收客户终端2发出的对项目的二级风险因子对项目风险赋予的评价量值,在专家对超支发生概率评估结果的基础上,通过赋权方法构建了专家群体的联合评估结果,加权计算得出技术指标、经济指标、进度指标的量值。The project overrun probability
赋予因素集A对应的评价集V量值向量V =(V 1,V 2,V 3,V 4,V 5) =(0,0.25,0.5,0.75,1),根据指标体系设置评价集V量值描述如表4所示。The evaluation set V corresponding to the factor set A is assigned the magnitude vector V =( V 1 , V 2 , V 3 , V 4 , V 5 ) =(0,0.25,0.5,0.75,1), and the evaluation set V is set according to the index system A description of the magnitudes is shown in Table 4.
将各评价量值v i 对应相应的评价量值V j ,统计不同评价量值的专家数量占比,为简化计算流程,只设置了5个量值,打分结果归为较为相近的量值比例,则第i个因素的第j个量级出现的专家比例为m ij ,(j=1,2,3,4,5;i=1,2,3)可得评估矩阵为:Each evaluation value v i corresponds to the corresponding evaluation value V j , and the proportion of experts with different evaluation values is counted. In order to simplify the calculation process, only 5 values are set, and the scoring results are classified as relatively similar value ratios , then the proportion of experts in the jth order of the ith factor is m ij , (j=1,2,3,4,5;i=1,2,3), the evaluation matrix can be obtained as:
项目超支概率量值计算模块32计算量级单元中不同层级的量级单元的项目超支概率量值P f :The project overrun probability
项目影响后果量值计算模块33:根据用户终端1输出的量级单元和客户终端2输出的评价量值,分别计算量级单元中不同层级的量级单元的项目影响后果量值C f 。Item impact consequence value calculation module 33: According to the magnitude unit output by the
本发明采用模糊分析法,使不同客户终端2输出的多个专家打分结果带入评价矩阵集成到一起,集成后的结果用模糊数来表示,推算出风险的各种可能性程度,把评价中的模糊性得以量化,将这种模糊信息转化为确定的决策信息,求得风险量值C f 。The present invention adopts the fuzzy analysis method, so that multiple expert scoring results output by
假设项目完成情况影响因素集B={补超支,降指标,项目中止}={B 1 ,B 2 ,B 3 },各因素对应的权重集X=(X 1,X 2,X 3),X 1+X 2+X 3=1,具体的权重也可由专家视装备科研项目的实际情况设置。因素集B对应的评价集Y的量值向量Y=(Y 1,Y 2,Y 3,Y 4,Y 5)=(0,0.25,0.5,0.75,1),量值描述如表5所列。Assuming that the set of factors affecting the completion of the project B = {supplement overruns, reduce indicators, project suspension}={ B 1 , B 2 , B 3 }, the weight set corresponding to each factor X= ( X 1 , X 2 , X 3 ), X 1 + X 2 + X 3 =1, the specific weight can also be set by experts according to the actual situation of equipment scientific research projects. The magnitude vector Y= ( Y 1 , Y 2 , Y 3 , Y 4 , Y 5 )=(0,0.25,0.5,0.75,1) of the evaluation set Y corresponding to the factor set B , and the magnitudes are described in Table 5. List.
参照表5的评价标准,依据装备科研项目特点,专家通过客户终端2结合实际情况从补超支、降指标、项目中止3个方面打分,得分越高代表对项目完成情况影响程度越大。紧接着统计不同得分量级的专家所占比例,为简化计算流程,只设置了5个得分量级,打分结果归为较为相近的量级比例,则第i个因素的第j个量级出现的专家比例为d ij (j=1,2,3,4,5;i=1,2,3),可得评估矩阵为Referring to the evaluation criteria in Table 5, and according to the characteristics of equipment scientific research projects, experts scored through the
采用模糊评判法对带有很强模糊性的项目完成情况影响进行估计,得到项目完成情况影响程度的模糊综合评估矩阵E是Y上的模糊子集。The fuzzy evaluation method is used to estimate the impact of the project completion situation with strong ambiguity, and the fuzzy comprehensive evaluation matrix E of the impact degree of the project completion situation is obtained, which is a fuzzy subset on Y.
对E进行归一化处理得到E’=(e 1 ’,e 2 ’,e 3 ’,e 4 ’,e 5 ’)。则项目影响后果量值C f 表示为Normalize E to get E' = ( e 1 ' , e 2 ' , e 3 ' , e 4 ' , e 5 ' ). Then the project impact consequence value C f is expressed as
C f = E’·Y T =0d 1 ’+0.25d 2 ’+0.5d 3 ’+0.75d 4 ’+1d 5 ’ C f = E' · Y T = 0 d 1 '+ 0 .25d 2 '+ 0 .5d 3 '+ 0.75 d 4 '+ 1 d 5 '
项目风险量值计算模块34:根据输出的量级单元和客户终端2输出的评价量值,分别计算量级单元中每个单元的项目风险量值F f 。项目风险普遍存在于装备研制项目,装备的复杂性、内外部条件的不确定性使得装备科研项目的研制带有极大的风险性,引起成本发生变动进而作用于最终交易费用。The project risk value calculation module 34 : calculates the project risk value F f of each unit in the magnitude unit according to the output magnitude unit and the evaluation value output by the
从项目风险定义的角度,费用风险量值F f 为From the perspective of project risk definition, the cost risk value F f is
F f =1-P s C s =1-(1-P f )(1-C f )= P f +C f - P f C f F f =1- P s C s =1-(1- P f )(1- C f )= P f + C f - P f C f
式中:P S 表示预算不超支发生概率;C S 表示预算不超支对项目产生的影响。In the formula: P S represents the probability of budget overruns; C S represents the impact of budget overruns on the project.
实施例2Example 2
基于上述一种装备科研项目风险因子评估系统,本发明提出一种装备科研项目风险因子评估方法,包括如下步骤:Based on the above-mentioned risk factor evaluation system for equipment scientific research projects, the present invention proposes a risk factor evaluation method for equipment scientific research projects, including the following steps:
1)用户终端1将待评价装备科研项目分解为若干个量级单元,将项目风险细分为若干个二级风险因子,将待评估的装备科研项目的量级单元和二级风险因子发送给服务器3; 1)
2)服务器3根据二级风险因子的类型将量级单元和二级风险因子发送至具有相对应类型的客户终端2;2) The
3)客户终端2从服务器3下载量级单元和二级风险因子,对项目的二级风险因子赋予评价量值,输出评价量值传输至服务器3;3) The
4)服务器3接收来自客户终端2的评价量值,分别计算不同层级的量级单元风险量值,并传输至用户终端1;4) The
5)用户终端1接收来自服务器3的风险量值,划分风险等级,输出评价结果。5) The
以某型反水雷系统为例,邀请30位专家分别通过客户终端2参加系统风险的论证,项目人员通过用户终端1将分系统分解为六个部分,其中每个分系统又可分解为3-6个子系统,如图2所示。因保密原因,对数据进行了一定的模糊处理,但不影响可信度与真实性。Taking a certain type of anti-mine system as an example, 30 experts were invited to participate in the demonstration of system risks through the
因其涉及到的系统结构较为复杂,逐一评估篇幅较长,仅就舰载综控系统A中反水雷显控台A 1展开详细评估。Because the system structure involved is relatively complex, and the length of each evaluation is long, only the detailed evaluation of the anti-mine display console A 1 in the shipboard integrated control system A is carried out.
1)舰载综控系统A项目超支概率量值评估1) Evaluation of overrun probability value of shipboard integrated control system A project
以技术因子为例,专家通过客户终端2对二级因子权重赋值,技术先进性(0.2)、技术创新性(0.2)、技术继承性(0.3)、技术复杂度(0.1)、承研单位情况(0.2)。用户终端1根据某一客户终端2输出的各二级因子打分结果计算技术因子分值=0.36*0.2+0.28*0.2 +0.41*0.3+0.55*0.1+0.19*0.2=0.344,结果更接近v 2=0.25,因此该结果纳入v 2的占比。同理,用户终端1计算得出三个指标赋予的评价量值。Taking the technical factor as an example, the expert assigns the weight of the secondary factor through the
评价量值发送采集模块31得到的超支概率量值为The overrun probability value obtained by the evaluation value sending and collecting
项目超支概率量值计算模块32根据风险指标模块12输出的风险指标计算A 1模块的技术、经济和进度评分得The project overrun probability
项目超支概率量值计算模块32计算得到A 1板块超支概率量值为The project overrun probability
2)舰载综控系统A影响后果评估2) Impact and consequence assessment of shipboard integrated control system A
专家通过客户终端2对补超支、降指标、项目中止影响程度权重进行赋值,评价量值发送采集模块31得到权重集:Through the
项目影响后果量值计算模块33根据表5评判标准计算A模块的评分得The project impact consequence
项目影响后果量值计算模块33计算风险影响程度的模糊综合评判矩阵为The fuzzy comprehensive evaluation matrix for calculating the risk impact degree by the project impact consequence
进行归一化处理得normalized to get
E’=(0.121, 0.219, 0.366, 0.219, 0.075) E' =(0.121, 0.219, 0.366, 0.219, 0.075)
项目影响后果量值计算模块33计算出A 1模块对项目完成情况影响为The project impact consequence
3)某型反水雷系统风险等级划分3) Risk classification of a certain type of anti-mine system
项目风险量值计算模块34计算A 1模块费用风险值: The project risk
F f A1= P f A1+ C f A1- P f A1 C f A1=0.263+0.477-0.263*0.477=0.615 F f A 1 = P f A 1 + C f A 1 - P f A 1 C f A 1 =0.263+0.477-0.263*0.477=0.615
同理,计算得出F f A2=0.258、F f A3=0.314、F f A4=0.764。运用层次分析法确定子系统A1、A2、A3、A4对分系统A的影响程度,进而得到权重向量Similarly, F f A 2 =0.258, F f A 3 =0.314, and F f A 4 =0.764 are calculated. Use the analytic hierarchy process to determine the degree of influence of subsystems A1, A2, A3, and A4 on subsystem A, and then obtain the weight vector
Q A =(q A1, q A2, q A3, q A4)=(0.40,0.20,0.15,0.25) Q A =( q A 1 , q A 2 , q A 3 , q A 4 )=(0.40,0.20,0.15,0.25)
因此分系统A的风险值为Therefore, the risk value of subsystem A is
F f 1= F f A1 q A1+ F f A2 q A2+ F f A3 q A3+ F f A4 q A4= F f 1 = F f A 1 q A 1 + F f A 2 q A 2 + F f A 3 q A 3 + F f A 4 q A 4 =
0.615*0.40+0.258*0.20+0.314*0.15+0.764*0.25=0.53570.615*0.40+0.258*0.20+0.314*0.15+0.764*0.25=0.5357
同理,项目风险量值计算模块34计算得出其他几个分系统的风险值F f B =0.8563、F f C =0.7837、F f D =0.3984、F f E =0.4197、F f F =0.2958。运用层次分析法确定分系统B、C、D、E、F对总系统的影响程度,进而得到权重向量Similarly, the project risk
Q’=(Q A ,Q B ,Q C ,Q D ,Q E ,Q F )=(0.15,0.20,0.30,0.15,0.15,0.05,) Q' =( Q A , Q B , Q C , Q D , Q E , Q F )=(0.15,0.20,0.30,0.15,0.15,0.05,)
整理某型反水雷系统权重可得图3,项目风险量值计算模块34计算系统总的费用风险值Figure 3 can be obtained by sorting out the weights of a certain type of anti-mine system. The project risk
F f ’ = F f A Q A +F f B Q B +…+ F f F Q F =0.62423<0.7 F f ' = F f A Q A + F f B Q B +…+ F f F Q F =0.62423<0.7
风险等级输出模块13接收项目风险量值计算模块34的计算结果,划分风险等级,因为0.3<F f A1 <0.7,根据等风险曲线可知,反水雷显控系统属于中风险等级,输出评价结果。整个反水雷系统的费用风险属于中等偏高等级,需要从研制立项阶段就高度重视费用风险问题,或减少项目中的研制比例,或暂缓该项目立项,待有更进一步预研成果出来以后再正式进行研制。同时在合同条款订立环节设立较高的激励系数和补偿方案以鼓励承研单位研制。The risk
为促进装备科研项目价格的科学形成,需要根据项目风险大小设计激励约束定价合同。本发明从项目风险的定义出发,结合装备科研项目特点,在项目系统结构分解的基础上,构建项目风险因子评估体系,对超支发生的可能性和项目完成情况的影响两个方面进行量值评估。建立技术、经济、进度三个维度的费用超支概率风险指标,对超支发生的可能性进行内外部分析,补充补超支、降指标、项目中止等不同影响后果,通过对各子系统成本超支发生概率和项目整体完成情况的影响进行评估,将直接对风险大小的打分转化为对风险因子的打分,进而加权计算项目整体得分,最终确定总体费用风险等级。In order to promote the scientific formation of the price of equipment scientific research projects, it is necessary to design incentive-constrained pricing contracts according to the size of the project risk. The invention starts from the definition of project risk, combines the characteristics of equipment scientific research projects, and builds a project risk factor evaluation system on the basis of the decomposition of the project system structure, so as to carry out quantitative evaluation on the possibility of overspending and the impact of project completion. . Establish cost overrun probability risk indicators in the three dimensions of technology, economy, and schedule, conduct internal and external analysis of the possibility of overruns, supplement different impact consequences such as overruns, reduction indicators, project suspension, etc., through the cost overrun probability of each subsystem It evaluates the impact of the overall completion of the project, converts the direct risk score into the risk factor score, and then calculates the overall project score by weighting, and finally determines the overall cost risk level.
最后需要说明的是,以上具体实施方式仅用以说明本专利技术方案而非限制,尽管参照较佳实施例对本专利进行了详细说明,本领域的普通技术人员应当理解,可以对本专利的技术方案进行修改或者等同替换,而不脱离本专利技术方案的精神和范围,其均应涵盖在本专利的权利要求范围当中。Finally, it should be noted that the above specific embodiments are only used to illustrate the technical solution of the patent and not to limit it. Although the patent has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solution of the patent can be Modifications or equivalent substitutions are made without departing from the spirit and scope of the technical solutions of this patent, and they should all be covered by the scope of the claims of this patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210621850.8A CN114693193A (en) | 2022-06-02 | 2022-06-02 | Equipment scientific research project risk factor evaluation system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210621850.8A CN114693193A (en) | 2022-06-02 | 2022-06-02 | Equipment scientific research project risk factor evaluation system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114693193A true CN114693193A (en) | 2022-07-01 |
Family
ID=82131027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210621850.8A Pending CN114693193A (en) | 2022-06-02 | 2022-06-02 | Equipment scientific research project risk factor evaluation system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114693193A (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106971268A (en) * | 2017-03-29 | 2017-07-21 | 辽宁工程技术大学 | A kind of bridge construction Qualitative risk evaluation method of comprehensive AHP and FCE |
CN109508848A (en) * | 2018-08-08 | 2019-03-22 | 武汉理工光科股份有限公司 | Enterprise's production safety risk assessment and management system |
CN109598399A (en) * | 2018-05-11 | 2019-04-09 | 国家电网公司 | A kind of moving electric power transaction risk appraisal procedure based on step analysis |
CN109615211A (en) * | 2018-12-05 | 2019-04-12 | 南方电网科学研究院有限责任公司 | Project risk assessment system and method and storage medium |
CN110610244A (en) * | 2019-05-29 | 2019-12-24 | 广东龙泉科技有限公司 | Water supply pipeline hidden danger troubleshooting integrated operation method, computer readable storage medium and terminal |
CN110866662A (en) * | 2018-08-27 | 2020-03-06 | 中国石油化工股份有限公司 | Risk quantitative management method and system for petrochemical production process |
CN111428983A (en) * | 2020-03-18 | 2020-07-17 | 中国检验检疫科学研究院 | Method, device and system for risk assessment of exotic livestock and poultry diseases |
CN112257974A (en) * | 2020-09-09 | 2021-01-22 | 北京无线电计量测试研究所 | Gas lock well risk prediction model data set, model training method and application |
CN112330086A (en) * | 2020-09-21 | 2021-02-05 | 海洋石油工程股份有限公司 | Offshore hoisting operation risk evaluation method based on analog simulation system |
CN112700138A (en) * | 2020-12-31 | 2021-04-23 | 京东数字科技控股股份有限公司 | Method, device and system for road traffic risk management |
CN112862242A (en) * | 2020-12-30 | 2021-05-28 | 国网湖北省电力有限公司检修公司 | A production overall process acceptance tool for transformer substation capital construction engineering |
CN112901426A (en) * | 2021-02-26 | 2021-06-04 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine generator blade clearance monitoring device, method, system, equipment and medium |
CN113256102A (en) * | 2021-05-20 | 2021-08-13 | 中国安全生产科学研究院 | High-risk technological process risk control method and system |
CN114282839A (en) * | 2021-12-30 | 2022-04-05 | 贵州省交通规划勘察设计研究院股份有限公司 | A safety risk management system for mountain highway construction |
CN114553554A (en) * | 2022-02-24 | 2022-05-27 | 上海交通大学宁波人工智能研究院 | Terminal trust management and trusted access system and method |
-
2022
- 2022-06-02 CN CN202210621850.8A patent/CN114693193A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106971268A (en) * | 2017-03-29 | 2017-07-21 | 辽宁工程技术大学 | A kind of bridge construction Qualitative risk evaluation method of comprehensive AHP and FCE |
CN109598399A (en) * | 2018-05-11 | 2019-04-09 | 国家电网公司 | A kind of moving electric power transaction risk appraisal procedure based on step analysis |
CN109508848A (en) * | 2018-08-08 | 2019-03-22 | 武汉理工光科股份有限公司 | Enterprise's production safety risk assessment and management system |
CN110866662A (en) * | 2018-08-27 | 2020-03-06 | 中国石油化工股份有限公司 | Risk quantitative management method and system for petrochemical production process |
CN109615211A (en) * | 2018-12-05 | 2019-04-12 | 南方电网科学研究院有限责任公司 | Project risk assessment system and method and storage medium |
CN110610244A (en) * | 2019-05-29 | 2019-12-24 | 广东龙泉科技有限公司 | Water supply pipeline hidden danger troubleshooting integrated operation method, computer readable storage medium and terminal |
CN111428983A (en) * | 2020-03-18 | 2020-07-17 | 中国检验检疫科学研究院 | Method, device and system for risk assessment of exotic livestock and poultry diseases |
CN112257974A (en) * | 2020-09-09 | 2021-01-22 | 北京无线电计量测试研究所 | Gas lock well risk prediction model data set, model training method and application |
CN112330086A (en) * | 2020-09-21 | 2021-02-05 | 海洋石油工程股份有限公司 | Offshore hoisting operation risk evaluation method based on analog simulation system |
CN112862242A (en) * | 2020-12-30 | 2021-05-28 | 国网湖北省电力有限公司检修公司 | A production overall process acceptance tool for transformer substation capital construction engineering |
CN112700138A (en) * | 2020-12-31 | 2021-04-23 | 京东数字科技控股股份有限公司 | Method, device and system for road traffic risk management |
CN112901426A (en) * | 2021-02-26 | 2021-06-04 | 中国华能集团清洁能源技术研究院有限公司 | Wind turbine generator blade clearance monitoring device, method, system, equipment and medium |
CN113256102A (en) * | 2021-05-20 | 2021-08-13 | 中国安全生产科学研究院 | High-risk technological process risk control method and system |
CN114282839A (en) * | 2021-12-30 | 2022-04-05 | 贵州省交通规划勘察设计研究院股份有限公司 | A safety risk management system for mountain highway construction |
CN114553554A (en) * | 2022-02-24 | 2022-05-27 | 上海交通大学宁波人工智能研究院 | Terminal trust management and trusted access system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Whelan | Computers, obsolescence, and productivity | |
Deng et al. | Inter-company comparison using modified TOPSIS with objective weights | |
Lukić | Analysis if the Efficiency of Trade in Oil Derivatives in Serbia by Applying the Fuzzy AHP-TOPSIS Method | |
CN114282697A (en) | A method and system for determining the differentiated performance of equipment suppliers | |
CN108460191A (en) | The preferred method of machine tool beam design scheme based on quality function deployment | |
CN114693193A (en) | Equipment scientific research project risk factor evaluation system and method | |
Dytczak et al. | Benefits and costs in selecting fuel for municipality heating systems with the Analytic Hierarchy Process | |
Zhu et al. | Evaluation of the integration of industrialization and information-based entropy AHP–cross-efficiency DEA model | |
CN115759829A (en) | Optimization evaluation method and system for Min Shen military enterprises based on hesitation fuzzy TOPSIS | |
CN116485228A (en) | A method and terminal for evaluating the utilization efficiency of fixed assets of a power grid company | |
CN115689201A (en) | Multi-criteria intelligent decision-making optimization method and system for enterprise resource supply and demand allocation | |
Comisso | Yugoslavia in the 1970's: Self-management and bargaining | |
Turkoglu et al. | Mathematical multiobjective optimization model for trade-offs in small-scale construction projects | |
Mo et al. | Dynamic cost evaluation method of intelligent manufacturing enterprises based on dea model | |
Costea et al. | An integrated two-stage methodology for optimising the accuracy of performance classification models | |
Zhu | Research on Research Performance Evaluation Based on Analytic Hierarchy Process and BP Model | |
Zhu et al. | Risk Assessment of Equipment Research Project Costs Based on FAHP-CRITIC Combined Weights for 2D Cloud Models | |
Owsiński et al. | Structuring a regional problem: aggregation and clustering in orderings | |
Ganesha et al. | Efficiency Measurement using Dea | |
Changbing et al. | Research on productive efficiencies measurement based on three-stage super DEA model: a case of chinese road and bridge enterprises | |
Bian et al. | Research on the Synergy of Subsystem Based on Computer and Network: A Case Study of Cultural Industry and Financial Innovation | |
Fu et al. | Evaluation of Unit Canteen Suppliers Based on Entropy Method and Analytic Hierarchy Process | |
Xu | Research on the cultivation of innovative entrepreneurial talents for digital transformation of enterprises based on association rule algorithm | |
Zhang et al. | Analysis of Assessment of Power Grid Corp Asset Management Based on Set Pair Analysis Model | |
Xu et al. | A peak carbon emission prediction method for enterprises based on IoT blockchain and grey neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220701 |