CN114692441B - A loess landslide stability prediction method, electronic equipment and storage medium - Google Patents
A loess landslide stability prediction method, electronic equipment and storage medium Download PDFInfo
- Publication number
- CN114692441B CN114692441B CN202210146901.6A CN202210146901A CN114692441B CN 114692441 B CN114692441 B CN 114692441B CN 202210146901 A CN202210146901 A CN 202210146901A CN 114692441 B CN114692441 B CN 114692441B
- Authority
- CN
- China
- Prior art keywords
- sliding surface
- landslide
- error function
- loess
- shear strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000003860 storage Methods 0.000 title claims abstract description 13
- 230000006870 function Effects 0.000 claims abstract description 84
- 238000005070 sampling Methods 0.000 claims abstract description 28
- 238000004088 simulation Methods 0.000 claims abstract description 28
- 238000004364 calculation method Methods 0.000 claims abstract description 27
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 22
- 230000002068 genetic effect Effects 0.000 claims abstract description 20
- 230000001687 destabilization Effects 0.000 claims abstract description 9
- 238000012512 characterization method Methods 0.000 claims abstract description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 38
- 238000004590 computer program Methods 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000000368 destabilizing effect Effects 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 230000017105 transposition Effects 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 25
- 238000010586 diagram Methods 0.000 description 22
- 238000005457 optimization Methods 0.000 description 14
- 230000009467 reduction Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 239000004927 clay Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012502 risk assessment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
- G06T13/20—3D [Three Dimensional] animation
- G06T13/60—3D [Three Dimensional] animation of natural phenomena, e.g. rain, snow, water or plants
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/23—Dune restoration or creation; Cliff stabilisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Computer Graphics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Hardware Design (AREA)
- Biomedical Technology (AREA)
- Probability & Statistics with Applications (AREA)
- Physiology (AREA)
- Genetics & Genomics (AREA)
- Remote Sensing (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及稳定性预测的技术领域,具体而言,涉及一种黄土滑坡稳定性预测方法、电子设备以及存储介质。The embodiments of the present application relate to the technical field of stability prediction, and in particular, relate to a loess landslide stability prediction method, electronic equipment, and a storage medium.
背景技术Background technique
随着经济的高速发展,工程建设、农业灌溉和资源开发等人类活动越来越频繁,却也在发展过程中伴随着滑坡地质灾害频发的问题,滑坡地质灾害体现出数量多、分布广、损失大的特点,因此,为了保护人民生命和财产的安全,对滑坡的风险评估与防控显得尤为重要。With the rapid development of the economy, human activities such as engineering construction, agricultural irrigation and resource development are becoming more and more frequent, but they are also accompanied by the frequent occurrence of landslide geological disasters in the process of development. Landslide geological disasters reflect a large number, wide distribution, Therefore, in order to protect the safety of people's lives and property, the risk assessment and prevention and control of landslides are particularly important.
获取准确可靠的物理力学计算参数是开展滑坡稳定性评价的基本前提条件,目前经过大量的试验研究已经获得了大量用于研究滑坡稳定性的参数,例如滑带土残余强度参数、在不同围压以及剪切速率下饱和重塑黄土的抗剪强度,这些试验成果为黄土滑坡稳定性研究提供了重要的数据支撑,但是室内试验研究不确定因素较多,难以获得原状黄土的物理力学参数。同时,由于尺度效应问题,试验研究成果难以表征真实滑坡灾害的参数特征。Obtaining accurate and reliable physical and mechanical calculation parameters is the basic prerequisite for the evaluation of landslide stability. At present, a large number of parameters for the study of landslide stability have been obtained through a large number of experimental studies, such as the residual strength parameters of the sliding zone soil, different confining pressure As well as the shear strength of the saturated remolded loess at the shear rate, these test results provide important data support for the study of the stability of loess landslides, but there are many uncertain factors in the laboratory test research, and it is difficult to obtain the physical and mechanical parameters of the undisturbed loess. At the same time, due to the problem of scale effect, it is difficult for experimental research results to characterize the parameter characteristics of real landslide hazards.
根据滑坡灾害观测信息开展参数反分析,为获取可靠的黄土滑坡计算参数提供了一种重要途径,例如利用滑坡前坡体几何和物理参数反演获得非饱和黄土滑坡黏聚力和内摩擦角,基于极限平衡理论通过临界圆弧滑动面的判别,推导出参数反演的显示表达式,并开展了边坡稳定性参数反演分析;基于三维上限分析理论研究了滑坡抗剪强度参数可靠度反分析方法。Carrying out parameter back analysis based on landslide disaster observation information provides an important way to obtain reliable loess landslide calculation parameters. Based on the limit equilibrium theory, the display expression of the parameter inversion is deduced through the discrimination of the critical arc sliding surface, and the inversion analysis of the slope stability parameters is carried out; based on the three-dimensional upper limit analysis theory, the reliability inversion of the shear strength parameters of the landslide is studied. Analytical method.
虽然上述这些研究成果在一定程度上提高了滑坡稳定性计算参数的准确性,但大多只考虑稳定性系数或者变形特征作为约束条件,从而使得反分析的结果的可靠性并不理想,因此,如何提高反分析的参数结果,并利用反分析的参数结果预测滑坡的稳定性是一个亟待解决的问题。Although the above research results have improved the accuracy of landslide stability calculation parameters to a certain extent, most of them only consider the stability coefficient or deformation characteristics as constraints, which makes the reliability of the back analysis results unsatisfactory. Therefore, how to It is an urgent problem to improve the parametric results of the back analysis and use the parametric results of the back analysis to predict the stability of the landslide.
发明内容Contents of the invention
本申请实施例提供一种黄土滑坡稳定性预测方法、电子设备以及存储介质,旨在获得更可靠的反分析结果,并更准确地预测滑坡的稳定性。The embodiments of the present application provide a loess landslide stability prediction method, electronic equipment and a storage medium, aiming at obtaining more reliable back analysis results and more accurately predicting the stability of the landslide.
第一方面,本申请实施例提供一种黄土滑坡稳定性预测方法,所述方法包括:In the first aspect, the embodiment of the present application provides a method for predicting the stability of loess landslides, the method comprising:
获取目标地区的抗剪强度参数,所述抗剪强度参数包括多组天然黄土的有效黏聚力、多组天然黄土的有效内摩擦角、多组饱和黄土的有效黏聚力以及多组饱和黄土的有效内摩擦角的数据,根据所述抗剪强度参数构建抗剪强度参数均值误差函数;Obtain the shear strength parameters of the target area, the shear strength parameters include the effective cohesion of multiple groups of natural loess, the effective internal friction angles of multiple groups of natural loess, the effective cohesion of multiple groups of saturated loess, and the effective cohesion of multiple groups of saturated loess According to the data of the effective internal friction angle, construct the shear strength parameter mean value error function according to the shear strength parameter;
根据目标滑坡的第一次失稳的滑面观测信息,以及通过有限差分数值模拟计算确定的临界滑动面,构建滑面位置误差函数;According to the observation information of the sliding surface of the first instability of the target landslide and the critical sliding surface determined by the finite difference numerical simulation calculation, the sliding surface position error function is constructed;
对所述抗剪强度参数进行抽样,根据抽样得到的黏聚力数据与内摩擦角数据,通过有限差分强度折减法计算得到滑坡稳定性系数,构建滑坡稳定性系数误差函数;The shear strength parameter is sampled, and according to the cohesion data obtained by sampling and the internal friction angle data, the landslide stability coefficient is calculated by the finite difference strength reduction method, and the error function of the landslide stability coefficient is constructed;
结合所述抗剪强度参数均值误差函数、所述滑面位置误差函数以及所述滑坡稳定性系数误差函数,基于多组随机抽样样本利用遗传算法进行多次迭代,得到最优参数组,其中,最优参数组包括最优的天然黄土的有效黏聚力、天然黄土的有效内摩擦角、饱和黄土的有效黏聚力以及饱和黄土的有效内摩擦角;In combination with the error function of the mean value of the shear strength parameter, the error function of the position of the sliding surface and the error function of the coefficient of stability of the landslide, based on multiple groups of random sampling samples, the genetic algorithm is used to perform multiple iterations to obtain the optimal parameter group, wherein, The optimal parameter group includes the effective cohesion of natural loess, the effective internal friction angle of natural loess, the effective cohesion of saturated loess and the effective internal friction angle of saturated loess;
根据所述目标滑坡的其他参数与所述最优参数组,在Flac模型中构建模拟滑动面,对比所述模拟滑动面与所述目标滑坡的第一失稳的滑面观测信息的一致性;According to other parameters of the target landslide and the optimal parameter group, construct a simulated sliding surface in the Flac model, and compare the consistency of the first unstable sliding surface observation information of the simulated sliding surface and the target landslide;
在所述一致性表征正确的情况下,通过Flac模型得到所述目标滑坡的稳定性预测结果,所述预测结果包括后续失稳的稳定性系数与滑面信息。When the consistency characterization is correct, the stability prediction result of the target landslide is obtained through the Flac model, and the prediction result includes the stability coefficient and sliding surface information of subsequent instability.
可选地,根据所述抗剪强度参数构建抗剪强度参数均值误差函数,包括:Optionally, constructing a shear strength parameter mean error function according to the shear strength parameters, including:
分别计算多组天然黄土的有效黏聚力、多组天然黄土的有效内摩擦角、多组饱和黄土的有效黏聚力以及多组饱和黄土的有效内摩擦角各自的均值与标准差,并假设均值与标准差服从正态分布;Calculate the effective cohesion of multiple groups of natural loess, the effective internal friction angle of multiple groups of natural loess, the effective cohesion of multiple groups of saturated loess, and the effective internal friction angle of multiple groups of saturated loess respectively. The mean and standard deviation obey the normal distribution;
根据计算得到的均值与标准差,构建抗剪强度参数均值误差函数。According to the calculated mean and standard deviation, the error function of the mean value of the shear strength parameters is constructed.
可选地,构建的所述抗剪强度参数均值误差函数为:Optionally, the constructed mean error function of the shear strength parameter is:
式中,x为抗剪强度参数向量,μx为各参数的均值,表示各参数的协方差矩阵的逆矩阵,T表示矩阵转置。In the formula, x is the shear strength parameter vector, μ x is the mean value of each parameter, Represents the inverse matrix of the covariance matrix of each parameter, and T represents the matrix transpose.
可选地,根据目标滑坡第一次失稳的滑面观测信息,以及通过有限差分数值模拟计算确定的临界滑动面,构建滑面位置误差函数,包括:Optionally, according to the observation information of the sliding surface of the first instability of the target landslide and the critical sliding surface determined by the finite difference numerical simulation calculation, the sliding surface position error function is constructed, including:
根据目标滑坡第一次失稳的滑面观测信息,选取第一次失稳的滑面上的多个特征坐标点;According to the observation information of the sliding surface of the first instability of the target landslide, a plurality of characteristic coordinate points on the sliding surface of the first instability are selected;
通过多次有限差分数值模拟计算确定多个临界滑动面,分别在每个所述临界滑面上获取多个特征坐标点;Determining a plurality of critical sliding surfaces through multiple finite difference numerical simulation calculations, and obtaining a plurality of characteristic coordinate points on each of the critical sliding surfaces;
根据所述第一次失稳的滑面上的多个特征坐标点与每个所述临界滑面上的多个特征坐标点,构建滑面位置误差函数。A sliding surface position error function is constructed according to the multiple characteristic coordinate points on the sliding surface of the first instability and the multiple characteristic coordinate points on each of the critical sliding surfaces.
可选地,根据目标滑坡第一次失稳的滑面观测信息,以及通过有限差分数值模拟计算确定的临界滑动面,构建滑面位置误差函数,包括:Optionally, according to the observation information of the sliding surface of the first instability of the target landslide and the critical sliding surface determined by the finite difference numerical simulation calculation, the sliding surface position error function is constructed, including:
根据目标滑坡第一次失稳的滑面观测信息,选取第一次失稳的滑面上的5个特征坐标点,记为(ai,bi),其中,i=1,2,3,4,5;According to the observation information of the sliding surface of the first instability of the target landslide, select 5 characteristic coordinate points on the sliding surface of the first instability, denoted as (a i , b i ), where i=1, 2, 3 , 4, 5;
通过多次有限差分数值模拟计算确定多个临界滑动面,获取每个临界滑面上的5个特征坐标点,记为(xi,yi),其中,i=1,2,3,4,5;Multiple critical sliding surfaces are determined through multiple finite difference numerical simulation calculations, and five characteristic coordinate points on each critical sliding surface are obtained, denoted as (xi , y i ), where i=1, 2, 3, 4 , 5;
根据第一次失稳的滑面上的5个特征坐标点与临界滑面上的5个特征坐标点,构建的滑面位置误差函数为:According to the 5 characteristic coordinate points on the sliding surface of the first instability and the 5 characteristic coordinate points on the critical sliding surface, the position error function of the sliding surface is constructed as follows:
可选地,对所述抗剪强度参数进行抽样,根据抽样得到的黏聚力数据与内摩擦角数据,通过有限差分强度折减法计算得到滑坡稳定性系数,构建滑坡稳定性系数误差函数,包括:Optionally, the shear strength parameters are sampled, and according to the cohesion data and internal friction angle data obtained by sampling, the landslide stability coefficient is calculated by the finite difference strength reduction method, and the error function of the landslide stability coefficient is constructed, including :
对所述抗剪强度参数进行抽样,根据抽样得到的黏聚力数据与内摩擦角数据,通过有限差分强度折减法计算得到滑坡稳定性系数;Sampling the shear strength parameters, and calculating the landslide stability coefficient by the finite difference strength reduction method according to the cohesion data and internal friction angle data obtained by sampling;
假设所述目标滑坡失稳时的稳定性系数为1;Assuming that the stability factor when the target landslide is unstable is 1;
构建的滑坡稳定性系数误差函数为:The constructed landslide stability coefficient error function is:
f3(x)=(FS(x)-1)f 3 (x)=(FS(x)-1)
式中,FS为有限差分强度折减法计算得到滑坡稳定性系数。In the formula, FS is the landslide stability coefficient calculated by the finite difference strength reduction method.
第二方面,本申请实施例提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现实施例第一方面所述的方法。In the second aspect, the embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the computer program is implemented when the processor executes the computer program. Embodiment The method described in the first aspect.
第三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现实施例第一方面所述的方法。In a third aspect, an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described in the first aspect of the embodiment is implemented.
有益效果:Beneficial effect:
通过构建三个函数,即抗剪强度参数均值误差函数、滑面位置误差函数以及滑坡稳定性系数误差函数,并结合遗传算法,对多组随机抽样样本进行迭代计算,从而得到最优参数组,最优参数组包括最优的天然黄土的有效黏聚力、天然黄土的有效内摩擦角、饱和黄土的有效黏聚力以及饱和黄土的有效内摩擦角;然后利用最优参数组据以及目标滑坡的其他参数,在Flac模型中构建模拟滑动面,对比模拟滑动面与目标滑坡实际的第一失稳的滑面观测信息的一致性,在所述一致性表征正确的情况下,通过Flac模型得到目标滑坡的稳定性预测结果,预测结果包括后续失稳的稳定性系数与滑面信息。By constructing three functions, namely, the error function of the mean value of the shear strength parameters, the error function of the sliding surface position and the error function of the landslide stability coefficient, and combining the genetic algorithm, iteratively calculates multiple groups of random sampling samples to obtain the optimal parameter set. The optimal parameter set includes the optimal natural loess effective cohesion, natural loess effective internal friction angle, saturated loess effective cohesion and saturated loess effective internal friction angle; then using the optimal parameter set data and the target landslide other parameters, construct a simulated sliding surface in the Flac model, and compare the consistency of the simulated sliding surface with the actual observation information of the first unstable sliding surface of the target landslide. The stability prediction result of the target landslide, the prediction result includes the stability coefficient and sliding surface information of the subsequent instability.
本方法考虑到滑坡的第一次失稳时的滑面观测信息、抗剪强度参数信息以及稳定性系数,通过设置三个函数对反分析设定更多的优化约束条件,可以获得更加可靠的反分析结果,进而可以对目标滑坡的稳定性状态和临界滑面进行有效预测。This method takes into account the observation information of the sliding surface, the shear strength parameter information and the stability coefficient at the first instability of the landslide, and sets more optimization constraints for the back analysis by setting three functions, so as to obtain a more reliable The back analysis results can then effectively predict the stability state and critical sliding surface of the target landslide.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments of the present application. Obviously, the accompanying drawings in the following description are only some embodiments of the present application , for those skilled in the art, other drawings can also be obtained according to these drawings without paying creative labor.
图1是本申请一实施例提出的黄土滑坡稳定性预测方法的步骤流程图;Fig. 1 is the step flowchart of the loess landslide stability prediction method that an embodiment of the present application proposes;
图2是本申请一实施例提出的已失稳的目标滑坡的滑面示意图;Fig. 2 is a schematic diagram of the sliding surface of the destabilized target landslide proposed by an embodiment of the present application;
图3是本申请一实施例提出的反分析过程的流程图;Fig. 3 is the flowchart of the anti-analysis process that an embodiment of the present application proposes;
图4是本申请一实施例提出的滑坡纵剖面图;Fig. 4 is the landslide vertical profile that an embodiment of the present application proposes;
图5是本申请一实施例提出的党川2#滑坡未发生滑坡时的模拟结果;Fig. 5 is the simulated result when the Dangchuan 2# landslide that an embodiment of the application proposes does not take place landslide;
图6是本申请一实施例提出的遗传算法的收敛情况示意图;Fig. 6 is a schematic diagram of the convergence of the genetic algorithm proposed by an embodiment of the present application;
图7是本申请一实施例提出的Pareto多目标优化结果示意图;Fig. 7 is a schematic diagram of the Pareto multi-objective optimization result proposed by an embodiment of the present application;
图8是本申请一实施例提出的第一次失稳中模拟滑动面与实际滑动面的对比示意图;Fig. 8 is a schematic diagram of the comparison between the simulated sliding surface and the actual sliding surface in the first instability proposed by an embodiment of the present application;
图9是本申请一实施例提出的第二次失稳中预测滑动面的示意图;Fig. 9 is a schematic diagram of the predicted sliding surface in the second instability proposed by an embodiment of the present application;
图10(a)是本申请一实施例提出的第二次失稳的第一轮模拟获得的失稳范围示意图;Fig. 10 (a) is a schematic diagram of the instability range obtained by the first round of simulation of the second instability proposed by an embodiment of the present application;
图10(b)是本申请一实施例提出的第二次失稳的第二轮模拟获得的失稳范围示意图;Fig. 10(b) is a schematic diagram of the instability range obtained by the second round of simulation of the second instability proposed by an embodiment of the present application;
图10(c)是本申请一实施例提出的第二次失稳的第三轮模拟获得的失稳范围示意图。Fig. 10(c) is a schematic diagram of the instability range obtained from the third round of simulation of the second instability proposed by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present application with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of this application.
为了保护人民生命和财产的安全,对滑坡的风险评估与防控显得尤为重要,本申请为了获得更加可靠的反分析结果,进而对滑坡的稳定性状态和临界滑面进行有效预测,提出了一种黄土滑坡稳定性预测方法。In order to protect the safety of people's lives and property, the risk assessment and prevention and control of landslides are particularly important. In order to obtain more reliable back analysis results and effectively predict the stability state and critical sliding surface of landslides, this application proposes a A method for predicting the stability of loess landslides.
参照图1,示出了本发明实施例中的一种黄土滑坡稳定性预测方法的步骤流程图,如图1,所述方法包括以下步骤:With reference to Fig. 1, the step flowchart of a kind of loess landslide stability prediction method in the embodiment of the present invention is shown, and as Fig. 1, described method comprises the following steps:
S101、获取目标地区的抗剪强度参数,所述抗剪强度参数包括多组天然黄土的有效黏聚力、多组天然黄土的有效内摩擦角、多组饱和黄土的有效黏聚力以及多组饱和黄土的有效内摩擦角的数据,根据所述抗剪强度参数构建抗剪强度参数均值误差函数。S101. Obtain the shear strength parameters of the target area, the shear strength parameters include the effective cohesion of multiple groups of natural loess, the effective internal friction angles of multiple groups of natural loess, the effective cohesion of multiple groups of saturated loess, and the effective cohesion of multiple groups of natural loess. The data of the effective internal friction angle of the saturated loess is used to construct the mean error function of the shear strength parameter according to the shear strength parameter.
首先,获取进行反分析和稳定性预测的滑坡所在的地区的抗剪强度参数,包括多组天然黄土的有效黏聚力、多组天然黄土的有效内摩擦角、多组饱和黄土的有效黏聚力以及多组饱和黄土的有效内摩擦角的数据,获取的途径本申请中不作限制,示例地,可以通过查阅文献收集获取27组天然黄土的有效黏聚力,27组天然黄土的有效内摩擦角、18组饱和黄土的有效黏聚力以及18组饱和黄土的有效内摩擦角,获取得到的抗剪强度参数构成一个数据集。First, obtain the shear strength parameters of the area where the landslide is located for back analysis and stability prediction, including the effective cohesion of multiple groups of natural loess, the effective internal friction angle of multiple groups of natural loess, and the effective cohesion of multiple groups of saturated loess. force and the effective internal friction angle data of multiple groups of saturated loess, the acquisition method is not limited in this application, for example, the effective cohesion of 27 groups of natural loess, the effective internal friction of 27 groups of natural loess can be obtained by consulting the literature angle, the effective cohesion of 18 groups of saturated loess and the effective internal friction angle of 18 groups of saturated loess, and the obtained shear strength parameters constitute a data set.
在一种实施方式中,本实施例还提供一种构建抗剪强度参数均值误差函数的方法,包括:In one implementation, this embodiment also provides a method for constructing a mean error function of the shear strength parameter, including:
分别计算多组天然黄土的有效黏聚力、多组天然黄土的有效内摩擦角、多组饱和黄土的有效黏聚力以及多组饱和黄土的有效内摩擦角各自的均值与标准差;Calculate the effective cohesion of multiple groups of natural loess, the effective internal friction angle of multiple groups of natural loess, the effective cohesion of multiple groups of saturated loess, and the effective internal friction angle of multiple groups of saturated loess respectively.
根据计算得到的均值与标准差,构建抗剪强度参数均值误差函数;According to the calculated mean and standard deviation, construct the mean error function of the shear strength parameters;
示例地,构建的所述抗剪强度参数均值误差函数为:Exemplarily, the constructed mean error function of the shear strength parameter is:
式中,x为抗剪强度参数向量,μx为各参数的均值,表示各参数的协方差矩阵的逆矩阵,T表示矩阵转置。In the formula, x is the shear strength parameter vector, μ x is the mean value of each parameter, Represents the inverse matrix of the covariance matrix of each parameter, and T represents the matrix transpose.
由于抗剪强度参数中包括上述的4个参数,且每个参数的均值的影响各不相同,因此还可以使用无偏差模型降低各参数的均值的影响。Since the shear strength parameters include the above four parameters, and the influence of the mean value of each parameter is different, the unbiased model can also be used to reduce the influence of the mean value of each parameter.
S102、根据目标滑坡的第一次失稳的滑面观测信息,以及通过有限差分数值模拟计算确定的临界滑动面,构建滑面位置误差函数。S102. Construct a sliding surface position error function according to the sliding surface observation information of the first instability of the target landslide and the critical sliding surface determined through the finite difference numerical simulation calculation.
在一种可行的实施方式中,本步骤可以包括以下步骤:In a feasible implementation manner, this step may include the following steps:
S1:根据目标滑坡的第一次失稳的滑面观测信息,选取第一次失稳的滑面上的多个特征坐标点;S1: According to the observation information of the sliding surface of the first instability of the target landslide, select multiple characteristic coordinate points on the sliding surface of the first instability;
S2:通过多次有限差分数值模拟计算确定多个临界滑动面,分别在每个所述临界滑面上获取多个特征坐标点;S2: Determining a plurality of critical sliding surfaces through multiple finite difference numerical simulation calculations, and obtaining a plurality of characteristic coordinate points on each of the critical sliding surfaces;
本步骤中,根据遗传算法每次迭代过程中多组参数数据,进行多次有限差分数值模拟计算得到多个临界滑动面,然后在每个临界滑动面上获取多个特征坐标点,在每个临界滑动面上获取的特征坐标点的个数与第一次失稳的滑面上的特征坐标点的个数相同。In this step, according to multiple sets of parameter data in each iteration of the genetic algorithm, multiple finite difference numerical simulations are performed to obtain multiple critical sliding surfaces, and then multiple characteristic coordinate points are obtained on each critical sliding surface. The number of characteristic coordinate points obtained on the critical sliding surface is the same as the number of characteristic coordinate points on the first unstable sliding surface.
S3:根据所述第一次失稳的滑面上的多个特征坐标点与所述临界滑面上的多个特征坐标点,构建滑面位置误差函数。S3: Construct a sliding surface position error function according to the multiple characteristic coordinate points on the first unstable sliding surface and the multiple characteristic coordinate points on the critical sliding surface.
参照图2,示出了已失稳的目标滑坡的滑面示意图,示例地,在实际实施过程中,根据目标滑坡的第一次失稳的滑面观测信息,将滑面在x方向等分为四段,可以获得5个特征坐标点记为(ai,bi),其中,i=1,2,3,4,5,将这5个坐标点的位置信息作为实际滑面的位置信息;其中,最左侧的特征坐标点为剪出口位置,最右侧的特征坐标点为后缘拉裂缝位置。Referring to Fig. 2, it shows a schematic diagram of the sliding surface of the target landslide that has become unstable. As an example, in the actual implementation process, the sliding surface is equally divided in the x direction according to the observation information of the sliding surface of the first instability of the target landslide For four segments, 5 characteristic coordinate points can be obtained as (a i , b i ), where i=1, 2, 3, 4, 5, and the position information of these 5 coordinate points is used as the position of the actual sliding surface Information; among them, the leftmost characteristic coordinate point is the position of the shear outlet, and the rightmost characteristic coordinate point is the position of the trailing edge tension crack.
通过多次有限差分数值模拟计算确定多个临界滑动面,对每个临界滑面分别选取5个特征坐标点,记为(xi,yi),其中,i=1,2,3,4,5。Multiple critical sliding surfaces are determined through multiple finite difference numerical simulation calculations, and five characteristic coordinate points are selected for each critical sliding surface, denoted as (xi , y i ), where i=1, 2, 3, 4 , 5.
然后根据第一次失稳的滑面上的5个特征坐标点与临界滑面上的5个特征坐标点,构建的滑面位置误差函数为:Then, according to the 5 characteristic coordinate points on the sliding surface of the first instability and the 5 characteristic coordinate points on the critical sliding surface, the position error function of the sliding surface is constructed as follows:
在其他实施方式中,还可以对i设置其他的数值。In other implementation manners, other numerical values may also be set for i.
本实施例通过Flac提取临界滑动面,具体地,为获得给定参数条件下黄土滑坡的临界滑面,通过Flac内置Fish语言编程提取单元节点位移信息,导入到MATLAB中使用K-means聚类算法识别滑动的单元体,从而实现临界滑动面的提取。This embodiment uses Flac to extract the critical sliding surface. Specifically, in order to obtain the critical sliding surface of the loess landslide under given parameter conditions, the unit node displacement information is extracted through Flac built-in Fish language programming, and imported into MATLAB to use the K-means clustering algorithm Identify the sliding unit body, so as to realize the extraction of the critical sliding surface.
K-means算法的目标是将n个对象,依据对象间的相似性聚集到指定的k个类簇中,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中。每一个对象到每一个聚类中心的欧式距离如下式所示:The goal of the K-means algorithm is to gather n objects into k specified clusters according to the similarity between objects, and each object belongs to and only belongs to one cluster with the smallest distance to the center of the cluster. The Euclidean distance from each object to each cluster center is as follows:
式中,Ai表示第i个对象,Cj表示第j个聚类中心;Ai,t表示第i个对象的第t个属性,Cj,t表示第j个聚类中心的第t个属性,t=1,2,…,m。In the formula, A i represents the i-th object, C j represents the j-th clustering center; A i,t represents the t-th attribute of the i-th object, and C j,t represents the t-th property of the j-th clustering center attributes, t=1, 2,..., m.
依次比较每一个对象到每一个聚类中心的距离,将对象分配到距离最近的聚类中心的类簇中,得到k个类簇{S1,S2,…,Sk}。本申请仅考虑节点位移属性,因此t=1;其属性可分为有节点位移和无节点位移,即k=2。Compare the distance from each object to each cluster center in turn, assign the object to the cluster with the closest distance to the cluster center, and obtain k clusters {S1, S2, ..., Sk}. This application only considers the node displacement attribute, so t=1; its attributes can be divided into node displacement and no node displacement, ie k=2.
S103、对所述抗剪强度参数进行抽样,根据抽样得到的黏聚力数据与内摩擦角数据,通过有限差分强度折减法计算得到滑坡稳定性系数,构建滑坡稳定性系数误差函数。S103. Sampling the shear strength parameters, calculating the landslide stability coefficient through the finite difference strength reduction method according to the cohesion data and internal friction angle data obtained by sampling, and constructing an error function of the landslide stability coefficient.
对步骤S101中获得的抗剪强度参数,包括多组天然黄土的有效黏聚力、多组天然黄土的有效内摩擦角、多组饱和黄土的有效黏聚力以及多组饱和黄土的有效内摩擦角的数据进行随机抽样,得到遗传算法的随机抽样样本。The shear strength parameters obtained in step S101 include effective cohesion of multiple groups of natural loess, effective internal friction angles of multiple groups of natural loess, effective cohesion of multiple groups of saturated loess, and effective internal friction of multiple groups of saturated loess The corner data is randomly sampled to obtain a random sample of the genetic algorithm.
在一种实施方式中,根据随机抽样得到的黏聚力数据与内摩擦角数据,使用FLAC有限差分软件自带的强度折减法进行边坡稳定性分析,通过下列公式进行抗剪强度参数折减,直到目标滑坡到达了极限平衡状态,此时的折减系数即为目标滑坡的稳定性系数FS,具体公式如下:In one embodiment, according to the cohesion data and internal friction angle data obtained by random sampling, the slope stability analysis is performed using the strength reduction method that comes with the FLAC finite difference software, and the shear strength parameters are reduced by the following formula , until the target landslide reaches the limit equilibrium state, the reduction factor at this time is the stability factor FS of the target landslide, and the specific formula is as follows:
cr=c/FSc r =c/FS
式中,c为黏聚力数据;为内摩擦角数据;cr折减后的土体黏聚力;和为折减后的内摩擦角。In the formula, c is cohesion data; is the internal friction angle data; the soil cohesion after reduction of c r ; and is the reduced internal friction angle.
假设所述目标滑坡失稳时的稳定性系数为1,构建的滑坡稳定性系数误差函数为:Assuming that the stability coefficient of the target landslide is 1, the constructed landslide stability coefficient error function is:
f3(x)=(FS(x)-1)f 3 (x)=(FS(x)-1)
式中,FS为有限差分强度折减法计算得到滑坡稳定性系数。In the formula, FS is the landslide stability coefficient calculated by the finite difference strength reduction method.
本方法中,提前将三个误差函数写入遗传算法中,在遗传算法执行的过程中,将对应的参数带入误差函数中即可。In this method, the three error functions are written into the genetic algorithm in advance, and the corresponding parameters are brought into the error function during the execution of the genetic algorithm.
S104、结合所述抗剪强度参数均值误差函数、所述滑面位置误差函数以及所述滑坡稳定性系数误差函数,基于多组随机抽样样本利用遗传算法进行多次迭代,得到最优参数组,其中,最优参数组包括最优的天然黄土的有效黏聚力、天然黄土的有效内摩擦角、饱和黄土的有效黏聚力以及饱和黄土的有效内摩擦角。S104. Combining the error function of the mean value of the shear strength parameter, the error function of the position of the sliding surface, and the error function of the coefficient of stability of the landslide, multiple iterations are performed using a genetic algorithm based on multiple groups of random sampling samples to obtain an optimal parameter set, Among them, the optimal parameter group includes the effective cohesion of natural loess, the effective internal friction angle of natural loess, the effective cohesion of saturated loess and the effective internal friction angle of saturated loess.
本实施例中采用的遗传算法是NSGA-II遗传算法,NSGA-II是一种基于Pareto最优解并带有精英保留策略的快速非支配多目标优化遗传算法。其主要分为以下三大计算部分:The genetic algorithm used in this embodiment is the NSGA-II genetic algorithm, which is a fast non-dominated multi-objective optimization genetic algorithm based on the Pareto optimal solution and with an elite retention strategy. It is mainly divided into the following three calculation parts:
1、Pareto解集快速非支配排序;1. Pareto solution set fast non-dominated sorting;
2、计算拥挤度和拥挤度比较算子;2. Calculate the congestion degree and the congestion degree comparison operator;
3、交叉迭代,优胜劣汰进行精英保留策略筛选最优参数点。3. Cross-iteration, survival of the fittest and selection of optimal parameter points by elite retention strategy.
通过不断重复以上三个步骤,最终达到目标迭代计算次数或收敛条件,求出最优的Pareto解集并输出。By repeating the above three steps, the target number of iterative calculations or convergence conditions are finally reached, and the optimal Pareto solution set is obtained and output.
参照图3,示出了本申请实施例提供的反分析过程的流程图,首先构建100组随机抽样样本,其中每组随机抽样样本中包括四个样本参数,包括天然黄土的有效黏聚力、天然黄土的有效内摩擦角、饱和黄土的有效黏聚力以及饱和黄土的有效内摩擦角,遗传算法中100组随机抽样样本中各参数的可抽样范围可以是,抗剪强度参数构成的数据集中对应参数的最小值到最大值的范围内,每组随机抽样样本中各个参数的100组值服从步骤S101中计算的得到均值与标准差的正态分布。Referring to Fig. 3, it shows the flow chart of the reverse analysis process that the embodiment of the present application provides, first constructs 100 groups of random sampling samples, wherein includes four sample parameters in each group of random sampling samples, including the effective cohesion of natural loess, The effective internal friction angle of natural loess, the effective cohesion of saturated loess, and the effective internal friction angle of saturated loess, the sampling range of each parameter in 100 groups of random sampling samples in genetic algorithm can be, the data set composed of shear strength parameters Within the range from the minimum value to the maximum value of the corresponding parameter, the 100 sets of values of each parameter in each group of random sampling samples obey the normal distribution of the mean and standard deviation calculated in step S101.
初始迭代次数n=0时,根据100组随机抽样样本,分别在Flac模型中进行数值模拟,将每次模拟结果分别输入抗剪强度参数均值误差函数f1(x)中得到第一函数值,将100组随机抽样样本数值模拟计算得到滑动面计算数据分别带入滑面位置误差函数f2(x)中得到第二函数值,以及数值模拟计算得到的将稳定性系数计算数据分别带入稳定性系数误差函数f3(x)得到第三函数值,通过三个函数的约束,然后将得到的计算结果输入遗传算法中的交叉变异的步骤中,在进行n=1次迭代时,利用三个函数值对样本进行优化计算,如此循环,指导迭代次数n=nmax,nmax是自定义设置的目标迭代次数,此时输出Pareto解集,Pareto解集中包括三个函数的值。When the initial number of iterations n=0, according to 100 groups of random samples, numerical simulations were carried out in the Flac model, and the results of each simulation were input into the mean value error function f 1 (x) of the shear strength parameters to obtain the first function value, Put 100 groups of random sampling samples into the sliding surface calculation data obtained by numerical simulation calculation into the sliding surface position error function f 2 (x) to obtain the second function value, and bring the stability coefficient calculation data obtained from numerical simulation into the stable The coefficient error function f 3 (x) obtains the value of the third function, passes the constraints of the three functions, and then inputs the obtained calculation result into the step of cross-variation in the genetic algorithm. When n=1 iterations are performed, the three functions are used Each function value is used to optimize the calculation of the sample, and in this way, the number of iterations is guided to n=n max , where n max is the target number of iterations set by the user. At this time, the Pareto solution set is output, and the Pareto solution set includes the values of three functions.
示例地,遗传算法根据初始的100组随机抽样样本,通过三个优化函数的计算结果保留剩下10个相对最优的样本,然后再随机抽样90组样本,把10个相对最优的样本和90组新抽取的样本一起组成100组样本,继续通过三个优化函数进行约束,如此反复直到迭次完成,得到最优Pareto解集,从最优Pareto解集中可以选出最优点;其中,将三个误差函数提前写入遗传算法中,在每次迭代时,根据多组样本带入对应的参数即可。As an example, based on the initial 100 groups of random sampling samples, the genetic algorithm retains the remaining 10 relatively optimal samples through the calculation results of the three optimization functions, and then randomly
本方法中构建了三个函数,因此本申请的Pareto解集应该是一个三维坐标系。如果定义一组非支配Pareto解的等级为1,将其从解集中去除,在剩下的解集中定义Pareto解等级为2,重复以上过程,直到所有的Pareto解集等级被划分完成,则可以得到解集中所有Pareto解的等级,其中达到目标迭代计算次数或收敛条件时,靠坐标原点最近的Pareto解为最优Pareto解集。Three functions are constructed in this method, so the Pareto solution set of this application should be a three-dimensional coordinate system. If the level of a set of non-dominated Pareto solutions is defined as 1, it is removed from the solution set, the Pareto solution level is defined as 2 in the remaining solution set, and the above process is repeated until all the Pareto solution set levels are divided, then it can be Get the ranks of all Pareto solutions in the solution set, and when the target number of iteration calculations or convergence conditions are reached, the Pareto solution closest to the coordinate origin is the optimal Pareto solution set.
在获得最优Pareto解集后,需要选取其中的最优点作为多目标优化反分析的最终解,因为抗剪强度参数误差、滑面误差和稳定性系数的误差量纲不同,因此本实施例首先要进行无量纲化,具体地选用欧几里德无量纲方法:After obtaining the optimal Pareto solution set, it is necessary to select the optimal point as the final solution of the multi-objective optimization back analysis, because the error dimensions of the shear strength parameter error, sliding surface error and stability coefficient are different, so this embodiment first To perform dimensionless, specifically the Euclidean dimensionless method is chosen:
式中,表示无量纲化后的Pareto解集,Fi表示在多目标优化后的Pareto解曲线上的点,n代表Pareto解集上的点个数。In the formula, Represents the dimensionless Pareto solution set, F i represents the point on the Pareto solution curve after multi-objective optimization, and n represents the number of points on the Pareto solution set.
本实施例选用LINMAP法确定Pareto解集最优点,首先计算Pareto解集中的点到最理想解点的距离:This embodiment selects the LINMAP method to determine the optimal point of the Pareto solution set, first calculates the distance from the point in the Pareto solution set to the optimal solution point:
式中,q为目标数量,表示在q个目标优化下的理想点。In the formula, q is the target quantity, Denotes the ideal point under optimization of q objectives.
最后,选择的最优点ifinal为:Finally, the selected optimal point i final is:
ifinal=i∈min(di+)i final =i∈min(d i+ )
式中,di+为Pareto解集中的点到最理想解点的距离。In the formula, d i+ is the distance from the point in the Pareto solution set to the optimal solution point.
在得到Pareto解集最优点后,确定最优点对应的最优参数组,最优参数组包括最优的天然黄土的有效黏聚力、天然黄土的有效内摩擦角、饱和黄土的有效黏聚力以及饱和黄土的有效内摩擦角。After obtaining the optimal point of Pareto solution set, determine the optimal parameter group corresponding to the optimal point, the optimal parameter group includes the optimal effective cohesion of natural loess, the effective internal friction angle of natural loess, and the effective cohesion of saturated loess and the effective internal friction angle of saturated loess.
S105、根据所述目标滑坡的其他参数与所述最优参数组,在Flac模型中构建模拟滑动面,对比所述模拟滑动面与所述目标滑坡的第一失稳的滑面观测信息的一致性。S105. According to other parameters of the target landslide and the optimal parameter group, construct a simulated sliding surface in the Flac model, and compare the consistency between the simulated sliding surface and the first unstable sliding surface observation information of the target landslide sex.
所述目标滑坡的其他参数包括尺寸参数,结构参数以及渗流参数等,与最优参数组结合,在Flac模型中构建模拟滑动面,然后将模拟滑动面与所述目标滑坡的第一失稳的滑面观测信息进行比较,即判断模拟滑动面和实际滑面之间的一致性。Other parameters of the target landslide include size parameters, structural parameters and seepage parameters, etc., which are combined with the optimal parameter group to construct a simulated sliding surface in the Flac model, and then combine the simulated sliding surface with the first instability of the target landslide. The observation information of the sliding surface is compared, that is, the consistency between the simulated sliding surface and the actual sliding surface is judged.
S106、在所述一致性表征正确的情况下,通过Flac模型得到所述目标滑坡的稳定性预测结果,所述预测结果包括后续失稳的稳定性系数与滑面信息。S106. If the consistency characterization is correct, obtain a stability prediction result of the target landslide through the Flac model, and the prediction result includes a stability coefficient and slip surface information of subsequent instability.
通过构建三个函数,即抗剪强度参数均值误差函数、滑面位置误差函数以及滑坡稳定性系数误差函数,并结合遗传算法,对多组随机抽样样本进行迭代计算,从而得到最优参数组,最优参数组包括最优的天然黄土的有效黏聚力、天然黄土的有效内摩擦角、饱和黄土的有效黏聚力以及饱和黄土的有效内摩擦角;然后利用最优参数组数据以及目标滑坡的其他参数,在Flac模型中构建模拟滑动面,对比模拟滑动面与目标滑坡实际的第一失稳的滑面观测信息的一致性,在所述一致性表征正确的情况下,通过Flac模型得到目标滑坡的稳定性预测结果,预测结果包括后续失稳的稳定性系数与滑面信息。在一种实施方式中,除了预测目标滑坡的稳定性,还可以对相似的滑坡进行预测。By constructing three functions, namely, the error function of the mean value of the shear strength parameters, the error function of the sliding surface position and the error function of the landslide stability coefficient, and combining the genetic algorithm, iteratively calculates multiple groups of random sampling samples to obtain the optimal parameter set. The optimal parameter set includes the optimal effective cohesion of natural loess, effective internal friction angle of natural loess, effective cohesion of saturated loess and effective internal friction angle of saturated loess; then use the optimal parameter set data and the target landslide other parameters, construct a simulated sliding surface in the Flac model, and compare the consistency of the simulated sliding surface with the actual observation information of the first unstable sliding surface of the target landslide. The stability prediction result of the target landslide, the prediction result includes the stability coefficient and sliding surface information of the subsequent instability. In one embodiment, in addition to predicting the stability of the target landslide, it is also possible to predict similar landslides.
本方法考虑到滑坡的第一次失稳时的滑面观测信息、抗剪强度参数信息以及稳定性系数,通过设置三个函数对反分析设定更多的优化约束条件,可以获得更加可靠的反分析结果,进而可以对目标滑坡的稳定性状态和临界滑面进行有效预测。This method takes into account the observation information of the sliding surface, the shear strength parameter information and the stability coefficient at the first instability of the landslide, and sets more optimization constraints for the back analysis by setting three functions, so as to obtain a more reliable The back analysis results can then effectively predict the stability state and critical sliding surface of the target landslide.
示例地,以黑方台党川2#滑坡为例,采用本方法进行反分析第一次失稳,并预测第二次失稳。As an example, taking Heifangtai Dangchuan 2# landslide as an example, this method is used to back-analyze the first instability and predict the second instability.
黑方台位于甘肃省永靖县黄河北岸,黑方台台塬面积约11.5km2,冲沟中发育最长的虎狼沟将黑方台分为两部分:西边面积较小的为方台,约1.5km2;东边面积较大的为黑台,约9km2。党川2#滑坡发生过两次静态液化型失稳破坏,其中,第一次失稳滑体长度约20m,平均宽度约115m,面积约8396m2;第二次失稳包括3轮滑动,总面积约27422m2。Heifangtai is located on the north bank of the Yellow River in Yongjing County, Gansu Province. The area of the Heifangtai platform is about 11.5km 2 . The longest Hulanggou in the gully divides Heifangtai into two parts: the smaller area in the west is Fangtai, About 1.5km 2 ; the larger area in the east is Heitai, about 9km 2 . The Dangchuan 2# landslide has suffered two static liquefaction instability failures, among which the length of the first instability slide is about 20m, the average width is about 115m, and the area is about 8396m 2 ; The area is about 27422m 2 .
A1:根据对党川2#滑坡构建Flac模型。A1: Construct the Flac model based on the Dangchuan 2# landslide.
参照图4,示出了滑坡纵剖面图,滑坡地层岩性从上至下分别为黄土,厚约20-50m;粉质黏土,厚约4-20m;砂卵石层,厚约1-8m;泥岩、砂质泥岩,产状135°∠11°。Referring to Figure 4, it shows a longitudinal section of the landslide. The lithology of the landslide formation from top to bottom is loess, about 20-50m thick; silty clay, about 4-20m thick; sandy pebble layer, about 1-8m thick; Mudstone, sandy mudstone, occurrence 135°∠11°.
参照图5,示出了党川2#滑坡未发生滑坡时的模拟结果,该滑坡失稳破坏主要发生在黄土层中,运动过程中部分铲刮粉质黏土层,因此,选取黄土层和部分粉质黏土层建立Flac模型,模型高50m,上宽260m,底部宽300m,采用定水头边界。Referring to Figure 5, it shows the simulation results of the Dangchuan 2# landslide when no landslide occurred. The instability and damage of the landslide mainly occurred in the loess layer, and part of the silty clay layer was scraped during the movement. Therefore, the loess layer and some The Flac model is established in the silty clay layer, the model is 50m high, 260m wide at the top, and 300m wide at the bottom, using a constant head boundary.
黑方台地区的渗流模式比较复杂,是基质渗流和优势渗流的结合,由于粉质黏土的渗水性差,地下水在黄土底部富集并沿台塬边渗出,当在高灌溉量下,由优势渗流起主导作用,所以此处仅考虑优势渗流,在FLAC中GWflow模式下,使用快速饱和流方式,使得底部黄土迅速达到饱和状态,模拟高灌溉量水流通过黄土层的缝隙及裂隙快速达到底部;具体地,渗流模拟参数如表1所示。The seepage pattern in the Heifangtai area is relatively complex, which is a combination of matrix seepage and dominant seepage. Due to the poor permeability of silty clay, groundwater is enriched at the bottom of the loess and seeps out along the edge of the plateau. Seepage plays a leading role, so only dominant seepage is considered here. In the GWflow mode in FLAC, the fast saturated flow method is used to make the bottom loess quickly reach a saturated state, simulating high irrigation water flow through the gaps and fissures of the loess layer to quickly reach the bottom; Specifically, the seepage simulation parameters are shown in Table 1.
表1各土层的渗流参数Table 1 seepage parameters of each soil layer
渗流模拟得出渗流水流从黄土层与粉质黏土层交界处流出,与实际相符,确定水位线以下为饱和黄土层,最终得到党川2#滑坡的F l ac模型。The seepage simulation shows that the seepage water flows out from the junction of the loess layer and the silty clay layer, which is consistent with the actual situation. It is determined that the saturated loess layer is below the water level line, and finally the F l ac model of the Dangchuan 2# landslide is obtained.
A2:获取黑方台地区黄土抗剪强度参数,并计算各个参数的均值与标准差。A2: Obtain the shear strength parameters of the loess in the Heifangtai area, and calculate the mean and standard deviation of each parameter.
通过搜集大量黑方台滑坡的滑带土试验研究成果,获得抗剪强度参数,即分别获得天然黄土和饱和黄土的有效黏聚力和有效内摩擦角,并对其进行统计分析,计算得到均值与标准差,结果如表2所示。而粉质黏土层黏聚力为50kPa,内摩擦角为30°。By collecting a large number of test results of sliding zone soil of Heifangtai landslide, the shear strength parameters are obtained, that is, the effective cohesion and effective internal friction angle of natural loess and saturated loess are respectively obtained, and statistical analysis is performed on them, and the average value is calculated. and the standard deviation, the results are shown in Table 2. The cohesion of the silty clay layer is 50kPa, and the internal friction angle is 30°.
表2参数均值及标准差Table 2 Parameter mean and standard deviation
A3:构建三个优化目标函数,即抗剪强度参数均值误差函数、滑面位置误差函数以及滑坡稳定性系数误差函数。A3: Construct three optimization objective functions, namely, the error function of the mean value of shear strength parameters, the error function of the position of the sliding surface, and the error function of the landslide stability coefficient.
A4:确定反分析的最优参数组并进行反演。A4: Determine the optimal parameter set for inverse analysis and perform inversion.
参照图6,示出了遗传算法迭代25次后的收敛情况示意图,参照图7示出了Pareto多目标优化结果示意图;构建遗传算法的100组随机抽样样本,结合三个优化目标函数对100组随机抽样样本迭代25次,得到多目标优化的Pareto解集,选用LINMAP法确定Pareto解集最优点,图7中星号点即为Pareto解集最优点。Referring to Figure 6, it shows a schematic diagram of the convergence of the genetic algorithm after 25 iterations, and a schematic diagram of the Pareto multi-objective optimization result is shown with reference to Figure 7; 100 groups of random sampling samples of the genetic algorithm are constructed, and 100 groups of them are combined with three optimization objective functions The random sampling sample was iterated 25 times to obtain the Pareto solution set of multi-objective optimization, and the LINMAP method was used to determine the optimal point of the Pareto solution set. The asterisk point in Figure 7 is the optimal point of the Pareto solution set.
根据Pareto解集最优点确定反分析的最优参数组,得到的结果为:天然黄土有效黏聚力为20.09kPa,有效内摩擦角为22.7°;饱和黄土有效黏聚力为12.21kPa,有效内摩擦为29.6°;对应的稳定性系数为0.97。According to the optimal point of Pareto solution set to determine the optimal parameter group for back analysis, the results obtained are: the effective cohesion of natural loess is 20.09kPa, the effective internal friction angle is 22.7°; the effective cohesion of saturated loess is 12.21kPa, and the effective internal friction angle is 22.7°. The friction is 29.6°; the corresponding stability coefficient is 0.97.
参照图8,示出了第一次失稳中模拟滑动面与实际滑动面的对比示意图。如图8,将最优参数组代入Flac模型进行反演,进而获得对应的模拟滑动面,并与第一次失稳滑动中实际滑动面进行对比,对比显示,虽然在滑面后缘有些许差异,但是反分析计算获得的临界滑面与实际观察滑面一致性较好。Referring to FIG. 8 , it shows a schematic diagram of the comparison between the simulated sliding surface and the actual sliding surface in the first instability. As shown in Figure 8, the optimal parameter group is substituted into the Flac model for inversion, and then the corresponding simulated sliding surface is obtained, and compared with the actual sliding surface in the first instability sliding, the comparison shows that although there is a slight However, the critical sliding surface calculated by back analysis is in good agreement with the actual observed sliding surface.
A5:利用Flac模型预测滑坡的第二次失稳滑动,生成稳定性预测结果,预测结果包括后续失稳的滑面信息与稳定性系数。A5: Use the Flac model to predict the second destabilization slide of the landslide, and generate the stability prediction results. The prediction results include the sliding surface information and stability coefficient of the subsequent destabilization.
参照图9,示出了第二次失稳中预测滑动面的示意图。由于第二次失稳滑动与第一次失稳滑动之间仅间隔约3小时,短时间内黄土物理力学参数以及水位变化不大,因此可忽略不计,进而可将基于第一次失稳观察信息反分析获得的黄土抗剪强度参数用于第二次失稳滑动预测。Referring to Fig. 9, a schematic diagram of the predicted sliding surface in the second instability is shown. Since the interval between the second destabilizing slide and the first destabilizing sliding is only about 3 hours, the physical and mechanical parameters of the loess and the water level do not change much in a short period of time, so they can be ignored. The shear strength parameters of loess obtained from information back analysis are used for the second instability sliding prediction.
第二次失稳滑动的范围更大,分为3轮滑动,3轮滑动之间间隔时间过短,只记录到第三轮滑动的滑面信息,第一轮和第二轮滑动仅记录到后缘点位置信息。The scope of the second unsteady sliding is larger, divided into 3 rounds of sliding, the interval between the 3 rounds of sliding is too short, only the sliding surface information of the third round of sliding is recorded, and only the first and second rounds of sliding are recorded The location information of the trailing edge point.
图10(a)为第二次失稳的第一轮模拟获得的失稳范围示意图,其预测得到的稳定性系数为1.02;10(b)为第二次失稳的第二轮模拟获得的失稳范围示意图,其预测得到的稳定性系数为1.01;10(c)为第二次失稳的第三轮模拟获得的失稳范围示意图,其预测得到的计算稳定性系数为1.12。Fig. 10(a) is a schematic diagram of the instability range obtained in the first round of simulation of the second instability, and the predicted stability coefficient is 1.02; Fig. 10(b) is the result obtained in the second round of simulation of the second instability Schematic diagram of the instability range, the predicted stability coefficient is 1.01; 10(c) is a schematic diagram of the instability range obtained from the third round of simulation of the second instability, and the predicted calculated stability coefficient is 1.12.
将对党川2#滑坡的第二次失稳滑动的预测结果与实际的失稳观察结果进行对比,吻合度较高,应用本方法成功预测了第二次失稳中的3轮滑动行为,预测临界滑面与实际观察滑面基本一致,仅第三轮滑面形态有较大差别。其次,3轮失稳预测的稳定性系数均接近1。其中第一和第二轮预测的稳定性系数分别为1.02和1.01,表示滑坡基本处于欠稳定状态,并接近极限平衡状态;第三轮预测的稳定性系数为1.12,表明滑坡处于基本稳定状态。Comparing the prediction results of the second instability sliding of Dangchuan 2# landslide with the actual instability observation results, the coincidence degree is high, and the three rounds of sliding behavior in the second instability are successfully predicted by using this method. The predicted critical sliding surface is basically the same as the actually observed sliding surface, only the shape of the third wheel sliding surface is quite different. Secondly, the stability coefficients of the three rounds of instability prediction are all close to 1. The stability coefficients of the first and second round predictions are 1.02 and 1.01 respectively, indicating that the landslide is basically in an under-stable state and close to the limit equilibrium state; the stability coefficient of the third round prediction is 1.12, indicating that the landslide is in a basically stable state.
通过上述示例,表明本方法的反分析结果和预测结果效果优异,通过结合三个优化目标函数,即抗剪强度参数均值误差函数、滑面位置误差函数以及滑坡稳定性系数误差函数,得到更可靠的反分析结果,从而更准确的预测后续滑坡的稳定性。Through the above examples, it is shown that the back analysis results and prediction results of this method are excellent. By combining three optimization objective functions, namely, the error function of the mean value of shear strength parameters, the error function of the position of the sliding surface and the error function of the landslide stability coefficient, a more reliable The results of the back analysis can predict the stability of the subsequent landslide more accurately.
本申请实施例还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现实施例所述的方法。An embodiment of the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor implements the computer program described in the embodiment when executing the computer program. described method.
本申请实施例一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现实施例所述的方法。An embodiment of the present application is a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method described in the embodiment is implemented.
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the embodiments of the present application may be provided as methods, devices, or computer program products. Therefore, the embodiment of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor or processor of other programmable data processing terminal equipment to produce a machine such that instructions executed by the computer or processor of other programmable data processing terminal equipment Produce means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded into a computer or other programmable data processing terminal equipment, so that a series of operational steps are performed on the computer or other programmable terminal equipment to produce computer-implemented processing, thereby The instructions executed above provide steps for implementing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。While the preferred embodiments of the embodiments of the present application have been described, additional changes and modifications can be made to these embodiments by those skilled in the art once the basic inventive concept is understood. Therefore, the appended claims are intended to be interpreted to cover the preferred embodiment and all changes and modifications that fall within the scope of the embodiments of the application.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。Finally, it should also be noted that in this text, relational terms such as first and second etc. are only used to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations, any such actual relationship or order exists. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or terminal equipment comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements identified, or also include elements inherent in such a process, method, article, or end-equipment. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or terminal device comprising said element.
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。In this paper, specific examples are used to illustrate the principles and implementation methods of the application. The descriptions of the above embodiments are only used to help understand the method and core idea of the application; meanwhile, for those of ordinary skill in the art, according to the application There will be changes in the specific implementation and scope of application. In summary, the content of this specification should not be construed as limiting the application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210146901.6A CN114692441B (en) | 2022-02-17 | 2022-02-17 | A loess landslide stability prediction method, electronic equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210146901.6A CN114692441B (en) | 2022-02-17 | 2022-02-17 | A loess landslide stability prediction method, electronic equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114692441A CN114692441A (en) | 2022-07-01 |
CN114692441B true CN114692441B (en) | 2023-05-09 |
Family
ID=82136953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210146901.6A Active CN114692441B (en) | 2022-02-17 | 2022-02-17 | A loess landslide stability prediction method, electronic equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114692441B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115879325B (en) * | 2023-02-22 | 2023-06-09 | 西南交通大学 | Sliding surface shear strength parameter inversion method, device, equipment and readable storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109408944A (en) * | 2018-10-19 | 2019-03-01 | 河海大学 | Expansive soil slope failure by leaking method for analyzing stability based on complete softening intensity |
CN110457651A (en) * | 2019-07-05 | 2019-11-15 | 中国地质大学(武汉) | An Improved Landslide Displacement Prediction Method Using Data Assimilation |
CN111914481A (en) * | 2020-07-27 | 2020-11-10 | 山西大学 | Slope Stability Prediction Method Based on Improved PSO-RBF Algorithm |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6763393B2 (en) * | 2015-09-14 | 2020-09-30 | 日本電気株式会社 | Disaster prediction system, water content prediction device, disaster prediction method and program recording medium |
-
2022
- 2022-02-17 CN CN202210146901.6A patent/CN114692441B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109408944A (en) * | 2018-10-19 | 2019-03-01 | 河海大学 | Expansive soil slope failure by leaking method for analyzing stability based on complete softening intensity |
CN110457651A (en) * | 2019-07-05 | 2019-11-15 | 中国地质大学(武汉) | An Improved Landslide Displacement Prediction Method Using Data Assimilation |
CN111914481A (en) * | 2020-07-27 | 2020-11-10 | 山西大学 | Slope Stability Prediction Method Based on Improved PSO-RBF Algorithm |
Non-Patent Citations (2)
Title |
---|
Image-Data-Driven Slope Stability Analysis for Preventing Landslides Using Deep Learning;Behnam Azmoon等;《IEEE Access》;第150623-150636页 * |
兰州石峡口地区斜坡稳定性趋势预测;徐秀娟;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;第C038-305页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114692441A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108256177A (en) | A kind of parameter optimization method and system of river Water-sand model | |
CN103827698A (en) | Cluster 3d petrophysical uncertainty modeling | |
CN104991999A (en) | Dam bursting flood routing simulation method based on two-dimensional SPH | |
CN113033108B (en) | A Slope Reliability Judgment Method Based on AdaBoost Algorithm | |
CN108563837A (en) | A kind of the model parameter real-time correction method and system of alluvial stream Water-sand model | |
CN117078111B (en) | A carbon dioxide storage capacity assessment method and system | |
CN118013703B (en) | Permeability analysis method, computer equipment and storage medium for rock shear process | |
CN104615896A (en) | Method for estimating uncertainty of indexes of integrity of sedimentary cover of carbon dioxide geological sequestration site | |
CN114692441B (en) | A loess landslide stability prediction method, electronic equipment and storage medium | |
CN112861890A (en) | Reservoir evaluation model construction method and reservoir identification method | |
Caten et al. | An appropriate data set size for digital soil mapping in Erechim, Rio Grande do Sul, Brazil | |
CN112562078A (en) | Three-dimensional geological analysis prediction model construction method | |
Dekkers et al. | Resource assessment: estimating the potential of a geothermal reservoir | |
CN116539482A (en) | Method and device for detecting migration of phosphorus element in river, electronic equipment and storage medium | |
Han et al. | Multiple point geostatistical simulation with adaptive filter derived from neural network for sedimentary facies classification | |
Seifollahi et al. | An enhanced stochastic optimization in fracture network modelling conditional on seismic events | |
CN118798653A (en) | A method for evaluating and predicting landslide hazard in reservoir areas under rainfall conditions | |
CN103477248A (en) | Computerized method for the estimation of a value for at least a parameter of a hydrocarbon-producing region, for planning the operation and operating the region | |
Inkpen et al. | Using morphospaces to understand tafoni development | |
Mantilla et al. | Feedback control of polymer flooding process considering geologic uncertainty | |
CN116467943B (en) | Method for determining landslide rainfall threshold curve based on machine learning | |
CN112100878A (en) | Method for establishing time domain sequence stratigraphic section by using forward modeling of sedimentation | |
Christelis et al. | Employing surrogate modelling for the calibration of a 2D flood simulation model | |
CN115511341A (en) | A method and device for evaluating landslide time-varying failure probability | |
Rodrigues et al. | Meshless method using fundamental solution applied to computational simulation of groundwater flow of real aquifers: study case (Guariroba’s APA and Juazeiro do Norte) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |