CN114689600A - 一种桥梁混凝土结构表面裂缝检测方法及系统 - Google Patents
一种桥梁混凝土结构表面裂缝检测方法及系统 Download PDFInfo
- Publication number
- CN114689600A CN114689600A CN202210336041.2A CN202210336041A CN114689600A CN 114689600 A CN114689600 A CN 114689600A CN 202210336041 A CN202210336041 A CN 202210336041A CN 114689600 A CN114689600 A CN 114689600A
- Authority
- CN
- China
- Prior art keywords
- concrete structure
- bridge
- bridge concrete
- panoramic image
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 17
- 230000004913 activation Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 20
- 239000000463 material Substances 0.000 abstract description 3
- 230000036541 health Effects 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract 1
- 238000012549 training Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30132—Masonry; Concrete
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种桥梁混凝土结构表面裂缝检测方法及系统,属于混凝土结构表面损伤检测技术领域,包括:远程操作工业无人机对桥梁混凝土结构表面进行拍摄,获取混凝土表面图片;对获取混凝土表面照片进行图片拼接,获取桥梁混凝土结构表面全景图像;将桥梁混凝土结构表面全景图像输入卷积神经网络(Convolutional Neural Networks,CNN)模型,将识别存在表面裂缝的区域进行标记,最后将标记完成的结果输出到全景图像中。相比传统的桥梁健康监测方法,能够以图片输入、以图片输出,快速准确识别目标,无需大量人力物力,具有实际工程意义。
Description
技术领域
本发明涉及桥梁混凝土结构损伤检测技术领域,特别是涉及一种桥梁混凝土结构表面裂缝检测方法及系统。
背景技术
我国在基础建设取得卓越成效的过程中建设了大规模的混凝土桥梁,但现如今的桥梁建设发展已经进入了维护检修周期,桥梁经过了数十年的工作服役,不可避免地会在桥梁混凝土结构表面产生大量裂缝。结构关键部位如果出现裂缝,将显著降低桥梁承载力,使桥梁暂停运行数周乃至数月,这将大大降低城市运输效率,影响人们出行,严重情况下甚至可能造成桥梁崩塌,出现大规模人员伤亡事故,对桥梁上行人与过往车辆的行驶安全造成严重威胁。因此,裂缝的产生与发展对桥梁的服役健康有着至关重要的影响,需要建立一套成熟可靠且经济便捷的桥梁损伤检测系统,对桥梁进行长期定期的检测,保证混凝土桥梁服役工作的安全。
目前桥梁检测的主要方法还停留在使用桥梁检测车,桥梁检测车分为折叠臂式和桁架式两种,将检测人员托送至桥梁底部或侧面进行人工目视检测,但是这种方法不仅需要耗费大量人力物力,效率十分低下,桥梁检测车的检测平台伸缩经常收到桥侧电线杆与护栏的影响,而且人工检测容易出现安全事故,检测人员的作业风险较高。
为解决上述问题,本发明提出一种桥梁混凝土结构表面裂缝检测方法及系统。该检测方法及系统通过驾驶工业无人机对桥梁混凝土结构表面进行拍摄,获取裂缝图片,对获取裂缝图片进行图片拼接,获取桥梁混凝土结构表面全景图像,将桥梁混凝土结构表面全景图像输入卷积神经网络模型,将识别存在裂缝的区域进行标记,最后将标记完成的结果输出到全景图像中,如同设计图纸一般的桥梁整体全景图像,可向工程师提供直观的检测结果。相比传统的桥梁损伤检测方法,能够以图片输入、以图片输出,快速准确识别目标,无需大量人力物力,降低人员作业风险,有效提升检验效率,可实现桥梁损伤检测系统的自动化流程,显著降低桥梁运维成本,具有实际工程意义。
发明内容
针对现有技术存在的问题,本发明提供一种桥梁混凝土结构表面裂缝检测方法及系统,在提高检测效率的基础上,可实现桥梁损伤检测系统的自动化流程,并同时具备经济性和系统性,具有实际工程意义。
本发明的目的是通过以下技术方案来实现的:一种桥梁混凝土结构表面裂缝检测方法及系统,具体包括如下步骤:
(1)数据采集端:驾驶工业无人机对待测桥梁混凝土结构表面多区域图像进行拍摄;所述待测桥梁混凝土结构表面多区域图像之间相邻区域重叠率大于75%;将所述待测桥梁混凝土结构表面多区域图像传输至电脑。
(2)数据处理端:将待测桥梁混凝土结构表面多区域图像储存路径导入至图像拼接算法中,基于Harris角点检测相邻图像的关键点特征,基于SIFT算法对所述关键点特征进行不变特征描述符计算,基于所述关键点特征和不变特征描述符,在相邻图像上匹配点对,得到匹配点对,基于RANSAC算法和匹配的特征来估计单应矩阵,基于所述单应矩阵进行仿射变换,对待测桥梁混凝土结构表面多区域图像相邻图片进行拼接,获取桥梁混凝土结构表面全景图像;将所述桥梁混凝土结构表面全景图像输入卷积神经网络(ConvolutionalNeural Networks,CNN)模型,以所述桥梁混凝土结构表面全景图像的左下图像角点作为坐标原点建立二维坐标系,将全景图像分割成多个128*128像素的局部图片,分别对所述128*128像素的局部图片进行裂缝识别,所述卷积神经网络共有5个Block,前三个Block由3个卷积层组成,卷积层有32个滤波器,每个卷积层后面都连接Max Pooling和Dropout层,每个卷积层的激活函数均为ReLU,Block 4为一个GlobalAveragePooling2D层连接在卷积层后,Block 5是一个全连接层,最后是输出层,输出层激活函数使用Sigmoid函数,损失函数是二元交叉熵,使用Adam作为优化器,输出结果为“Negative”和“Positive”,识别出裂缝的图片为“Positive”,将识别为“Positive”的图片进行标记;将识别为“Positive”的图片及其坐标信息标记到桥梁混凝土结构表面全景图像上。
(3)结果输出端:最后将标记完成的桥梁混凝土结构表面全景图像输出。
有益效果:本发明采用卷积神经网络模型检测裂缝,3个卷积层可以在保证检测结果的准确性的同时提高检测速度,Max Pooling层可以减少计算参数的数量,降低运算成本,卷积层后连接的Dropout层可以有效地防止过拟合,该神经网络结构简洁有效,输出结果是如同设计图纸一般的桥梁整体全景图像,可向工程师提供直观的检测结果。相比传统的桥梁损伤检测方法,能够以图片输入、以图片输出,快速准确识别目标,无需大量人力物力,在提高检测效率的基础上,可实现桥梁损伤检测系统的自动化流程,有效降低桥梁运维成本,同时具备经济型和系统性,具有实际工程意义。
附图说明:
图1为本发明提供的一种桥梁混凝土结构表面裂缝检测方法及系统流程图;
图2为本发明提供的卷积神经网络模型结构示意图;
图3为本发明实施例实验中在裂缝图像识别训练时的损失曲线;
图4为本发明实施例实验中在裂缝图像识别训练时的准确率曲线;
图5为本发明实施例实验中卷积神经网络识别128*128像素图片的输出结果示例图。
具体实施方式:
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
如图1为本发明提供的一种桥梁混凝土结构表面裂缝检测方法及系统流程图,具体包括如下步骤:
(1)数据采集端:驾驶工业无人机对待测桥梁混凝土结构表面多区域图像进行拍摄;所述待测桥梁混凝土结构表面多区域图像之间相邻区域重叠率应至少大于75%;拍摄顺序从桥梁混凝土结构的一端至另一端,保持同等高度,无人机拍摄倾角保持不变,无人机航向沿桥梁平行前进;将所述待测桥梁混凝土结构表面多区域图像传输至电脑。
(2)数据处理端:将待测桥梁混凝土结构表面多区域图像导入至图像拼接算法中,基于Harris角点检测相邻图像的关键点特征,基于SIFT算法对所述关键点特征进行不变特征描述符计算,基于所述关键点特征和不变特征描述符,在相邻图像上匹配点对,得到匹配点对,基于RANSAC算法和匹配的特征来估计单应矩阵,基于所述单应矩阵进行仿射变换,对待测桥梁混凝土结构表面多区域图像相邻图像进行拼接。在拼接图片的四边都添加5像素的边框,对拼接图片建立灰度背景并进行阈值处理,以白色作为拼接图像轮廓,以黑色作为背景,对轮廓进行提取,计算出拼接图像轮廓的边界框,提取感兴趣区域(Region ofInterest,ROI),最终获取桥梁混凝土结构表面全景图像。将所述桥梁混凝土结构表面全景图像输入卷积神经网络(Convolutional Neural Networks,CNN)模型,以所述桥梁混凝土结构表面全景图像的左下图像角点作为坐标原点建立二维坐标系,将全景图像分割成多个128*128像素的局部图片,分别对所述128*128像素的局部图片进行裂缝识别。图2为本发明提供的卷积神经网络模型结构示意图,所述卷积神经网络模型共有5个Block,前三个Block由3个卷积层组成,卷积层有32个滤波器,每个卷积层后面都连接Max Pooling和,MaxPooling层减少输入的参数,缩短运行时间,减少计算量,Dropout层增强网络的鲁棒性,使得网络不容易产生过拟合,可以保持较高的预测精度,每个卷积层的激活函数均为ReLU;Block 4为一个GlobalAveragePooling2D层连接在卷积层后;Block 5是一个全连接层,最后是输出层,输出层激活函数使用Sigmoid函数,损失函数是二元交叉熵,使用Adam作为优化器。图3为本发明实施例实验中在裂缝图像识别训练时的损失曲线,在50个训练周期(Epoch)中,损失值(Loss)从最初的0.16迅速下降到了0.0066,并趋于稳定,快速收敛。图4为本发明实施例实验中在裂缝图像识别训练时的准确率曲线,在50个训练周期(Epoch)中,准确率(Accuracy)从最初的0.9327上升到了0.9981,后续准确率保持在99%以上,该神经网络训练后用于裂缝识别的收敛速度良好,具有很好的鲁棒性和泛化能力。图五为本发明实施例实验中卷积神经网络识别128*128像素图片的输出图片示例图。将导入的多个128*128像素的局部图片分类为“Negative”和“Positive”,识别出裂缝的图片为“Positive”,未识别出裂缝的图片为“Negative”,将识别为“Positive”的图片进行标记,然后将识别为“Positive”的图片及其坐标信息标记到桥梁混凝土结构表面全景图像上。
(3)结果输出端:最后将标记完成的桥梁混凝土结构表面全景图像输出。完整的桥梁底面或侧面全景图像,令工程师更加直观进行裂缝损伤的识别和分类。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (1)
1.一种桥梁混凝土结构表面裂缝检测方法及系统,其特征在于,具体包括以下步骤:
(1)数据采集端:驾驶工业无人机对待测桥梁混凝土结构表面多区域图像进行拍摄;所述待测桥梁混凝土结构表面多区域图像之间相邻区域重叠率大于75%;将所述待测桥梁混凝土结构表面多区域图像传输至电脑。
(2)数据处理端:将待测桥梁混凝土结构表面多区域图像导入至图像拼接算法中,基于Harris角点检测相邻图像的关键点特征,基于SIFT算法对所述关键点特征进行不变特征描述符计算,基于所述关键点特征和不变特征描述符,在相邻图像上匹配点对,得到匹配点对,基于RANSAC算法和匹配的特征来估计单应矩阵,基于所述单应矩阵进行仿射变换,对待测桥梁混凝土结构表面多区域图像相邻图片进行拼接,获取桥梁混凝土结构表面全景图像;将所述桥梁混凝土结构表面全景图像输入卷积神经网络(Convolutional NeuralNetworks,CNN)模型,以所述桥梁混凝土结构表面全景图像的左下图像角点作为坐标原点建立二维坐标系,将全景图像分割成多个128*128像素的局部图片,分别对所述128*128像素的局部图片进行裂缝识别,所述卷积神经网络共有5个Block,前三个Block由3个卷积层组成,卷积层有32个滤波器,每个卷积层后面都连接Max Pooling和Dropout层,每个卷积层的激活函数均为ReLU,Block 4为一个GlobalAveragePooling2D层连接在卷积层后,Block5是一个全连接层,最后是输出层,输出层激活函数使用Sigmoid函数,损失函数是二元交叉熵,使用Adam作为优化器,输出结果为“Negative”和“Positive”,识别出裂缝的图片为“Positive”,将识别为“Positive”的图片进行标记;将识别为“Positive”的图片及其坐标信息标记到桥梁混凝土结构表面全景图像上。
(3)结果输出端:最后将标记完成的桥梁混凝土结构表面全景图像输出。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210336041.2A CN114689600A (zh) | 2022-03-31 | 2022-03-31 | 一种桥梁混凝土结构表面裂缝检测方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210336041.2A CN114689600A (zh) | 2022-03-31 | 2022-03-31 | 一种桥梁混凝土结构表面裂缝检测方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114689600A true CN114689600A (zh) | 2022-07-01 |
Family
ID=82140292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210336041.2A Pending CN114689600A (zh) | 2022-03-31 | 2022-03-31 | 一种桥梁混凝土结构表面裂缝检测方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114689600A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115311254A (zh) * | 2022-09-13 | 2022-11-08 | 万岩铁路装备(成都)有限责任公司 | 基于Harris-SIFT算法的钢轨轮廓匹配方法 |
CN115790400A (zh) * | 2023-01-17 | 2023-03-14 | 中大智能科技股份有限公司 | 一种应用于桥隧结构安全的机器视觉标靶标定方法 |
CN115953672A (zh) * | 2023-03-13 | 2023-04-11 | 南昌工程学院 | 一种水下大坝表面裂缝识别方法 |
WO2024080436A1 (ko) * | 2022-10-11 | 2024-04-18 | 주식회사 에프디 | 교각 구동장치를 이용한 ai 균열 검출방법 |
-
2022
- 2022-03-31 CN CN202210336041.2A patent/CN114689600A/zh active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115311254A (zh) * | 2022-09-13 | 2022-11-08 | 万岩铁路装备(成都)有限责任公司 | 基于Harris-SIFT算法的钢轨轮廓匹配方法 |
WO2024080436A1 (ko) * | 2022-10-11 | 2024-04-18 | 주식회사 에프디 | 교각 구동장치를 이용한 ai 균열 검출방법 |
CN115790400A (zh) * | 2023-01-17 | 2023-03-14 | 中大智能科技股份有限公司 | 一种应用于桥隧结构安全的机器视觉标靶标定方法 |
CN115953672A (zh) * | 2023-03-13 | 2023-04-11 | 南昌工程学院 | 一种水下大坝表面裂缝识别方法 |
CN115953672B (zh) * | 2023-03-13 | 2024-02-27 | 南昌工程学院 | 一种水下大坝表面裂缝识别方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114689600A (zh) | 一种桥梁混凝土结构表面裂缝检测方法及系统 | |
CN112884064B (zh) | 一种基于神经网络的目标检测与识别方法 | |
Spencer Jr et al. | Advances in computer vision-based civil infrastructure inspection and monitoring | |
Hou et al. | Inspection of surface defects on stay cables using a robot and transfer learning | |
Xue et al. | A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects | |
Song et al. | Real-time tunnel crack analysis system via deep learning | |
Wang et al. | RENet: Rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks | |
CN110197203B (zh) | 基于宽度学习神经网络的桥梁路面裂缝分类识别方法 | |
Li et al. | A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector | |
Wan et al. | Ceramic tile surface defect detection based on deep learning | |
CN110033431B (zh) | 钢桥表面锈蚀区域检测的非接触式检测装置及检测方法 | |
CN112308826B (zh) | 一种基于卷积神经网络的桥梁结构表面缺陷检测方法 | |
WO2024037408A1 (zh) | 一种基于图像融合和特征增强的煤矿井下行人检测方法 | |
CN112330593A (zh) | 基于深度学习网络的建筑物表面裂缝检测方法 | |
CN109886159B (zh) | 一种非限定条件下的人脸检测方法 | |
Fondevik et al. | Image segmentation of corrosion damages in industrial inspections | |
CN108038486A (zh) | 一种文字检测方法 | |
Fu et al. | Extended efficient convolutional neural network for concrete crack detection with illustrated merits | |
Ma et al. | Intelligent detection model based on a fully convolutional neural network for pavement cracks | |
CN114926456A (zh) | 一种半自动标注和改进深度学习的铁轨异物检测方法 | |
CN113449656B (zh) | 一种基于改进的卷积神经网络的驾驶员状态识别方法 | |
Li et al. | Dam Crack Detection Studies by UAV Based on YOLO Algorithm | |
CN117787690A (zh) | 吊装作业安全风险识别方法及识别装置 | |
Zhao et al. | High-resolution infrastructure defect detection dataset sourced by unmanned systems and validated with deep learning | |
Gao et al. | Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |