CN114688958A - 用于指示测量装置探针位置的感应位置检测配置 - Google Patents

用于指示测量装置探针位置的感应位置检测配置 Download PDF

Info

Publication number
CN114688958A
CN114688958A CN202111623134.5A CN202111623134A CN114688958A CN 114688958 A CN114688958 A CN 114688958A CN 202111623134 A CN202111623134 A CN 202111623134A CN 114688958 A CN114688958 A CN 114688958A
Authority
CN
China
Prior art keywords
field generating
coil
probe
perturber
generating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111623134.5A
Other languages
English (en)
Inventor
C.R.哈姆纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/135,672 external-priority patent/US11543899B2/en
Priority claimed from US17/135,665 external-priority patent/US11644298B2/en
Priority claimed from US17/527,655 external-priority patent/US11740064B2/en
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of CN114688958A publication Critical patent/CN114688958A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种用于扫描探头中的探针位置测量的感应位置检测配置,包括沿着探针中的中心轴线布置的探针位置检测部分。探针位置检测部分包括场产生线圈配置以及顶部和底部轴向和旋转感测线圈配置。场产生线圈配置产生变化的磁通量,并且线圈信号指示导电扰动器元件和/或探针位置。场产生线圈耦合和串扰减少配置将信号处理和控制电路耦合到场产生线圈配置以提供线圈驱动信号,并且配置为减少串扰,否则如果场产生线圈配置直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。

Description

用于指示测量装置探针位置的感应位置检测配置
相关申请的交叉引用
本申请是2020年12月28日提交的题为“用于指示测量装置探针位置和包括线圈未对准补偿的感应位置检测配置(INDUCTIVE POSITION DETECTION CONFIGURATION FORINDICATING A MEASUREMENT DEVICE STYLUS POSITION AND INCLUDING COILMISALIGNMENT COMPENSATION)”的美国专利申请号17/135672的部分继续,美国专利申请号17/135672是2019年8月30日提交的题为“用于指示测量装置探针位置的感应位置检测配置”的美国专利申请号16/557719的部分继续,美国专利申请号16/557719是2018年11月1日提交的标题为“用于指示测量装置探针位置的感应位置检测配置”的美国专利申请号16/178295的部分继续,其公开内容通过引用并入本文。
技术领域
本公开涉及精确计量,并且更具体地涉及用于与坐标测量机一起使用的探针的感应型感测配置。
背景技术
坐标测量机(CMM)可以获取被检查工件的测量值。在美国专利No.8,438,746中描述的一种示例性现有技术的CMM包括用于测量工件的探针、用于检测工件的探针、用于移动探针的移动机构、以及用于控制运动的控制器,所述美国专利No.8,438,746的全部内容通过引用并入本文。美国专利No.7,652,275描述了包括表面扫描探头的CMM,所述美国专利No.7,652,275全部内容通过引用并入本文。如其中所公开的,机械接触探针或光学探针可以跨越工件表面扫描。
美国专利6,971,183还描述了采用机械接触探针的CMM,所述美国专利6,971,183全部内容通过引用并入本文。其中公开的探针包括具有表面接触部分的探针、轴向运动机构和旋转运动机构。轴向运动机构包括移动构件,其允许接触部分在测量探针的中心垂直方向(也称为Z方向或轴向方向)上移动。旋转运动机构包括允许接触部分垂直于Z方向移动的旋转构件。轴向运动机构嵌入旋转运动机构的内部。接触部分位置和/或工件表面坐标是基于旋转构件的位移和轴向运动移动构件的轴向位移确定的。
感应式感测技术已知具有环境鲁棒性(robust),并且具有各种理想的感测特性。已知使用精密LVDT等来测量与上述类似的机械接触探针中的各种内部元件的位移或位置。然而,LVDT和其他已知的足够精确地用于CMM探头的感应型传感器可能太大或难以并入,并且相关的运动机构和/或位移检测器布置可能相对昂贵和/或易受各种“交叉耦合”误差影响(例如,由于通常配置和/或机构和/或检测器缺陷等)。全部内容通过引用并入本文的美国专利No.4,810,966,(‘966专利)公开了一种相对平坦且相对经济的感应传感器配置,并且其可以检测附近的导电目标的三维位置。但是,'966专利中公开的配置在提供成功适应CMM扫描探头所必需的精度和/或形状因数方面存在一些设计缺陷。简而言之,'966专利的配置缺乏在诸如CMM探针的现代计量仪器中提供合理水平的精度所必需的复杂性和特征。与使用已知的感应感测系统相关的其他问题(例如上文在CMM探针中概述的那些问题)可包括系统的位移响应固有的信号/响应非线性、由于装配和对准不完全而导致的位置误差、由于环境因素对机械和电气部件造成的信号漂移(例如,由于温度变化等)、各个部件之间的串扰等。需要用于CMM探针的改进的感应感测配置(例如,其中位移检测器配置可不易受上述误差的影响,和/或可相对便宜等)。
发明内容
提供该发明内容是为了以简化的形式介绍将在以下具体实施方式中进一步描述的一些概念。该发明内容不旨在确定所要求保护的主题的关键特征,也不旨在用作帮助确定所要求保护的主题的范围。
提供了3轴响应的扫描探头,其用于测量机(例如,CMM)。扫描探头包括探针悬置部分、探针位置检测部分、信号处理和控制电路以及场产生线圈耦合和串扰减少配置。
探针悬置部分附接到扫描探头的框架,且包括配置为刚性地联接到探针的探针联接部分以及探针运动机构,所述探针运动机构配置为允许探针联接部分沿着轴向方向的轴向运动以及探针联接部分围绕旋转中心的旋转运动。
探针位置检测部分沿着平行于轴向方向并且名义上与旋转中心对准的中心轴线布置,并且基于感应感测原理。探针位置检测部分包括包含至少一个场产生线圈的场产生线圈配置、包含至少一个顶部轴向感测线圈的顶部轴向感测线圈配置(TASCC)、包含至少一个底部轴向感测线圈的底部轴向感测线圈配置(BASCC)、N个顶部旋转感测线圈(TRSC)和N个底部旋转感测线圈(BRSC),其中N是大于3的整数。
扰动器配置包括提供扰动器区域的导电扰动器元件,其沿着中心轴线位于扰动器运动体积中。扰动器元件通过联接配置联接到探针悬置部分,并且响应于探针悬置部分的偏转,在扰动器运动体积中相对于未偏转位置移动。扰动器元件可被描述为响应于轴向运动在沿着轴向方向的操作运动范围+/-Rz上移动,并且响应于旋转运动,在沿着正交于轴向方向的正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上运动。场产生线圈配置响应于线圈驱动信号在扰动器运动体积中产生大致沿轴向方向变化的磁通量。
信号处理和控制电路可操作地连接到探针位置检测部分的线圈以提供线圈驱动信号,且配置为从接收器线圈部分输入信号,所述信号包括由相应的旋转和轴向感测线圈提供的相应的信号分量。其还配置为输出信号,所述信号指示扰动器元件或探针中的至少一个相对于扫描探头的框架的轴向位置或旋转位置。
场产生线圈耦合和串扰减少配置将信号处理和控制电路耦合到至少一个场产生线圈以提供线圈驱动信号,并且配置为减少串扰,否则如果至少一个场产生线圈直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。
在一些实施方式中,场产生线圈耦合和串扰减少配置具有第一上分支和第一下分支。
在一些这样的实施方式中,至少一个场产生线圈包括第一场产生线圈,其限定正交于中心轴线并穿过第一场产生线圈的第一场产生线圈平面,对此所述场产生线圈耦合和串扰减少配置的第一上分支和第一下分支分别位于第一场产生线圈平面的上方和下方。
在一些这样的实施方式中,第一上分支和第一下分支是以下中的至少一个:关于第一场产生线圈平面对称;镜像电流分布配置的一部分;配置为分别在第一场产生线圈平面的上方和下方的近似相等距离和相似的相对X和Y坐标位置承载相似的电流;或者并联连接。
在一些这样的实施方式中,第一上分支包括第一上电容器,第一下分支包括第一下电容器,对此所述第一上电容器和第一下电容器并联连接。
在一些这样的实施方式中,至少一个场产生线圈包括第二场产生线圈,其限定正交于中心轴线并穿过第二场产生线圈的第二场产生线圈平面,对此所述第一场产生线圈和第二场产生线圈分别对应于顶部场产生线圈和底部场产生线圈,并且场产生线圈耦合和串扰减少配置包括分别位于第二场产生线圈平面的上方和下方的第二上分支和第二下分支。在一些这样的实施方式中,第一上分支包括第一上电容器,第一下分支包括第一下电容器,对此所述第一上电容器和第一下电容器并联连接;并且第二上分支包括第二上电容器,第二下分支包括第二下电容器,对此所述第二上电容器和第二下电容器并联连接。
在一些实施方式中,场产生线圈耦合和串扰减少配置具有镜像电流分布配置。在一些这样的实施方式中,镜像电流分布配置包括并联连接的一对电容器。在一些这样的实施方式中,镜像电流分布配置包括三电流分支配置,其包括具有沿第一方向流动的电流的中间电流分支,以及各自耦合到中间电流分支并且具有沿与第一方向大致相反的第二方向流动的电流的上电流分支和下电流分支。
在一些实施方式中,至少一个场产生线圈包括第一场产生线圈。在一些这样的实施方式中,场产生线圈耦合和串扰减少配置包括第一导电耦合部分,包括将第一场产生线圈耦合到信号处理和控制电路的第一导体,对此提供了第一扭转配置,其使得第一导体的贡献抵消。
在一些这样的实施方式中,场产生线圈耦合和串扰减少配置包括将第一场产生线圈耦合到信号处理和控制电路的第一导电耦合部分,以及位于第一场产生线圈和第一导电耦合部分附近用于屏蔽第一导电耦合部分的第一导电屏蔽。在一些这样的实施方式中,场产生线圈耦合和串扰减少配置还包括第二导电屏蔽,该第二导电屏蔽位于相对于中心轴线的第二位置,并且该第一导电屏蔽位于相对于中心轴线的第一位置,对此所述第一位置和第二位置关于中心轴线对称。
在一些实施方式中,方法包括沿着工件的表面移动本文公开的扫描探头,并且当扫描探头沿着工件的表面移动时基于由扫描探头产生的感应感测信号产生三维位置信息。
在一些实施方式中,系统包括本文所公开的扫描探头、驱动机构和附接部分,所述附接部分配置为将驱动机构联接到扫描探头。
先前公知的利用名义上平坦的感测元件的感应传感器对于在精确的扫描探头中的应用来说太不准确。与之相比,利用根据本文公开的各种原理配置的名义上平坦的感测元件的感应传感器提供了一组稳健的信号,并且可用于提供足够的精度以用于精确的扫描探头中的应用。特别地,诸如以上概述的实施方式和/或配置可以提供信号分量,其在消除或允许校正某些信号误差和/或串扰(例如信号交叉耦合)误差方面特别有利,这些信号误差和/或信号交叉耦合误差先前限制了在基于感应式感测的先前经济型三维位置指示器中位置确定的精度。
附图说明
图1是示出测量系统的各种典型部件的图示,该测量系统包括利用诸如本文所公开的扫描探头的CMM;
图2是示出联接到CMM并提供旋转和轴向位置信号的扫描探头的各个元件的框图;
图3是示出与探针联接的探针悬置部分的第一示例性实施方式和用于检测探针悬置部分的位置的探针位置检测部分的第一示例性实施方式的部分的图示;
图4是示出了图3的探针悬置部分的一个实施方式的截面的图示,如包含在扫描探头的主体框架内;
图5是图3和图4所示的探针位置检测部分的替代实施方式的局部示意性等距图,其强调了根据本文公开的原理的某些方面;
图6是图5所示的探针位置检测部分的某些元件的局部示意性等轴图,包括至根据本文公开的原理的处理和控制电路的一种示例性实施方式的框图的示意性表示的连接;
图7A-7E是表示根据本文公开的原理的接收器线圈部分的图案和扰动器元件配置的相应的“4互补对”实施方式的图示,可用于图3和/或图4所示的探针位置检测部分的各种实施方式中;
图8A-8F是表示根据本文公开的原理的接收器线圈部分的图案和扰动器元件配置的相应的“3(或6)互补对”实施方式的图示,可用于图3和/或图4所示的探针位置检测部分的各种实施方式中。
图9A和9B是示出了用于检测探针悬置部分的位置的探针位置检测部分的示例性实施方式的部分的图示;
图10是图9A和图9B所示的探针位置检测部分的替代实施方式的局部示意性等距图,其强调了根据本文公开的原理的某些方面;
图11是图10所示的探针位置检测部分的替代实施方式的局部示意性等距图,其强调了根据本文公开的原理的某些方面;
图12A和12B是示出用于检测探针悬置部分的位置的探针位置检测部分的示例性实施方式的部分的图;
图13A是探针位置检测部分的示例性实施方式的部分示意性等距图,强调了根据本文公开的原理的某些方面;
图13B至13F是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图14A至14D示出了与探针位置检测部分的各种实施方式相关的示例性频移和离轴串扰特性;
图15A至15C是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图16是探针位置检测部分的示例性实施方式的部分示意性等距图,强调了根据本文公开的原理的某些方面;
图17A和17B是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图18A至18C是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图19是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图20是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图21是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图22是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;
图23是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面;以及
图24是示出探针位置检测部分的示例性实施方式的部分的图,强调了根据本文公开的原理的某些方面。
具体实施方式
图1是示出测量系统100的各种典型部件的图示,该测量系统包括利用诸如本文所公开的扫描探头300的CMM 200。测量系统100包括操作单元110、控制CMM 200的运动的运动控制器115、主计算机120和CMM 200。操作单元110联接到运动控制器115,并且可以包括用于手动操作CMM 200的操纵杆111。主计算机120联接到运动控制器115,并且操作CMM 200和处理工件W的测量数据。主计算机120包括用于输入例如测量条件的输入装置125(例如键盘等)和用于输出例如测量结果的输出装置130(例如显示器、打印机等)。
CMM 200包括位于表面板210上的驱动机构220以及用于将扫描探头300附接到驱动机构220的附接部分224。驱动机构220分别包括X轴、Y轴和Z轴滑动机构222、221和223,用于使扫描探头300三维地移动。附接到扫描探头300的端部的探针306包括接触部分348。如下面将更详细描述的,探针306附接到扫描探头300的探针悬置部分,当接触部分348沿着工件W的表面上的测量路径移动时,这允许接触部分348在三个方向上自由地改变其位置。
图2是示出联接到CMM 200并提供旋转(例如,X,Y)和轴向(例如,Z)位置信号的扫描探头300的各个元件的框图。扫描探头300包括探针主体302(例如,包括框架),其并入探针悬置部分307和探针位置检测部分311。探针悬置部分307包括探针连接部分342和探针运动机构309。探针联接部分342刚性地联接至探针306。探针运动机构309配置为允许探针联接部分342和附接的探针306沿轴向方向的轴向运动,并允许探针联接部分342和附接的探针306围绕旋转中心的旋转运动,以下将结合图3和图4进行详细说明。包括在扫描探头300中的信号处理和控制电路380连接至探针位置检测部分311并控制其操作,并且可以执行相关的信号处理,所有这些将在下面更详细地描述。
如图2所示,探针位置检测部分311采用感应式感测原理,且包括接收器线圈部分370、场产生线圈配置360和扰动器元件351(它可以是扰动器配置350的一部分,扰动器配置350在某些实施方式中可以包括多个部分)。接收器线圈部分370可以包括旋转感测线圈部分(也称为旋转感测线圈)RSC和轴向感测线圈配置ASCC。简而言之,运动的扰动器元件351(或更一般而言,扰动器配置350)在由场产生线圈配置360产生的变化磁场中引起位置相关的变化。接收器线圈部分370响应于变化的磁场以及由扰动器元件351在其中引起的变化。特别地,旋转感测线圈部分RSC在对应的信号线上至少输出第一和第二旋转信号分量RSig,其指示探针联接部分342的旋转位置(例如,X和Y位置信号),且轴向感测线圈配置ASCC在对应的信号线上输出一个或多个轴向信号分量ASig,其指示探针联接部分342的轴向位置(例如,Z位置信号),如将在下面例如参考图3、5和6更详细地描述的。在各种实施方式中,信号处理和控制电路380接收旋转信号分量RSig和轴向信号分量ASig,并且可以在各种实施方式中执行各种级别的相关信号处理。例如,在一种实施方式中,信号处理和控制电路380可以使来自各种接收器线圈的信号分量以各种关系被组合和/或处理,并通过附接接部分224按所需的输出格式提供结果,作为旋转和轴向位置信号输出RPSOut和APSOut。一个或多个接收部分(例如在CMM 200、运动控制器115、主计算机120等中)可以接收旋转和轴向位置信号输出RPSOut和APSOut,且一个或多个相关的处理和控制部分可以用于当探针306的接触部分348沿着被测工件W的表面移动时,确定探针联接部分342和/或附接的探针206的接触部分的三维位置。
图3是局部示意图,示出了联接到探针406的示意性地示出的探针悬置部分407的第一示例性实施方式的部分,以及用于检测探针悬置部分407和/或探针406的位置的探针位置检测部分411的第一示例性实施方式的局部示意性截面。将理解的是,图3的某些编号的部件4XX可以对应于和/或具有与图2的类似编号的对应部件3XX类似的操作,并且可以通过类推或者还根据如以下另外描述来理解。这种用于指示具有类似设计和/或功能的元件的编号方案也适用于下面的图4-8F。如图3所示,探针悬置部分407包括探针运动机构409和探针联接部分442。探针联接部分442配置为刚性地联接至探针406,探针406具有用于接触工件W的表面S(未示出)的接触部分448。
如将在下文关于图4更详细地描述的,探针运动机构409附接至扫描探头的框架,且配置为允许探针联接部分442和附接的探针406的轴向和旋转运动,使得接触部分448可以沿着表面S的形状在三个方向上改变其位置。为了便于说明,图3中纸面上的竖直和水平方向分别定义为Z和Y方向,并且,将与纸面垂直的方向定义为X方向。在此图中,测量探针300的中心轴线CA的方向(也称为轴向方向)与Z方向重合。
在图3中,示出了探针运动机构409的旋转运动部分,包括旋转构件436、挠曲元件440和设置在旋转构件436内的移动构件412。如将在下面参照图4更详细地描述的,挠曲元件440允许旋转构件436围绕旋转中心RC的旋转运动。如将在下面更详细地描述的,在各种实施方式中,旋转感测线圈TRSCi和BRSCi(其中i是识别具体线圈的指数整数),且探针位置检测部分411能够感测扰动器元件451的旋转位置且从而感测移动构件412的旋转位置(例如,在X和Y方向上),且轴向感测线圈配置(也称为轴向感测线圈)TASCC和BASCC能够感测扰动器元件451的轴向位置且从而感测移动构件412的轴向位置(例如,在Z方向上)。
如图3所示,探针位置检测部分411的第一示例性实施方式包括扰动器元件451(或更一般地,扰动器配置450),其联接到移动构件412,且其在分别位于顶部和底部线圈基板471T和471B之间的扰动器运动体积MV内相对于扫描探头框架(例如,其中框架作为扫描探头本体的一部分被包括,等等)移动。如图3所示,移动构件412延伸穿过底部线圈基板(471B)中的沿着中心轴线CA的孔472并在其中移动。响应于探针悬置部分407和移动构件412的偏转,附接的扰动器元件451相对于未偏转位置UNDF在扰动器运动体积MV中移动。
探针位置检测部分411的各种其他部件,例如接收器线圈部分470和场产生线圈配置460,可以相对于框架固定,除非另有说明。在图3所示的实施方式中,场产生线圈配置460包括单个平坦的场产生线圈461,其近似位于扰动器运动体积MV的中平面处,且其名义上是平坦的且正交于中心轴线CA。如先前参考图2概述的,接收器线圈部分470可以大致包括旋转感测线圈部分(也称为旋转感测线圈)RSC和轴向感测线圈配置ASCC。旋转位置检测配置RSC大致包括顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi。在图3所示的截面中,仅示出了两个顶部旋转感测线圈TRSC1和TRSC2,以及两个底部旋转感测线圈BRSC1和BRSC2。这些旋转感测线圈可以提供信号分量,其指示扰动器元件451沿Y方向的位置。特别地,它们的信号分量根据扰动器元件451沿Y方向的位移ΔY的量而变化,且因此指示位移ΔY的量。位移ΔY确定扰动器元件451与各个旋转感测线圈TRSCi和BRSCi之间的相关的“重叠”的量,且从而确定它们与场产生线圈461产生的变化磁场的耦合量(其确定产生的信号分量)。其他旋转感测线圈(未示出)可以提供信号分量,其指示扰动器元件451沿X轴方向的位置。各种旋转感测线圈信号分量也可能对于其相对于扰动器元件451的局部“操作间隙”OG不期望地灵敏,如图3对于顶部旋转感测线圈TRSC2所表示的。然而,如下文进一步描述的,根据本文公开的各种原理,可以基本上消除或补偿这种不期望的间隙灵敏度。
轴向感测线圈配置大致包括顶部轴向感测线圈配置TASCC和底部轴向感测线圈配置BASCC。在图3所示的示例性实施方式中,顶部轴向感测线圈配置TASCC包括单个顶部轴向感测线圈,其至少部分地围绕中心轴线CA,且至少一个底部轴向感测线圈包括单个底部轴向感测线圈,其至少部分地围绕中心轴线,如图所示。这些轴向感测线圈通常被扰动器元件451完全“重叠”。因此,它们的信号分量名义上仅响应于扰动器元件451沿轴向或Z方向的位置,并且指示扰动器元件451沿Z方向的位置。下面参考图5和6更详细地描述各种信号分量的产生。
与先前参考图2概述的操作类似,在操作中,移动扰动器元件451在由场产生线圈461产生的沿轴向方向的变化磁场中引起位置相关的局部变化。接收器线圈部分470响应于变化的磁场以及由扰动器元件451在其中引起的变化,且输出旋转信号分量RSigs和轴向信号分量ASig,其可以被处理以确定扰动器元件451的旋转位置(例如,Y和X位置,及对应的信号)和其轴向位置(例如,Z位置),如先前参考图2概述的,且如下文详细描述的。应当理解,扰动器元件451的位置通过已知的几何形状与探针联接部分442和/或它的接触部分448的位置相关。例如,对于小的旋转角度,对于扰动器元件451沿Y方向远离零点(例如,从未偏转位置UNDF)的所示的运动或位置):
ΔY=HθY (等式1)
其中H是从旋转中心RC到扰动器元件451的名义平面的距离,θY是旋转构件436(以及移动构件142)在平行于Y方向的平面中的旋转运动倾斜(即,在旋转中心RC处围绕平行于X轴的轴线的旋转)。如果在各种实施方式中使用较大的旋转角度,则可以使用对于较大的旋转角度准确的类似表达式,如本领域中已知的。相对于旋转运动倾斜分量θY,远离探针406的接触部分448的零点(例如,对应于未偏转位置UNDF)的Y方向运动或位移YSTYLUS可以近似为:
ΔYSTYLUS=θY*(hS+lS) (等式2)
其中hS是从探针联接部分442的端部到旋转中心RC的距离,lS是探针406的长度。组合等式1和2,扰动器元件451的位移ΔY相对于接触部分448处的Y方向位移的比例可以近似为:
ΔY/ΔYSTYLUS=H/(hS+lS) (等式3)
可以理解的是,X坐标运动分量与以上表达式类似,在此不再赘述。可以在等式中利用各种探针的探针长度lS(例如,相对于系统的三角学),以基于X-Y检测到的光斑位置来确定接触部分448的X-Y位置。关于Z坐标位移或位置分量,在探针接触部分(例如,接触部分448)处相对于Z方向的位移ΔZSTYLUS、扰动器元件451沿轴向或Z方向远离零点(例如,对应于未偏转位置UNDF)的位移ΔZ(未示出)可以近似为:
ΔZ/ΔZSTYLUS≈1 (等式4)
图4是局部示意图,示出了可用作图3所示的探针悬置部分407的探针悬置部分407’的一个实施方式的截面图类似于图3所示的探针位置检测部分411的探针位置检测部分511的一个实施方式,以及信号处理和控制电路480。前述元件被示为包括在扫描探头400的探针主体402的框架408内。可以使用对准和安装部分417或其他技术,来定位探针位置检测部分511的基板571T、571B、以及场产生线圈561或其基板(例如印刷电路型基板),以在扫描探头400中进行正确的操作。根据已知的技术,与探针位置检测部分511相关联的各种信号连接可以由连接器(例如,柔性印刷和/或电线连接)419等提供。在一些实施方式中,一些或全部信号处理和控制电路480可以被提供为如图4所示的单独的电路组件。在其他实施方式中,如果需要,一些或全部信号处理和控制电路480可以组合在探针位置检测部分511的基板上。
如图4所示,探针悬置部分407’包括探针运动机构409和联接到探针406的探针联接部分442。探针运动机构409可以包括移动构件412、旋转构件436、挠曲元件440,其联接到主体框架408,用于支撑并实现旋转构件436的旋转运动、以及挠曲元件414和415(即,称为第一挠曲元件),其支撑移动构件412并将其联接到旋转构件36,以实现移动构件412的轴向运动。扫描探头400包括探针位置检测部分511,其具有以下参考图5更详细描述的部件和操作,用于确定探针406的探针运动机构409和/或接触部分448的位置和/或运动。
挠曲元件440(即,称为第二挠曲元件)可以在轴向方向O上设置在一对挠曲元件414和415(即,称为第一挠曲元件)的相应的平面之间。适于挠曲元件414、415和440的挠曲设计可以根据本领域已知的原理来确定。例如,在2015年12月17日提交的共同待决且共同转让的题为“Measurement Device With Multiplexed Position Signals”的美国专利申请No.14/973,376中示出了一种可能的实施方式,该申请的全部内容通过引用并入本文。旋转构件436可以具有关于第二挠曲元件440对称的形状,并且可以一体地包括:两个环部436A、两个连接部分436B、以及圆柱部分436C。第一挠曲元件414的外围部分固定到环部436A。连接部分436B在环部436A的内部延伸,以连接到具有中空中心的圆柱部分436C。第一挠曲元件414和415可以相对于第二挠曲元件440以对称的距离设置,尽管这样的实施方式仅是示例性的而不是限制性的。
包括移动构件412的轴向运动机构410支撑在旋转构件436的内部,并且旋转构件436和轴向运动机构410一起构成作为探针运动机构409的一部分的运动模块。轴向运动机构410允许接触部分448在轴向方向O上移动。包括转动构件436的旋转运动机构434允许探针406的接触部分448通过围绕旋转中心RC的旋转运动横向(例如,近似垂直)于轴向方向O移动。
移动构件412一体地包括:下部412A、杆部412B以及上部412C。如先前参考图3所概述的,且如下面参考图5所示的探针位置检测部分511更详细地描述的,附接到移动构件412的上部412C的扰动器元件551用作旋转和轴向位置指示元件。杆部412B设置在一对第一挠曲元件414和415之间。杆部412B容纳在旋转构件436中。下部412A形成在杆部412B的下方,并且探针联接部分442(例如,凸缘构件)附接到下部412A。凸缘部分444被提供以用于附接探针406。凸缘部分444和探针联接部分442可以一起构成可拆卸的联接机构(例如,已知类型的运动学接头或联接),其允许各种探针406和探针联接部分442之间以可重复的定位进行附接或拆卸(例如,在碰撞中撞下探针的情况,或故意改变探针)。
图5是类似于图4中所示的探针位置检测部分511的探针位置检测部分511’的替代实施方式的局部示意性等距图,其强调了根据本文公开的原理的某些方面。探针位置检测部分511'和511相似,除了场产生线圈配置560有所不同,这将在下面进一步说明。通常,探针位置检测部分511'包括与图2、3和4的探针位置检测部分311、411和511的部件相似的某些部件,并且将被理解为类似地操作,除非下面另有说明。
在图5所示的实施方式中,探针位置检测部分511'包括接收器线圈部分570、包括扰动器元件551的扰动器配置550、以及场产生线圈配置560。
在各种实施方式中,扰动器元件551(或更一般而言,扰动器配置550)可包括导电板或导电回路,或平行的导电板或导电回路(例如,制造在印刷电路板的两侧上制造,通过印刷电路板制造技术来图案化)或提供扰动器区域(例如其内部区域)的任何其他所需的操作配置。扰动器元件551沿着中心轴线CA定位在顶部和底部线圈基板571T和571B之间的扰动器运动体积MV中,且通过联接配置(例如,包括移动构件512)联接到探针悬置部分507。为了解释的目的,我们可以将扰动器元件551描述为响应于探针悬置部分507和/或探针506和/或移动构件512的偏转而相对于图5所示的未偏转位置(见图3中的未偏转位置UNDF)移动。扰动器元件可以被描述为响应于轴向运动而沿着轴向方向在操作运动范围+/-Rz内以位移增量ΔZ移动,且响应于旋转运动而沿着正交于轴向方向(Z方向)的正交X和Y方向在相应的操作运动范围+/-Rx和+/-Ry内以位移增量ΔX和ΔY移动。规定的或预期的操作运动范围在下面更详细地描述。
接收器线圈部分570可以包括平坦的顶部线圈基板571T,其包括N个顶部旋转感测线圈TRSC(例如,TRSC1-TRSC4,其中N=4)、顶部轴向感测线圈配置TASCC(例如,在该实施方式中,包括单个所示的单独线圈),以及平坦的底部线圈基板571B,其包括N个底部旋转感测线圈BRSC(例如,BRSC1-BRSC4,其中N=4),及底部轴向感测线圈配置BASCC(例如,在该实施方式中,包括单个所示的单独线圈)。顶部和底部线圈基板571T和571B以固定的关系安装到扫描探头的框架,底部线圈基板更靠近探针506和/或探针悬置部分507。顶部和底部线圈基板571T和571B可以名义上彼此平行且名义上正交于中心轴线CA,且沿着中心轴线CA间隔开,扰动器运动体积MV位于其之间。应当理解,尽管为了简化说明,图5所示的各种感测线圈由“闭环”表示,但是所有线圈都包括具有第一和第二连接端(例如,如图6所示)的绕组或导体,其配置为作为一个或多个电感耦合的“匝(turn)”工作。
场产生线圈配置(例如,场产生线圈配置560)大致至少包括第一场产生线圈,其位于扰动器运动体积MC附近且其名义上是平坦的且正交于中心轴线CA。相较于图3所示实施方式中的单个平坦的场产生线圈461(其近似位于扰动器运动体积MV的中平面处),在图5所示的实施方式中,场产生线圈配置560包括一对平坦的场产生线圈561T和561B(分别位于顶部和底部线圈基板571T和571B上),它们沿着中心轴线CA距扰动器运动体积MV的中平面近似等距,且它们名义上是平坦的且正交于中心轴线CA。通常来说,若场产生线圈配置至少包括第一场产生线圈,所述第一场产生线圈配置为使得其线圈区域沿轴向方向(Z方向)的投影包含提供扰动器配置560的(例如,扰动器元件551的)扰动器区域的导电板或回路以及位于顶部和底部线圈基板571T和571B上的所有旋转和轴向感测线圈RSCi和ASCC的线圈区域,则场产生线圈配置460或560可以与接收器线圈部分570(或本文公开的其他接收器线圈部分)一起使用。在这种情况下,场产生线圈配置配置为响应于线圈驱动信号在扰动器运动体积MV中大致沿着轴向方向产生变化的磁通量,如探针位置检测部分511’的操作所需的。应当理解,尽管为了简化说明,图5中所示的各种场产生线圈由包括宽的扁平导电迹线(示出了其边缘)的单个“闭环”表示,但在实际装置中,所有线圈都包括具有第一和第二连接端(例如,如图6所示)的绕组或导体,并配置为作为一个或多个场产生“匝”工作。
如图5所示,扰动器元件551沿轴向方向(例如,如图5中的细虚线PRJ所示)穿过顶部轴向感测线圈配置TASCC的内部线圈区域的投影限定顶部轴向感测重叠区域TASOA(由填充内部线圈区域的点图案表示),且扰动器元件551沿着轴向方向穿过底部轴向感测线圈配置BASCC的内部线圈区域的投影限定底部轴向感测重叠区域BASOA(由填充内部线圈区域的点图案表示)。类似地,扰动器元件551沿轴向方向穿过任何相应的顶部旋转感测线圈TRSCi(例如,TRSC1-TRSC4)的内部线圈区域的投影限定相应的顶部旋转线圈感测重叠区域TRSCOAi(例如,TRSCOA1-TRSCOA4),如图5所示的填充各个相应的重叠区域的点图案表示的,其中i是范围为1至N的单独线圈识别指数。扰动器元件551沿轴向方向穿过任何相应的底部旋转感测线圈BRSCi的内部线圈区域的投影限定相应的底部旋转线圈感测重叠区域BRSCOAi(例如,TRSCOA1-TRSCOA4),如图5所示的填充各个相应的重叠区域的点图案所示的。
根据本文描述和要求保护的原理,关于探针位置检测部分(例如,511’)中的轴向检测位置,接收器线圈部分(例如,570)和扰动器元件配置为提供顶部轴向感测重叠区域TASOA和底部轴向感测重叠区域BASOA,其中,重叠区域TASOA和BASOA中的每一个的量是不变的或独立于扰动器元件551在操作运动范围+/-Rz,+/-Rx和+/-Ry内的位置。(应当理解,对于特定的扫描探头,可以结合探针的特定探针位置检测部分的配置来规定或指定操作运动范围,以满足此要求。)以此方式,在顶部和底部轴向感测线圈配置TASCC和BASCC中产生的信号分量名义上独立于旋转运动(其为扰动器元件551沿X和Y方向的位置),且名义上仅对扰动器元件551的“接近度”或间隙的变化灵敏,其根据扰动器元件551的轴向(Z)位移或位移ΔZ变化。在操作中,由场产生配置560的变化的磁场在扰动器元件551中感应的电流引起相反的磁场。通常来说,随着扰动器元件551沿图5中的轴向(Z)方向向上移动,相反的磁场会更强烈地耦合到顶部轴向感测线圈配置TASCC,从而减小了其因变化的磁场而产生的信号分量。相反,相反的磁场与底部轴向感测线圈配置的BASCC耦合更弱,从而增加了其因变化的磁场而产生的信号分量。根据本公开中使用的惯例,我们可以将信号分量SIGTASCC称为由特定的顶部感测线圈配置(或线圈)TASCC产生的信号分量,等等。
应当理解,在未偏转位置UNDF处,净信号分量SIGTASCC和SIGBASCC可以近似平衡。对于较小的位移ΔZ(例如在操作中预期的),净信号分量SIGTASCC和SIGBASCC可以近似线性地变化,并且彼此相反。与这些信号的非线性程度有关的某些考虑因素将在下面进一步讨论。在一种实施方式中,轴向位移或位置ΔZ可以由以下信号关系表示或与其对应:
ΔZ=[(SIGBASCC-SIGTASCC)/(SIGBASCC+SIGTASCC)]的函数(等式5)
该信号关系仅是示例性的,而不是限制性的。在各种实施方式中,如果需要,可以通过附加的校准或信号处理操作来调节或补偿该信号关系,包括减少各种位移方向或信号分量之间的几何和/或信号交叉耦合的影响的操作。在各种实施方式中,顶部轴向感测线圈配置可以包括至少一个顶部轴向感测线圈,其不是N个顶部旋转感测线圈中的一个且其被布置为比顶部旋转感测线圈更靠近中心轴线,且至少一个顶部轴向感测线圈和扰动器元件的特征在于,至少一个顶部轴向感测线圈具有小于扰动器元件的内部线圈区域,且对于扰动器元件在操作运动范围+/-Rz,+/-Rx,和+/-Ry内的任何位置,扰动器元件沿着轴向方向的投影完全填充至少一个顶部轴向感测线圈的内部线圈区域,其中顶部轴向感测重叠区域TASOA不由于扰动器元件的位置而变化。类似地,在各种这样的实施方式中,底部轴向感测线圈配置可以包括至少一个底部轴向感测线圈,其不是所述N个底部旋转感测线圈中的一个且其布置为比所述底部旋转感测线圈更靠近所述中心轴线,且所述至少一个底部轴向感测线圈和所述扰动器元件的特征在于,所述至少一个底部轴向感测线圈具有小于所述扰动器元件的内部线圈区域,且对于所述扰动器元件在所述操作运动范围+/-Rz,+/-Rx,和+/-Ry内的任何位置,所述扰动器元件沿着所述轴向方向的投影完全填充所述至少一个底部轴向感测线圈的内部线圈区域,其中,所述底部轴向感测重叠区域BASOA不由于所述扰动器元件的位置而变化。可以看出,图5所示的探针位置检测部分511'的具体实施方式(其中顶部轴向感测线圈配置TASCC和底部轴向感测线圈配置BASCC均包含单个感测线圈)符合此描述。应当理解,可以使用顶部和底部感测线圈配置TASCC和BASCC的各种配置,图5中所示的特定配置仅是示例性的,而不是限制性的。下文参考其他附图描述了各种替代配置。
根据本文描述和要求保护的原理,关于探针位置检测部分(例如,511’)中的旋转位置检测,接收器线圈部分(例如,570)和扰动器元件(例如,551)大致配置为提供旋转感测线圈的N个互补对CPi(例如,CP1-CP4,其中N=4),其各自包括顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi,其中对于任何互补对CPi,且对于操作运动范围+/-Rz、+/-Rx和+/-Ry内的任何扰动器元件位移增量,与扰动器位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的幅度在该互补对中名义上是相同的。(应当理解,对于特定的扫描探头,可以结合其特定探针位置检测部分的配置来规定或指定操作运动范围,以满足此要求。)图5中的表CPTable指示了图5中所示的实施方式的每个相应的互补对CPi的相应的构件TRSCi和BRSCi。
通过符合前述原理,图5所示的互补对CPi可以用于补偿或消除某些交叉耦合误差,和/或简化所需的信号处理以提供精确的旋转位置或位置测量(例如,沿着X和/或Y方向)。特别地,在图5所示的实施方式中的旋转感测线圈的互补对CPi中所引起的信号分量的对可以以一关系进行组合或处理,所述关系提供所得到的信号,该信号在名义上对互补对的各个线圈和扰动器元件551之间的“接近度”或间隙的变化不灵敏。也就是说,得到的信号可以对扰动器元件551的轴向(Z)位置或位移ΔZ不灵敏,并且名义上仅对旋转位置或位移(例如,沿X和/或Y方向)灵敏,如在下面更详细地描述。对于图5所示的特定实施方式,可以理解的是,扰动器元件551的位置(其具有沿Y轴方向的位移分量ΔY)将增加(或减少)互补对CP2中的重叠区域TRSCOA2和BRSCOA2,并减少(或增加)互补对CP1中的重叠区域TRSCOA1和BRSCOA1。类似地,扰动器元件551的位移(其具有沿X轴方向的位置分量ΔX)将增加(或减少)互补对CP3中的重叠区域TRSCOA3和BRSCOA3,并减少(或增加)互补对CP4中的重叠区域TRSCOA4和BRSCOA4。
如先前概述的,在操作中,由场产生配置560的变化的磁场在扰动器元件551中感应出的电流引起相反的磁场。通常来说,随着扰动器元件551的近端部分沿着轴向方向靠近旋转感测线圈,在任何旋转感测线圈TRSCi(好或BRSCi)中产生的信号分量SIGTRSCi(或SIGBRSCi)将减少,或增加其与旋转感测线圈的重叠TRSCOAi(或BRSCOAi)。
应当理解,对于图5所示的互补对CP1-CP4(其中互补对CPi中的线圈可以相同并且沿着轴向方向对齐),在所示的未偏转位置UNDF处,每个互补对中的信号分量(例如,SIGTRSC1和)可以近似平衡。根据先前概述的原理,对于扰动器元件551靠近互补对(例如,CP1)的部分,对于小的位移ΔZ(例如在操作中预期的),净信号分量(例如,SIGTRSC1和SIGBRSC1)可以近似线性地变化,并且彼此相反。因此,互补对CPi的这种信号的总和可以名义上对与扰动器元件551的近端部分相关联的ΔZ不灵敏。另外,在图5所示的实施方式中,扰动器元件551可以平行于X和Y方向,使得在操作运动范围+/-Rx和+/-Ry内,Y方向位移分量不会改变旋转线圈感测重叠区域TRSCOA3,BRSCOA3,和/或TRSCOA4和BRSCOA4,且X方向位移分量不会改变旋转线圈感测重叠区域TRSCOA2,BRSCOA2,和/或TRSCOA1和BRSCOA1。因此,在一个实施方式中,沿X方向的旋转位移或位置分量ΔX可以由以下信号关系表示或与其对应,理想地与ΔZ和/或ΔY无关:
ΔX=[(SIGTRSC3+SIGBRSC3)-(SIGTRSC4+SIGBRSC4)]÷[(SIGTRSC3+SIGBRSC3)+(SIGTRSC4+SIGBRSC4)]的函数(等式6)
类似地,在一个实施方式中,沿Y方向的旋转位移或位置分量ΔY可以由以下信号关系表示或与其对应,理想地与ΔZ和/或ΔX无关:
ΔY=[(SIGTRSC2+SIGBRSC2)-(SIGTRSC1+SIGBRSC1)]÷[(SIGTRSC2+SIGBRSC2)+(SIGTRSC1+SIGBRSC1)]的函数(等式7)
这些信号关系仅是示例性的,不是限制性的。在各种实施方式中,如果需要,可以通过附加的校准或信号处理操作来调节或补偿该信号关系,包括减少各种位移方向或信号分量之间的几何和/或信号交叉耦合的影响的操作。
在一些特别有利的实施方式中,接收器线圈部分(例如,570)和扰动器元件(例如,551)配置为,其中对于任何互补对CPi和操作运动范围+/-Rz,+/-Rx,和+/-Ry内的任何扰动器元件位移增量,与扰动器元件位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的幅度和符号在该互补对中相同。在一些这样的实施方式中,接收器线圈部分配置为,其中每个互补对CPi包括顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi,其特征在于,其内部区域的形状在沿着轴向方向投影时名义上重合。可以看出,图5所示的探针位置检测部分511’的特定实施方式符合该描述。然而,应当理解,可以使用互补对的各种配置,并且图5所示的特定配置仅是示例性的,而不是限制性的。下文参考其他附图描述了各种替代配置。
在一些特别有利的实施方式中,接收器线圈部分(例如,570)和扰动器元件(例如,551)可以配置为,其中扰动器元件包括至少N个直侧,且对于任何相应的互补对CPi,扰动器元件的直侧中的相应的一个横切该相应的互补对的顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi二者。在一些这样的实施方式中,N=4且至少N个直侧包括4个侧边,其布置为平行于矩形或正方形的侧边。可以看出,图5所示的探针位置检测部分511’的特定实施方式符合该描述。然而,应当理解,可以使用互补对配置和扰动器元件边缘配置的各种组合,并且图5所示的特定配置的组合仅是示例性的而不是限制性的。下文参考其他附图描述了配置的各种替代组合。
图6是图5所示的探针位置检测部分511’的某些元件的局部示意性等轴图,包括至根据本文公开的原理的信号处理和控制电路680的一种示例性实施方式的框图的示意性表示的连接CONN;如图6所示,信号处理和控制电路680可操作地连接到探针位置检测部分511’的各个线圈。在图6所示的实施方式中,信号处理和控制电路680包括数字控制器/处理器681,其可以控制其各种互连部件之间的各种定时和信号连接或交换操作,包括驱动信号生成器682、放大/切换部分683、采样和保持部分684、多路复用部分685和A/D转换器部分686。数字控制器/处理器681还可以执行各种数字信号处理操作以确定输出信号APSOut和RPSOut,如先前参考图2概述的,并在下面进一步描述。根据已知原理,信号处理和控制电路680的设计和操作通常可以被本领域的普通技术人员所认识和理解。例如,在一种实施方式中,可以类似于美国专利No.5,841,274中公开的相应元件来设计和操作信号处理和控制电路680的各个元件,所述美国专利No.5,841,274的全部内容通过引用并入本文。因此,这里仅简要描述所示的信号处理和控制电路680的操作。
在操作中,驱动信号生成器682操作为向场产生线圈配置560提供变化的线圈驱动信号Dsig(例如,脉冲),场产生线圈配置560响应于线圈驱动信号在扰动器运动体积MV中大致沿轴向方向产生变化的磁通量。在所示的配置中,顶部场产生线圈561T和底部场产生线圈561B配置为提供彼此增强的变化的磁通量。放大/切换部分683配置为从接收器线圈部分570输入信号RSIG和ASIG,包括由位于顶部和底部线圈基板上的相应的旋转和轴向感测线圈提供的相应的信号分量(例如,前面概述的信号分量SIGTASCC,SIGBASCC,SIGTRSC1-SIGTRSC4和SIGBRSC1-SIGBRSC4)。在一些实施方式中,放大/切换部分683可以包括切换电路,其可以组合各种模拟信号以提供各种期望的合量信号或差分信号(例如,通过适当的串联或并联连接,等),例如,如等式5-7中所示的关系中所规定的,等等。然而,在其他实施方式中,放大/切换部分683可以仅执行放大和信号调节操作(以及可能的信号反转操作),而所有信号组合操作在其他电路部分中执行。
采样和保持部分684从放大/切换部分683输入各种模拟信号,并且根据已知原理执行采样和保持操作,例如,以同时对来自接收器线圈部分570的相应的感测线圈的所有相应的信号分量进行采样和保持。在一种实施方式中,多路复用部分685可以将各种信号顺序地和/或与关于各种期望的信号关系组合地(例如,如等式5-7中所示的关系所规定的,等等)连接到A/D转换器部分686。A/D转换器部分686将相应的数字信号值输出到数字控制器/处理器681。然后,数字控制器/处理器681可以根据各种期望的关系处理和/或组合数字信号值,(例如,如等式5-7中所示的关系所规定的,等等),以确定并输出输出信号APSOut和RPSOut,它们指示扰动器元件551或探针506中的至少一个相对于扫描探头的框架或壳体的轴向位置和旋转位置。在一些实施方式中,数字控制器/处理器681可以配置为使得输出信号APSOut和RPSOut直接指示探针506或其接触部分548相对于扫描探头的框架的三维位置。在其他实施方式中,其可以配置为输出信号,所述信号间接地指示探针506或其接触部分548相对于扫描探头的框架的三维位置,并且主机系统(例如,CMM)输出这样的信号并执行额外的处理以进一步组合或细化这样的信号,并确定探针506或其接触部分548相对于扫描坐标和/或相对于用于CMM测量的整体坐标系的三维位置。
应当理解,对于根据本文公开和要求保护的各种原理的探针位置检测部分(例如,511’)的实施方式,由接收器线圈部分(例如,570)的各个接收器线圈提供的信号分量在以下方面是特别有利的:消除或允许校正某些信号误差和/或信号交叉耦合误差,同时使用相对快速和简单的信号处理以便提供稳健且高精度的三维位置指示。
关于使用相对快速和简单的信号处理以提供稳健且高精度的三维位置指示,一个考虑因素是位置或位移信号分量的线性度(或某些组合信号的线性度,例如等式5所表示的Z信号关系)。应当理解,根据显著的三阶和/或五阶信号变化贡献而随位移而变化的信号或信号关系通常需要更复杂的信号处理和/或补偿和/或校准,以便提供精确的位移或位置指示。发明人已经发现,某些期望的配置可能趋于抑制轴向感测线圈信号分量ASig,和/或其组合中的更高阶信号变化贡献。作为描述这些理想配置的一种方式,顶部和底部轴向感测线圈配置TASCC和BASCC的感测线圈可以被视为定位为“轴向感测线圈区域内切圆柱”,其被限定为与中心轴线CA同心且其具有一半径,所述半径满足使得顶部和底部轴向感测线圈(例如,图5所示的顶部和底部轴向感测线圈配置TASCC和BASCC的感测线圈)装配在其中的最低要求。“扰动器内切圆柱”限定为与中心轴线CA同心且具有一半径,所述半径为可以内切在扰动器元件(例如,扰动器元件551等)的边缘内的最大半径。在各种实施方式中,可能希望(但不是必须)的是,扰动器内切圆柱的半径可以至少是轴向感测线圈区域内切圆柱的半径的1.1倍。在一些实施方式中,可能希望(但不是必须)的是,扰动器内切圆柱的半径可以至少是轴向感测线圈区域内切圆柱的半径的1.2倍或1.5倍。
图7A-7E示出了根据本文公开的原理的“平面图”图示(沿着轴向或Z方向看),其表示探针位置检测部分部件的“4互补对”实施方式,分别包括接收器线圈部分770A-770E和扰动器元件751A-751E。根据本文公开的原理,所示的部件可用于探针位置检测部分的各种实施方式中。场产生线圈未在图7A-7E中示出,但应理解为根据先前公开的原理来提供。图7A-7E中所示的各种部件与先前描述的探针位置检测部分311、411、511和/或511'中的相似编号的部件类似或相似,并且通常可以通过与之类似的方式来理解。因此,下面仅描述图7A-7E中包括的“4互补对”实施方式的某些独特或重要特征。
图7A示出了接收器线圈部分770A和扰动器元件751A的实施方式,其类似于先前参考探针位置检测部分511’所描述的那些,并且将通过类似的方式被理解。除了示出了类似于先前参考探针位置检测部分511’所描述的那些的圆形顶部和底部轴向感测线圈配置TASCC和BASCC之外,图7A还示出了替代的正方形顶部和底部轴向感测线圈配置TASCC’和BASCC’,其以虚线示出。更一般地,应当理解,任何期望的形状都可以用于顶部和底部轴向感测线圈配置,只要它们配置为根据本文公开的和/或要求保护的各种原理提供期望的操作即可。
可以注意到,为了紧凑,扰动器元件751A的形状包括“修整的角部”。应当理解,为了满足本文先前公开的原理,其中与扰动器位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的幅度名义上在任何所示的互补对中相同,沿着正交X和Y方向的操作运动范围+/-Rx和+/-Ry可以规定或指定为不延伸超过与每个互补对横切的直边部分,以便满足该原理。
图7B示出了接收器线圈部分770B和扰动器元件751B的实施方式,其类似于先前参考图7A所述的那些,不同之处在于:接收器线圈部分770B中的互补对CP1-CP4包括更大的旋转感测线圈,其与顶部和底部轴向感测线圈配置TASCC和BASCC的感测线圈重叠,根据本文所公开的各种原理,这不被禁止。为了制造这种配置,旋转和轴向感测线圈可以例如制造在多层印刷电路板的相应的层上。
图7C示出了接收器线圈部分770C和扰动器元件751C的实施方式,类似于先前参考图7B所述的那些,不同之处在于:顶部和底部轴向感测线圈配置TASCC和BASCC不由与各个旋转感测线圈TRSCi和BRSCi分开的轴向感测线圈提供。替代地,应当理解,顶部轴向感测线圈配置TASCC包括N个(N=4)顶部旋转感测线圈TRSC1-TRSC4的组合,其中顶部轴向感测重叠区域TASOA包括与N个顶部旋转感测线圈相关联的单独的重叠区域TRSCOAi的总和。可以观察到,由于N个顶部旋转感测线圈TRSC1-TRSC4的类似形状,并且扰动器元件的两对平行侧边的重叠,由于扰动器元件751C的位移增量在重叠区域TRSCOA1中丢失的任何重叠区域在重叠区域TRSCOA2中获得,反正亦然。类似地,在重叠区域TRSCOA3中丢失的任何重叠区域从重叠区域TRSCOA4中获得,反之亦然。因此,重叠区域TRSCOAi的总和不变,或与扰动器元件751C在操作运动范围+/-Rz,+/-Rx和+/-Ry内的位置无关,即使组成其的单独的重叠区域TRSCOAi根据扰动器元件751C的位置而变化。类似地,底部轴向感测线圈配置BASCC包括N个(N=4)底部旋转感测线圈BRSC1-BRSC4的组合,其中底部轴向感测重叠区域BASOA包括与N个底部旋转感测线圈相关联的单独的重叠区域BRSCOAi的组合。重叠区域BRSCOAi的该总和不变,或与扰动器元件751C在操作运动范围+/-Rz,+/-Rx和+/-Ry内的位置无关,即使组成其的单独的重叠区域BRSCOAi根据扰动器元件751C的位置而变化。因此,尽管其与先前描述的配置不同,但图7C中所示的实施方式提供了根据本文公开的一般原理的配置,其中接收器线圈部分770C和扰动器元件751C配置为提供顶部轴向感测重叠区域TASOA和底部轴向感测重叠区域BASOA,其中重叠区域TASOA和BASOA中的每一个的量是不变的,或独立于扰动器元件在操作运动范围+/-Rz,+/-Rx,和+/-Ry内的位置。
图7D示出了接收器线圈部分770D和扰动器元件751D的实施方式,其工作方式类似于先前参考图7C所描述的,其中轴向感测线圈配置TASCC和BASCC不由与各个旋转感测线圈TRSCi和BRSCi分开的轴向感测线圈提供。替代地,应当理解,顶部和底部轴向感测线圈配置TASCC和BASCC包括N个(N=4)顶部和底部旋转感测线圈TRSC1-TRSC4和BRSC1-BRSC4的相应的组合,其中顶部轴向感测重叠区域TASOA包括与N个顶部旋转感测线圈相关联的单独的重叠区域TRSCOAi的总和,且底部轴向感测重叠区域BASOA包括与N个底部旋转感测线圈相关联的单独的重叠区域BRSCOAi的组合。类似于图7C所示的配置,重叠区域TRSCOAi的总和是不变的或独立于扰动器元件751D在操作运动范围+/-Rz,+/-Rx,和+/-Ry内的位置,即使组成其的单独的重叠区域TRSCOAi根据扰动器元件751D的位置而变化,且重叠区域BRSCOAi的总和也是不变的或独立于扰动器元件751D在操作运动范围+/-Rz,+/-Rx,和+/-Ry内的位置,即使组成其的单独的重叠区域BRSCOAi根据扰动器元件751D的位置而变化。因此,尽管其与先前描述的配置不同,图7D中所示的实施方式提供了根据本文公开的一般原理的配置,其中接收器线圈部分770D和扰动器元件751D配置为提供顶部轴向感测重叠区域TASOA和底部轴向感测重叠区域BASOA,其中重叠区域TASOA和BASOA中的每一个的量是不变的或独立于扰动器元件在操作运动范围+/-Rz,+/-Rx,和+/-Ry内的位置。由于扰动器元件751D的所示形状,应当理解,为了满足本文先前公开的原理,其中与扰动器位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的幅度名义上在任何所示的互补对中是相同的,沿着正交X和Y方向的操作运动范围+/-Rx和+/-Ry可以规定或指定为使得扰动器元件751D的角部都不从其所示的位置移动到使其跨越任何互补对CP1-CP4的感测线圈的的边界的程度。
图7E示出了类似于先前参考图7A(或探针位置检测部分511’)所述的接收器线圈部分770E和扰动器元件751E的实施方式,不同之处在于:每个互补对的顶部和底部旋转感测线圈相对于彼此围绕中心轴线旋转角度2*NAA,其中NAA是“失准角度”。然而,随着失准角度NAA增加,该实施方式相较于先前概述的配置(其中每个互补对CPi的顶部和底部旋转感测线圈沿着轴向方向对准)变得越来越不利。其变得越来越不利的原因在于,扰动器元件751E与每个互补对CPi的顶部和底部旋转感测线圈之间的操作间隙(例如,操作间隙OG,在图3中示出)的总和对于扰动器元件751E的所有位移不一定是恒定的,因为其与扰动器元件751E的重叠区域不是“共置(co-located)”的。因此,其信号的总和可能不是理想地独立于轴向位移ΔZ,如先前参考等式6概述的。然而,根据本文所公开的各种原理,图7E中所示且上面概述的配置也不被禁止。应当理解,这样的配置可以仍然满足本文公开和要求保护的最基本的原理,并且与先前已知的感应式传感器配置相比,提供至少部分地保留上面概述的各种优点的信号分量。作为描述图7E中所示的配置的一种方式,接收器线圈部分770E配置为,其中每个互补对CPi包括顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi,其特征在于,如果它们中的一个的形状围绕中心轴线旋转以与另一个的围绕中心轴线的角度位置(例如,角度2*NAA)重合,然后沿着轴向方向投影,则其内部区域的形状将在名义上重合。在各种实施方式中,接收器线圈部分770E和扰动器元件751E可以配置为,其中扰动器元件751E包括至少N个直侧(例如,N=4),且对于任何相应的互补对CPi(例如,CP1-CP4),扰动器元件751E的直侧中的相应的一个横切该相应的互补对CPi的顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi。在N=4的这样的实施方式中,扰动器元件751E的至少N个直侧包括4个侧边,其布置为平行于矩形或正方形的侧边。
图8A-8F示出了根据本文公开的原理的“平面图”图示(沿着轴向或Z方向看),其表示探针位置检测部分部件的“3(或6)互补对”实施方式,分别包括接收器线圈部分870A-870F和扰动器元件851A-851F。根据本文公开的原理,所示的部件可用于探针位置检测部分的各种实施方式中。场产生线圈未在图8A-8F中示出,但应理解为根据先前公开的原理来提供。在图8A-8F中的若干个中示出的“3(或6)互补对”配置中所示的各种元件类似于或相似于先前参考图7A-7E所述的对应的“4互补对”配置中所示的对应的元件,且它们可以大致类似地理解。因此,下面仅描述图8A-8F中包括的“3互补对”实施方式的某些独特或重要特征。
图8A-8C是“3互补对”,其类似于对应的图7A-7C中所示的其对应“4互补对”配置。基于以下附加描述,通常可以通过对它们的对应配置的描述(例如,图8A与其对应的图7A,等等)的类比来理解它们。
与先前描述的彼此以90度定向的4互补对(例如,如图7A所示)相比,通过以下考虑,可以理解使用彼此以120度定向的3互补对,扰动器元件(例如,851A)的任何位移增量或位置容易地通过如图8A-8F中所示的沿着相应的矢量分量方向VC1、VC2和VC3定向的位移或位置矢量分离或坐标来表征,如同其通过本文中在各个附图中所示的沿着X和Y轴方向定向的位移或位置矢量分量或坐标来表征。将矢量分量从一个坐标系转换为另一个坐标系的方法是众所周知的,因此在此无需详细讨论。基于此,可以理解,图8A-8C中所示的互补对CPi根据互补对的先前描述中概述的相同原理来配置,且其相应的重叠区域指示扰动器元件沿其对应的矢量分量方向VC1、VC2和VC3的位移或位置。例如,图8A中所示的代表性重叠区域TRSCOA1和BRSCOA1根据先前概述的原理产生相关联的信号分量SIGTRSC1和SIGBRSC1,它们指示扰动器元件沿对应的矢量分量方向VC1的位移或位置,等等。对于图8A-8C和图8E所示的实施方式,在一个实施方式中,沿VC1方向的旋转位移或位置分量ΔVC1可以由以下信号关系指示或与其对应,根据先前概述的可比较互补对的原理,所述信号关系名义上独立于ΔZ:
ΔVC1=[(SIGTRSC1+SIGBRSC1)-(SIGTRSC1UNDF+SIGBRSC1UNDF]的函数,(等式8)
其中SIGTRSC1UNDF和SIGBRSC1UNDF是由重叠区域TRSCOA1和BRSCOA1产生的参考信号值,其对应于扰动器元件(例如,851A等)的未偏转位置UNDF。
类似地,沿VC2方向的旋转位移或位置分量ΔVC2和沿VC3方向的ΔVC3可以由以下信号关系指示或与其对应:
ΔVC2=[(SIGTRSC2+SIGBRSC2)-(SIGTRSC2UNDF+SIGBRSC2UNDF]的函数(等式9)
ΔVC3=[(SIGTRSC3+SIGBRSC3)-(SIGTRSC3UNDF+SIGBRSC3UNDF]的函数(等式10)
应当理解,图8A-8C中所示的轴向感测线圈配置TASCC和BASCC基本上与本文先前参考其对应配置所述的相同,且可以根据相同类型的信号分量和信号关系来确定。上文概述的信号关系仅是示例性的,而不是限制性的。在各种实施方式中,如果需要,可以通过附加的校准或信号处理操作来调节或补偿该信号关系,包括减少各种位移方向或信号分量之间的几何和/或信号交叉耦合的影响的操作。
图8D示出了类似于先前参考图8A所述的接收器线圈部分870D和扰动器元件851D的实施方式,不同之处在于:提供了附加的互补对CP4-CP6,它们从互补对CP1-CP3跨越中心轴线对称地配置,以提供总共6个互补对。特别地,CP1和CP4沿着VC1方向彼此相对地定向,CP2和CP5沿着VC2方向彼此相对地定向,且CP3和CP6沿着VC3方向彼此相对地定向。这些相对的对类似于图7A-7D中所示的沿X和Y轴方向定向的相对的互补对。这样的配置不需要依赖等式8-10中使用的参考信号值(例如,SIGTRSC1UNDF,等等)。因此,这样的配置可以更稳健和准确(例如,固有地补偿由于各种原因引起的信号漂移,等等)。对于图8D所示的实施方式,在一个实施方式中,沿VC1方向的旋转位移或位置分量ΔVC1可以由以下信号关系指示或与其对应,根据先前概述的可比较互补对的原理,它名义上独立于ΔZ:
ΔX=[(SIGTRSC1+SIGBRSC1)-(SIGTRSC4+SIGBRSC4)]÷[(SIGTRSC1+SIGBRSC1)+(SIGTRSC4+SIGBRSC4)]的函数(等式11)
ΔVC2=[(SIGTRSC2+SIGBRSC2)-(SIGTRSC5+SIGBRSC5)]÷[(SIGTRSC2+SIGBRSC2)+(SIGTRSC5+SIGBRSC5)]的函数(等式12)
ΔVC3=[(SIGTRSC3+SIGBRSC3)-(SIGTRSC6+SIGBRSC6)]÷[(SIGTRSC3+SIGBRSC3)+(SIGTRSC6+SIGBRSC6)]的函数(等式13)
应当理解,图8B和8C所示的“3互补对”实施方式可以类似地适配为包括6个互补对,并且使用具有类似益处的类似信号处理。
图8E示出了类似于先前参考图7E所描述的接收器线圈部分870E和扰动器元件851E的实施方式,并且结合图8A-8C的前述描述,通常可以通过类比该描述来理解。为了简要解释该描述,在图8E中,每个互补对CPi的顶部和底部旋转感测线圈相对于彼此围绕中心轴线旋转角度2*NAA,其中NAA是“失准角度”。随着失准角度NAA增加,相较于先前概述的配置(其中每个互补对CPi的顶部和底部旋转感测线圈沿着轴向方向对准),该实施方式变得越来越不利,如先前参考图7E所述,其中其被解释为,来自互补对的信号的总和可能不理想地独立于轴向位移ΔZ,如先前参考等式6概述的。然而,根据本文公开的各种原理,图8E中所示的配置不被禁止。应当理解,这样的配置可以仍然满足本文公开和要求保护的最基本的原理,并且与先前已知的感应式传感器配置相比,提供至少部分地保留上面概述的各种优点的信号分量。
图8F示出了接收器线圈部分870F和扰动器元件851F的实施方式,其中感测线圈的互补对CPi具有与先前所述的互补对(例如,如图8A所示)不同的配置感测线圈,不同之处在于,它们相对于彼此跨越中心轴线对称地定位。因此,它们的特征可以类似于先前描述的互补对,在于其中对于至少一个互补对CPi和操作运动范围+/-Rz,+/-Rx,和+/-Ry内的任何扰动器元件位移增量,与扰动器位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的幅度在该互补对中相同。另外,在图8F所示的实施方式中,接收器线圈部分类似于本文先前描述的一些互补对配置,其中每个互补对CPi包括顶部旋转感测线圈TRSCi和底部旋转感测线圈BRSCi,其特征在于,如果它们中的一个的形状围绕中心轴线旋转一偏移角度(例如,180度)以与另一个围绕中心轴线的角度位置重合,然后沿着轴向方向投影,则其内部区域的形状将在名义上重合。
然而,与先前描述的互补对相反,与扰动器位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的符号与图8F中所示的互补对相反。这样的实施方式可能与其中和扰动器位移增量相关联的重叠区域TRSCOAi和BRSCOAi的变化的符号在每个互补对中相同的实施方式相比具有某些缺点。然而,根据本文公开的各种原理,图8F中所示的配置不被禁止。通过适当的信号处理,与已知的感应型感测配置相比,这样的实施方式仍可为在扫描探头中的使用提供某些优势。信号处理可能需要比本文先前描述的实施方式所需的更复杂(例如,使用更复杂的信号分量以指示各种位移或位置矢量分量),以便校正或补偿各种交叉耦合效应等。然而,对于接收器线圈部分870F,这样的效应通常可以基于已知的几何和/或信号关系约束以及以下事实而被补偿:扰动器元件851F的给定位移的重叠区域的变化的幅度在每个互补对的传感器线圈中相同。例如,在图8F中所示的实施方式中,扰动器元件851F包括3对平行的直侧(例如,布置为平行于正六边形的侧边),且对于任何相应的互补对CPi,一对平行直侧中的第一个横切顶部旋转感测线圈TRSCi,且该对平行直侧中的第二个横切该相应的互补对的底部旋转感测线圈BRSCi。基于扰动器元件851F的刚体平移和旋转特性,每个感测线圈的相应的重叠区域和局部操作间隙都包含在接收器线圈部分870F中,以相互之间已知的关系进行约束,这些已知的关系可以用于确定由接收器线圈部分870F提供的信号分量的信号处理中的精确位移矢量。
应当理解,图7A-7E和图8A-8F所示的变化指示根据本文公开和要求保护的各种原理来进一步重新布置和/或调整探针位置检测部分中的各种元件的配置和组合的可能性,同时保留了与这些原则相关的先前概述的许多或全部优点。通常,将理解,本文公开的各种实施方式仅是示例性的而不是限制性的。
图9A和9B示出了探针位置检测部分911的替代配置,其可以例如用于图2的扫描探头300作为探针位置检测部分311,在图3的实施方式中替代探针位置检测部分411,在图4的实施方式中替代探针位置检测部分511,等等。感应部件在图9B中示出。探针位置检测部分911使用感应感测原理且包括线圈板配置990,其具有接收器线圈部分970和场产生线圈配置960(其被示出为包括发射器线圈),以及扰动器配置950(其被示出为包括第一和第二扰动器元件951。接收器线圈部分970可以包括旋转感测线圈部分(也称为旋转感测线圈)RSC和轴向感测线圈配置ASCC。简而言之,运动的扰动器元件951(或更一般而言,扰动器配置950)在由场产生线圈配置960产生的变化磁场中引起位置相关的变化。接收器线圈部分970响应于变化的磁场以及由扰动器元件951在其中引起的变化。
线圈板配置990包括第一板部分992,其包括N个顶部旋转感测线圈部分(如图所示,TRSC1至TRSC4,在该示例中为N=4)和顶部轴向感测线圈配置(如图所示,TASCC),线圈板配置990还包括第二板部分994,其包括N个底部旋转感测线圈部分(如图所示,BRSC1至BRSC4,在该示例中为N=4)和底部轴向感测线圈配置(如图所示,BASCC)。线圈板配置990还包括位于第一板部分992和第二板部分994之间的中心板部分996。中心板部分996至少包括第一场产生线圈配置960(如图所示包括发射器线圈961)。线圈板配置990以固定的关系安装到扫描探头的框架(参见图2的扫描探头300和图4的框架408),线圈板配置990的第二板部分994更加靠近探针悬置部分307/407(参见图2和图3)。线圈板配置990的第一板部992、第二板部分994和中心板部分996名义上彼此平行且名义上正交于扫描探头300(参见图2)的中心轴线CA(参见图3)。线圈板配置990可以例如包括双面基板或印刷电路板,其具有在基板或印刷电路板的层中制造为印刷导体的线圈、紧固至基板或印刷电路板的独立线圈等,和/或其各种组合。
在各种实施方式中,扰动器配置950的扰动器元件951各自包括提供扰动器区域的导电板或导电回路中的至少一个,且扰动器元件951沿着中心轴线CA(参见图3)定位在扰动器运动体积中,所述扰动器运动体积在线圈板配置990的相对侧上延伸。扰动器元件951通过联接配置953相对于彼此以固定关系联接到探针悬置部分307/407(参见图2和图3),所述联接配置953包括移动构件912(例如,类似于图3的移动构件412)的上部。扰动器元件951响应于探针悬置部分307/407的偏转(参见图2和3)而相对于未偏转位置在扰动器运动体积中移动,扰动器元件响应于轴向运动而沿轴向方向在操作运动范围+/-Rz内移动,且响应于旋转运动而沿正交于轴向方向的正交X和Y方向在相应的操作运动范围+/-Rx和+/-Ry内移动。第一场产生线圈961的线圈区域沿轴向方向的投影包含提供扰动器区域的导电板或回路以及位于线圈板配置990上的所有旋转和轴向感测线圈的线圈区域。场产生线圈配置960响应于线圈驱动信号而在扰动器运动体积中大致沿着轴向方向产生变化的磁通量。
图10是类似于图9A和9B中所示的探针位置检测部分1011的探针位置检测部分911’的实施方式的局部示意性等距图,其强调了根据本文公开的原理的某些方面。通常,探针位置检测部分1011包括与图2、3、4、9A和9B的探针位置检测部分311、411、511和911的部件相似的某些部件,并且将被理解为类似地操作,除非下面另有说明。探针位置检测部分1011的配置可以例如用于图2的扫描探头300作为探针位置检测部分311,在图3的实施方式中替代探针位置检测部分411,在图4的实施方式中替代探针位置检测部分511,在图9A和9B的实施方式中替代探针位置检测部分911,等等。
在图10所示的实施方式中,探针位置检测部分1011包括线圈板配置部分1090和扰动器配置1050。线圈板配置部分1090包括顶部和底部接收器线圈板部分1070T、1070B,场产生线圈板部分1060位于顶部接收器线圈板部分1070T和接收器线圈板部分1070B之间。在各种实施方式中,顶部和底部接收器线圈板部分1070T、1070B也可以称为第一和第二板部分1070T、1070B,且场产生线圈板部分1060也可以称为中心板部分1060。扰动器配置1050包括扰动器元件1051T、1051B或标度(scale)。在各种实施方式中,扰动器元件1051T、1051B也可以成为第一和第二扰动器元件1051T、1051B。
在各种实施方式中,扰动器元件1051T、1051B(或更一般而言,扰动器配置1050)可各自包括以下中的至少一个:导电板或导电回路,或平行的导电板或导电回路(例如,如在印刷电路板的两侧上制造的,通过印刷电路板制造技术来图案化)或提供扰动器区域(例如其内部区域)的任何其他所需的操作配置。如图10所示,扰动器元件1051T和1051B各自包括导电板。扰动器元件1051T和1051B沿着中心轴线CA定位在扰动器运动体积MV(其在线圈板配置1090的相对侧上延伸),且通过一联接配置(例如,至少包括类似于图3的移动构件412的移动构件1012的上部)联接到探针悬置部分1007。为了解释的目的,扰动器元件1051T、1051B响应于探针悬置部分1007和/或探针1006和/或移动构件1012(例如,其可以与图3的探针悬置部分407、探针406和移动构件412类似或相同)的偏转相对于图10所示的未偏置位置(例如,类似于图3中的未偏转位置UNDF)移动。扰动器元件1051T、1051B可以被描述为响应于轴向运动沿着轴向方向在操作运动范围+/-Rz内以位移增量ΔZ移动,且响应于旋转运动沿着正交于轴向方向(Z方向)的正交X和Y方向在相应的操作运动范围+/-Rx内以相应的位移增量ΔX和ΔY移动。
顶部接收器线圈板部分1070T包括N个顶部旋转感测线圈TRSC(例如,如图所示的TRSC1-TRSC4,其中N=4)、和顶部轴向感测线圈配置TASCC(例如,在该实施方式中,包括单个所示的单独的线圈),且顶部接收器线圈板部分1070B包括N个底部旋转感测线圈BRSC(例如,如图所示的BRSC1-BRSC4,其中N=4)、和底部轴向感测线圈配置BASCC(例如,在该实施方式中,包括单个所示的单独的线圈)。
线圈板配置1090以固定的关系安装到扫描探头的框架(例如,图4的框架408),底部接收器线圈板部分1070B更靠近探针1006和/或探针悬置部分1007。应当理解的是,关于图10所示的各种感测线圈,所有的线圈包括以下中的至少一个:绕组或导体,其具有第一和第二连接端(例如,如图6所示),它们配置为作为一个或多个电感耦合的“匝”工作。如图所示,顶部和底部轴向感测线圈配置TASCC和BASCC,以及顶部和底部旋转感测线圈配置TRSC和BRSC,名义上相对于扰动器配置1050及扰动器元件1051T、1051B的对应的部分对称地间隔开。其他配置也是可能的(例如,在一些实施方式中,旋转感测线圈配置TRSC和BRSC可以不名义上相对于扰动器配置1050居中)。
场产生线圈板部分1060大致至少包括第一场产生线圈1061且位于顶部接收器线圈板部分1070T和底部接收器线圈板部分1070B之间。如图10所示,至少第一产生线圈包括单个场产生线圈1061,其面积大于扰动器元件1051T、1051B的面积。顶部接收器线圈板部分1070T、场产生线圈板部分1060和底部接收器线圈板部分1070B名义上是平坦的,名义上彼此平行且名义上正交于中心轴线CA。
在图3、4和5的所示的实施方式中,扰动器元件位于场产生线圈元件内(例如,图4的扰动器元件551装配在场产生线圈561内),且扰动器元件的面积小于场产生线圈元件的面积。在图9A、9B和10的所示的实施方式中,扰动器元件定位为平行于场产生线圈元件(例如,扰动器元件1051T、1051B定位在场产生线圈1061的上方和下方)。图9A、9B和10的配置提供了相对于扰动器元件和场线圈元件的相对尺寸的更大的灵活性。此外,利用单个印刷电路板(例如,其中第一板部分、第二板部分和中心板部分可以包括单个多层印刷电路板的部分)可以相对于利用多印刷电路板的配置降低成本和复杂性。
图11是类似于图10中所示的探针位置检测部分1111的探针位置检测部分1011’的替代实施方式的局部示意性等距图,其强调了根据本文公开的原理的某些方面。通常,探针位置检测部分1111包括与图10的探针位置检测部分1011的部件相似的某些部件,并且将被理解为类似地操作,除非下面另有说明。探针位置检测部分1111的配置可以例如用于图2的扫描探头300作为探针位置检测部分311,在图3的实施方式中替代探针位置检测部分411,在图4的实施方式中替代探针位置检测部分511,在图9A和9B的实施方式中替代探针位置检测部分911,在图10的实施方式中替代探针位置检测部分1011,等等。
在图11所示的实施方式中,探针位置检测部分1111包括线圈板配置部分1190和扰动器配置1150。线圈板配置部分1190包括顶部和底部接收器线圈板部分1170T、1170B,场产生线圈板部分1160位于顶部接收器线圈板部分1170T和接收器线圈板部分1170B之间。在各种实施方式中,顶部和底部接收器线圈板部分1170T、1170B也可以称为第一和第二板部分1170T、1170B,且场产生线圈板部分1160也可以称为中心板部分1160。扰动器配置1150包括扰动器元件1151T、1151B或标度。在各种实施方式中,扰动器元件1151T、1151B也可以成为第一和第二扰动器元件1151T、1151B。如图所示的顶部和底部接收器线圈板部分1170T、1170B大致类似于图10的对应的顶部和底部接收器线圈板部分1070T、1070B(在图11中示出导电通孔和垫的更多细节)。
在各种实施方式中,扰动器元件1151T、1151B(或更一般而言,扰动器配置1150)可各自包括以下中的至少一个:导电板或导电回路,或平行的导电板或导电回路(例如,如在印刷电路板的两侧上制造的,通过印刷电路板制造技术来图案化)或提供扰动器区域(例如其内部区域)的任何其他所需的操作配置。在各种实施方式中,具有导电回路的配置可以包括同心回路、螺旋图案等中的至少一个。如图11所示,扰动器1151T和1151B各自包括多同心的导电回路1153,代替图10的所示的实施方式中采用的导电板。扰动器元件1151T和1151B沿着中心轴线CA定位在扰动器运动体积MV中,扰动器运动体积MV在线圈板配置1190的相对侧上,且可以以上文参考图10所讨论的相似的方式联接到探针悬置部分(参见图10的探针悬置部分1007)。
场产生线圈板部分1160通常至少包括第一场产生线圈。如图所示,场产生线圈板部分1160包括顶部场产生线圈部分1161T和底部场产生线圈部分1161B,它们位于顶部接收器线圈板部分1170T和底部接收器线圈板部分1170B之间。顶部接收器线圈板部分1170T、场产生线圈板部分1160和底部接收器线圈板部分1170B名义上是平坦的,名义上彼此平行且名义上正交于中心轴线CA。在图11的示例实施方式中,场产生线圈板部分1160包括多匝场产生线圈(具有两匝),且其中两个对应的场产生线圈部分1161T和1161B通过通孔连接且沿着中心轴线距扰动器运动体积的中平面近似等距地定位,且名义上是平坦的且正交于中心轴线。
如图11所示,顶部场产生线圈部分1161T和底部场产生线圈部分1161B的面积小于扰动器元件1151T、1151B的面积。采用面积小于扰动器元件的面积的场产生线圈有助于降低探针位置检测部分1111对扰动器元件或标度的尺寸的灵敏度。在扰动器元件中使用导电回路(例如,同心回路、螺旋图案等)而不是导电板或单个导电回路,也有助于降低探针位置检测部分1111对扰动器元件或标度的尺寸的灵敏度,同时保持良好的X和Y位置信号强度。降低探针部分对扰动器元件或标度的灵敏度可以有助于增加测量的精度,且可以减少与以所需输出格式生成结果相关的处理成本。
在一些实施方式中,由于接收器线圈(例如线圈BRSC1-BRSC4、TRSC1-TRSC4)与发射器(例如,线圈1161T、1161B)非常接近,可以添加未连接的通孔/垫以平衡可能由连接迹线(例如,用于发射器和接收器引线)或其他元件产生的偏移。作为说明性示例中,在图11的实施方式中,某些连接的通孔/垫/引线(例如,连接到电子电路或配置和/或作为其一部分)被示出为在线圈BRSC3/TRSC3内(例如,用于连接迹线),其在对称的线圈BRSC4/TRSC4内没有对称的连接的对应部分(例如,关于中心轴线对称)(例如,在图11的示例配置中,五个这样的通孔以及上部和下部发送器引线被示出为在线圈BRSC3/TRSC3内,包括用于轴向感测线圈配置TASCC、BASCC的连接的三个通孔,用于连接归一化线圈RN的部分的通孔,用于连接场产生线圈部分1161T、1161B的通孔,以及用于场产生线圈部分1161T、1161B的上部和下部发送器引线)。在一些实施方式中,这样的迹线/通孔/垫/引线可以减少进入接收器线圈的磁场,其如果不补偿则可能导致信号偏移。在一些实施方式中,可以通过在对称的接收器线圈内用未连接的通孔/垫/引线镜像这些特征(例如,在中心轴线的相对侧上)来解决这些偏移。例如,在一个实施方式中,未连接的通孔/垫/引线可以被添加在线圈BRSC4/TRSC4内,其每一个可以与线圈BRSC3/TRSC3内的对应的连接的通孔/垫/引线镜像/对称(例如,五个未连接的通孔以及上部和下部垫可以添加在线圈BRSC4/TRSC4内,其各自与线圈BRSC3/TRSC3内的所示的对应的连接的通孔/垫/引线对称/镜像)。
作为这种概念的特定说明性示例,在图11中,用于连接归一化线圈RN的通孔被指定为电连接的通孔VIA1C,并且示出为在线圈BRSC3/TRSC3内。根据上述原理,未连接的通孔VIA1D可以包含在线圈BRSC4/TRSC4内,其与线圈BRSC3/TRSC3内的示出的对应的连接的通孔对称/镜像(例如,相对于配置的中心轴线对称且镜像)。更具体地,通孔VIA1D在BRSC4/TRSC4内的位置与通孔VIA1C在线圈BRSC3/TRSC3内的位置对称/镜像(例如,使得通孔VIA1C的位置与通孔VIA1D的位置之间的直线将通过配置的中心轴线,且每个位置距中心轴线等距)。通孔VIA1D可以平衡通孔VIA1C可能如上所述产生的偏移。更具体地,未连接元件VIA1D位于旋转感测线圈BRSC4/TRSC4内且与位于旋转感测线圈BRSC3/TRSC3内的类似的电连接的元件VIA1C对称地相对(即,相对于中心轴线和/或轴向方向),且其中未连接元件VIA1D减少了由于旋转感测线圈BRSC3/TRSC3中存在连接的元件VIA1C而引起的信号偏移,该信号偏移否则可能导致由旋转感测线圈BRSC3/TRSC3和BRSC4/TRSC4提供的信号分量。
在图11的实施方式中,用于连接归一化线圈RN的部分的通孔VIA1C被示出为靠近用于连接轴向感测线圈配置TASCC、BASCC的通孔。归一化线圈RN包括上部和下部,其中上部是直的并且径向地延伸,且通过通孔VIA1C连接到下部,下部也是直的并且也径向地延伸(其中,下部位于上部的正下方,但是为了简化说明起见,由于其他元件的遮挡,在图11中未示出)。在各种实施方式中,归一化线圈RN用于提供对发射器场的测量(例如,对应于由场产生线圈配置1160产生的变化的磁通量),其中,测得的信号可以相对地独立于扰动器元件1151T、1151B的位置(例如,可以仅名义上受其影响)。在各种实施方式中,可以将位置测量缩放到该测得的信号,以使得它们对发射器幅度的变化(来自场产生线圈配置1160)相对不灵敏。在各种实施方式中,这样的处理可以由信号处理和控制电路(例如,图2的信号处理和控制电路380)执行。
参考图9A、9B、10和11,以与上面参考图2-8F所述类似的方式,旋转感测线圈部分RSC(如图所示,TRSC1至TRSC4和BRSC1至BRSC4)通过对应的信号线输出至少第一和第二旋转信号分量RSig,其指示探针联接部分342(参见图2)的旋转位置(例如,X和Y位置信号),且轴向感测线圈配置ASCC(如图所示,TASCC和BASCC)通过对应的信号线输出一个或多个信号分量ASig,其指示探针联接部分的轴向位置(例如,Z位置信号)。在各种实施方式中,信号处理和控制电路380(参见图2)接收旋转信号分量RSig和轴向信号分量ASig,并且可以在各种实施方式中执行各种级别的相关信号处理。例如,在一种实施方式中,信号处理和控制电路可以使来自各种接收器线圈的信号分量以各种关系被组合和/或处理,并以所需的输出格式提供结果,作为通过附接部分224(参见图2)的旋转和轴向位置信号输出RPSOut和APSOut。参考图2,一个或多个接收部分(例如在CMM 200、运动控制器115、主计算机120等中)可以接收旋转和轴向位置信号输出RPSOut和APSOut,且一个或多个相关的处理和控制部分可以用于当探针306的接触部分348沿着被测工件W的表面移动时确定探针联接部分342和/或附接的探针206的接触部分的三维位置。可以基于期望的工作特性(例如改进的位置感测和减少的高阶非线性)来选择在各种实施方式中采用的接收器线圈、场产生线圈以及扰动器元件的导电板或回路的数量、尺寸和形状。应当注意,低阶非线性可以由CMM校准。
图9A、9B、10和11的实施方式可以有助于采用较少的机械部件,例如在一些实施方式中仅需要安装一个板(例如,可以不需要分开的板之间的柔性电缆)。由于接收器线圈相对于对准的自由度可以较小,这样的实施方式也可以有助于改进可重复性并降低组装成本,且从而可以对可能出现在多个板的实施方式中的倾斜和旋转问题较不灵敏,例如相对于XY定位信号。
图12A和12B示出了探针位置检测部分1211的替代配置,其可以在例如图2的扫描探头300中用作探针位置检测部分311,在图3的实施方式中代替探针位置检测部分411,在图4的实施方式中代替探针位置检测部分511等。探针位置检测部分1211使用感应感测原理,并且包括扰动器配置1250和线圈板配置1290。所示的扰动器配置1250包括大致圆柱形扰动器1251。所示的线圈板配置1290包括大致盘形结构,并且在图12B中更详细地示出。
如图所示,扰动器1251位于线圈板配置1290的中心开口1291内,并在盘形线圈板配置1290的Z方向上延伸。在图12A和12B的示例中,扰动器1251示出为在线圈板配置1290的上方和下方沿Z方向延伸,尽管应当理解,在其他实施方式中可能不是这种情况(例如在各种替代实施方式中,扰动器1251可以在Z方向上与线圈板配置1290齐平或比其更短)。在各种实施方式中,更重要的因素不是沿着Z方向的高度,而是扰动器1251的圆柱形形状(例如这导致各种期望的操作特性,如下面将更详细描述,例如关于图14A-14D等)。
线圈板配置1290包括场产生线圈配置1260,如图所示,具有两个发射线圈1261T和1261B,以及接收器线圈部分1270。接收器线圈部分1270可以包括旋转感测线圈部分(也称为旋转感测线圈)RSC(例如用于感测横向于轴向方向的运动,如上面参考图3-6所述等)和轴向感测线圈配置ASCC(例如用于感测沿轴向方向的运动,如上面参考图3-6所述等)。
简而言之,移动的扰动器元件1251(或更一般地,扰动器配置1250)在由场产生线圈结构1260产生的变化磁场中引起位置相关的变化。接收器线圈部分1270响应变化的磁场和由扰动器元件1251引起的其中的变化。
如图所示,线圈板配置1290包括:第一板部分1292,包括顶部轴向感测线圈TASCC和场产生线圈1261T;第二板部分1294,包括底部轴向感测线圈BASCC和场产生线圈1261B;以及位于第一板部分1292和第二板部分1294之间的中心板部分1296。中心板部分1296包括顶部旋转感测线圈TRSC1-4、顶部归一化线圈TRN、底部归一化线圈BRN和底部旋转感测线圈BRSC1-4。
线圈板配置1290以固定关系安装到扫描探头的框架(参见图2的扫描探头300和图4的框架408),其中线圈板配置1290的第二板部分1294更靠近探针悬置部分307/407(参见图2和3)。线圈板配置1290的第一板部分1292、第二板部分1294和中心板部分1296名义上彼此平行,并且名义上正交于扫描探头300(见图2)的中心轴线CA(见图3)。例如,线圈板配置1290可以包括双面基板或印刷电路板,其具有在基板或印刷电路板的层中制造为印刷导体的线圈,紧固到基板或印刷电路板的独立式线圈等,和/或其各种组合。
在各种实施方式中,扰动器配置1250的扰动器元件1251可以包括提供扰动器区域的导电圆柱体,并且扰动器元件1251沿着中心轴线CA(参见图3)位于在线圈板配置1290的相对侧上延伸的扰动器运动体积中。扰动器元件1251通过联接配置1253以相对于彼此固定的关系联接到探针悬置部分307/407(见图2和3),包括移动构件1212的上部(例如类似于图3的移动构件412)。响应于探针悬置部分307/407(见图2和3)的偏转,扰动器元件1251在扰动器运动体积中相对于未偏转位置移动,扰动器元件响应于轴向运动在沿轴向方向的操作运动范围+/-Rz上运动,并且响应于旋转运动在沿正交于轴向方向的相应正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上运动。场产生线圈配置1260响应于线圈驱动信号在扰动器运动体积中产生通常沿轴向方向变化的磁通量。
如上关于图11所述,在各种实施方式中,顶部和底部归一化线圈TRN和BRN可用于提供发射器场的测量(例如对应于由场产生线圈配置1260产生的变化的磁通量),对于该测量,测量的信号可相对独立于(例如可以仅名义上受其影响)扰动器元件1251的位置。在各种实施方式中,可以将位置测量缩放到该测量信号,以使它们对发射器振幅的变化(来自场产生线圈配置1260)相对不敏感。在各种实施方式中,这种处理可以由信号处理和控制电路(例如图2的信号处理和控制电路380)来执行。
图13A至13F示出了类似于图12A和12B所示的探针位置检测部分1211的探针位置检测部分1311的实施方式,强调了根据本文公开的原理的某些方面。
图13A是类似于图12A和12B所示的探针位置检测部分1211的探针位置检测部分1311的实施方式的部分示意性等距图,强调了根据本文公开的原理的某些方面。一般来说,探针位置检测部分1311包括与图2、3、4、9A和9B的探针位置检测部分311、411、511和911类似的某些部件,并且将被理解为类似地操作,除非下面另有描述。例如,探针位置检测部分1311的配置可被用在图2的扫描探头300中作为探针位置检测部分311,在图3的实施方式中代替探针位置检测部分411,在图4的实施方式中代替探针位置检测部分511,在图9A和9B的实施方式中代替探针位置检测部分911,在图12A和12B的实施方式中代替探针位置检测部分1211等。
在图13A所示的实施方式中,探针位置检测部分1311包括线圈板配置部分1390和扰动器配置1350。在各种实施方式中,扰动器元件1351(或更一般地,扰动器配置1350)包括导电圆柱体,或提供扰动器区域(例如其内部区域)的任何其他期望的操作配置。如图13A所示,扰动器元件1351包括导电圆柱体。扰动器元件1351沿着中心轴线CA位于扰动器运动体积MV中,该中心轴线CA在线圈板配置1390的相对侧上延伸,并且通过联接配置(例如包括类似于图3的移动构件412的移动构件1312的至少上部)联接到探针悬置部分。出于解释的目的,扰动器元件1350响应于探针悬置部分1307和/或探针1306和/或移动构件1312(例如其可以类似于或等同于图3的探针悬置部分407、探针406和移动构件412)的偏转而相对于图13A所示的未偏转位置(例如类似于图3中的未偏转位置UNDF)移动。扰动器元件1351可被描述为响应于轴向运动在沿轴向方向的操作运动范围+/-Rz上以位移增量ΔZ移动,并且响应于旋转运动在沿正交于轴向方向(Z方向)的正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上以相应的位移增量ΔX和ΔY移动。
线圈板配置1390包括顶部线圈板部分1390T和底部线圈板部分1390B。顶部线圈板部分1390T包括顶部轴向感测线圈配置TASCC(例如在该实施方式中包括单个所示的单独线圈)、至少第一顶部场产生线圈配置1361T、N个顶部旋转感测线圈TRSC(例如所示的TRSC1-TRSC4,其中N=4)和顶部归一化线圈配置TRN。底部线圈板部分1390B包括底部归一化线圈配置BRN、N个底部旋转感测线圈BRSC(例如所示的BRSC1-BRSC4,其中N=4)、至少第一底部场产生线圈配置1361B和底部轴向感测线圈配置BASCC(例如在该实施方式中包括单个所示的单独线圈)。
线圈板配置1390以固定关系安装到扫描探头的框架(例如图4的框架408),其中底部线圈板部分1390B更靠近探针1306和/或探针悬置部分1307。应当理解,关于图13A所示的各种感测线圈,所有线圈包括至少一个绕组或导体,其具有第一和第二连接端(例如图6所示),它们配置为作为一个或多个电感耦合“匝”操作。如图所示,顶部和底部轴向感测线圈配置TASCC和BASCC以及顶部和底部旋转感测线圈配置TRSC和BRSC相对于扰动器配置1350和扰动器元件1351的相应位置名义上对称地间隔开。其他配置也是可能的(例如在一些实施方式中,旋转感测线圈配置TRSC和BRSC可能不相对于扰动器配置1350名义上居中)。
如图13A所示,至少第一顶部场产生线圈配置包括单个场产生线圈1361T,其面积大于扰动器元件1351的面积,至少第一底部场产生线圈配置包括单个场产生线圈1361B,其面积大于扰动器元件1351的面积。顶部线圈板部分1390T和底部线圈板部分1390B名义上是平面的,名义上彼此平行且名义上正交于中心轴线CA。
图13B至13E示出了图13A的线圈板配置1390的线圈的示例实施方式。图13F示出了图13A的线圈板配置1390中线圈的示例分层。图13A至13E示出了连接垫或通孔(见图13B),其可以类似于上面在图11的描述中讨论的连接垫或通孔。
在图13B中,示出了顶部轴向感测线圈配置TASCC或底部轴向感测线圈配置BASCC的示例实施方式。如图所示,单个线圈被用作顶部轴向线圈配置TASCC,单个线圈被用作底部轴向线圈配置BASCC。
在图13C中,示出了顶部场产生线圈配置1361T或底部场产生线圈配置1361B的示例实施方式。如图所示,单个线圈用作顶部场产生线圈配置1361T,单个线圈用作底部场产生线圈配置1361B。
在图13D中,示出了顶部旋转感测线圈配置TRSC或底部旋转感测线圈配置BRSC的示例实施方式。如图所示,四个线圈TRSC1-4用作顶部旋转感测线圈配置TRSC,四个线圈BRSC1-4用作底部旋转感测线圈配置BRSC。
在图13E中,示出了顶部归一化线圈配置TRN或底部归一化线圈配置TRB的示例实施方式。如图所示,单个线圈用作顶部归一化线圈配置TRN,单个线圈用作底部归一化线圈配置TRB
在图13F中,示出了线圈配置1390的层的示例实施方式。如上参考图13A所述,线圈板配置1390包括顶部线圈板部分1390T和底部线圈板部分1390B。顶部线圈板部分1390依次包括具有顶部轴向感测线圈配置TASCC的第一层、包括至少第一顶部场产生线圈配置1361T的第二层、包括N个顶部旋转感测线圈TRSC的第三层以及包括顶部归一化线圈配置TRN的第四层。底部线圈板部分1390B通常与顶部线圈板配置成镜像,并且包括具有底部归一化线圈配置BRN的第一层、具有N个底部旋转感测线圈BRSC的第二层、具有至少第一底部场产生线圈配置1361B的第三层以及具有底部轴向感测线圈配置BASCC的第四层。图示的扰动器元件1351是在线圈板配置上方和下方延伸的导电圆柱体。
如上所述,在图3、4和5所示的实施方式中,扰动器元件位于场产生线圈元件内部(例如图4的扰动器元件551装配在场产生线圈561内部),并且扰动器元件的面积小于场产生线圈元件的面积。在图9A、9B和10所示的实施方式中,扰动器元件平行于场产生线圈元件定位(例如扰动器元件1051T、1051B位于场产生线圈1061的上方和下方)。在图12A、12B和13A至13F所示的实施方式中,单个高圆柱形扰动器元件1251/1351装配在由线圈元件包围的孔1291内,并且对此该配置相对于线圈配置板元件的相对尺寸和位置提供了增加的灵活性,同时还利用了单个印刷电路板(例如对此顶板部分和底板部分可以包括单个多层印刷电路板的部分),这可以相对于利用多个印刷电路板的配置降低成本和复杂性。此外,如下面参考图14A至14D更详细讨论,在图12A、12B和13A至13F的实施方式中,可以获得作为沿Z轴位移的结果而出现的谐振频率变化(RFC)的显著降低,以及离轴串扰的降低,导致CMM的更好的整体性能。
图12A、12B和13A至13F的实施方式可以有助于采用更少的机械部件,因为在一些实施方式中,只需要安装一个板(例如可能不需要独立板之间的柔性电缆),并且可以采用单个高扰动器元件,其不需要拆卸来安装或移除板。这种实施方式还可以促进改善的可重复性和更低的组装成本,因为接收器线圈可以具有关于对准的更少自由度,因此可以对在多板实施方式中可能出现的倾斜和旋转问题不太敏感,例如相对于XY定位信号。这种实施方式还可以改善离轴串扰、频率稳定性和线性度。
图14A至14C示出了图3、4和5所示实施例、图9A、9B和10所示实施例以及图12A、12B和13A至13F所示实施例的示例性频移和离轴串扰误差。图14A示出了当扰动器(例如图4的扰动器551)沿着Z轴的位移从-1毫米扫描到+1毫米且U,V=1.1度时的图3、4和5所示实施例的示例离轴串扰误差。图14B示出了当扰动器(例如图9A的扰动器950)沿着Z轴的位移从-1毫米扫描到+1毫米且U,V=1.1度时的图9A、9B和10所示实施例的示例离轴串扰误差。图14C示出了当扰动器(例如图12A的扰动器1250)沿着Z轴的位移从-1毫米扫描到+1毫米且U,V=1.1度时的图12A、12B和13A至13F所示实施例的示例离轴串扰误差。在每个图14A-14C中,V形的Z信号是主要(线性)定位信号,并且X和Y信号说明了在U、V方向上串扰的大小。可以看出,对于图9A、9B和10的实施例,离轴串扰误差最高,并且对于X轴和Y轴在32-45mV/V的范围内,对此标称信号范围的40%因此是串扰(即(45-32)/32=40%)。图3、图4和图5的实施例对于X轴和Y轴具有在16-20mV/V范围内的离轴串扰误差,对此25%的标称信号范围因此是串扰(即(20-16)/16=25%),提供了一些改进。对于图12A、12B和13A至13F的实施例,离轴串扰误差最低,并且对于X轴和Y轴在15-16mV/V的范围内,对此标称信号范围的7%因此是串扰(即(16-15)/15=7%)。
图14D示出了对于图3、4和5所示实施例、图9A、9B和10所示实施例以及图12A、12B和13A至13F所示实施例,当探针位置检测部分(SPDP)位移在0毫米和2毫米之间变化时,示例谐振发射器频率变化。在0毫米的位移下,谐振频率对于不同实施例是相同的。SPDP位移为2mm时的谐振频率变化(RFC)对于图9A、9B和10的实施例(在图14D中标记为SPDP 1011)最大,对于图12A、12B和13A至13F的实施例(在图14D中标记为SPDP 1311)最小,其中图3、4和5的实施例(在图14D中标记为411)的RFC略大于图12A、12B和13A至13F的实施例,但明显小于图9A、9B和10的实施例。可以看出,当沿Z轴的位移变化时,图12A、12B和13A至13F的实施例具有较小的电感变化,除了具有最小的离轴串扰之外,还导致具有扰动器位置的小RFC。
在各种实施方式中,至少一些信号偏移误差可能由于印刷电路板(PCB)制造公差而发生,例如层对层线圈配准误差,特别是对于单个板实施方式。例如,由于PCB制造公差,场产生线圈配置和旋转感测线圈配置(RSC)之间可能发生未对准。根据本文公开的原理,一个或多个未对准补偿元件可被添加到线圈板配置,以补偿线圈(例如第一、第二和/或中心板部分的线圈配置的线圈等)相对于彼此的未对准。更具体地,如将在下面更详细描述,在各种实施方式中,一个或多个未对准补偿元件可以配置/用于减少由线圈板配置的至少一个线圈的未对准导致的信号偏移(例如线圈板配置可以包括具有线圈位于其中的多个层的PCB,并且至少一个线圈的未对准可以由作为制造过程的一部分的层对层配准中的配准误差导致,例如在制造公差内)。
图15A至15C示出了一实施例,其中未对准补偿元件采取增加屏蔽的形式,以减少场产生线圈配置(例如图12B的场产生线圈1261T和1261B)和旋转感测线圈配置(例如图12B的TRSC1-4和BRSC1-4)之间的配准误差的影响。图15A示出了内部屏蔽1261’,其中铜垫被添加到场产生线圈(例如图12B的1261T和1261B),以及外部屏蔽1263,其中铜垫位于屏蔽的场产生线圈1261’的外部。图15B是示出具有旋转感测线圈配置RSC(例如TRSC1-4或BRSC1-4)的屏蔽场产生线圈1261’和外部屏蔽1263相对于探针位置检测部分的中心轴线(例如图13A的中心轴线CA)的对准的俯视图。如图所示,铜垫被添加到场产生线圈1261,以加宽屏蔽场产生线圈1261’的面积,从而大体匹配旋转感测线圈RSC的内环的面积,并且外部屏蔽的铜垫被成形和定位成大体匹配旋转感测线圈RSC的外环的面积。
在图15C中,示出了线圈板配置1590的层的示例实施方式。如图所示,线圈板配置1590包括顶部线圈板部分1590T和底部线圈板部分1590B。顶部线圈板部分1590依次包括具有顶部轴向感测线圈配置TASCC的第一层、至少包括第一屏蔽顶部场产生线圈配置1261T’和外部屏蔽1263T的第二层、包括N个顶部旋转感测线圈TRSC的第三层和包括顶部归一化线圈配置TRN的第四层。底部线圈板部分1590B与顶部线圈板配置通常成镜像,并且包括具有底部归一化线圈配置BRN的第一层、具有N个底部旋转感测线圈BRSC的第二层、具有至少第一屏蔽底部场产生线圈配置1261B’和外部屏蔽1263B的第三层以及具有底部轴向感测线圈配置BASCC的第四层。
一些实施例可以采用内部屏蔽(例如屏蔽场产生线圈1261’)而不采用外部屏蔽(例如外部屏蔽1263),一些实施例可以采用外部屏蔽(例如外部屏蔽1263)而不采用内部屏蔽(例如屏蔽场产生线圈1261’),一些实施例可以采用内部屏蔽(例如屏蔽场产生线圈1261’)和外部屏蔽(例如外部屏蔽1263)。屏蔽1261’、1263使得在旋转感测线圈的边缘产生的场更小且更均匀,减少了场产生线圈和旋转感测线圈之间的配准误差的影响。如下表所示,包括内部和外部屏蔽可能有助于将偏移降低77%,而增益仅降低5%。
Figure BDA0003438911560000421
参考图12B,图16示出了探针位置检测部分1211’的示例性实施方式,其中销1298形式的未对准补偿元件(例如在各种实施方式中可以包括销、垫等)添加到线圈板配置中,通过引入补偿偏移信号来补偿信号偏移误差。在各种实施方式中,销可以延伸穿过整个线圈板配置或仅穿过其一部分,或者可以位于线圈板配置的一层中。如图所示,一个或多个销可以包括相对于包括中心轴线的平面定位在线圈板配置1290’一侧的多个销(例如参见图13A),其中销通常平行于中心轴线,并且补偿一个或多个旋转感测线圈相对于场产生线圈配置的未对准。更具体地,在各种实施方式中,可以利用销的放置来增加或减少通过各个线圈的磁场,以便补偿线圈的未对准。
参考图12B,图17A示出了探针位置检测部分1211”的示例性实施方式,其中采用机械调节机构1297来调节线圈板配置1290”和/或扰动器配置1250的相对位置(例如线圈板配置1290”或扰动器配置1250相对于彼此和/或相对于线圈板配置的壳体/外壳的相对X、Y和/或Z位置等)。在各种实施方式中,线圈板配置1290”可以包括额外的间隔(例如围绕边缘和/或在中心等),以允许可调节的定位范围。应当理解,机械调节机构1297可用于减少未对准情况。在示例性实施例中,可以使用一个或多个其他未对准补偿元件(例如图16的垫或销1298、图15A至15C的屏蔽1261’、1263、图18A至18C的可调线圈TASCC(下面讨论)等,和/或它们的各种组合)来提供未对准的总补偿,其中由机械调节机构1297提供位置微调,以减少任何残余未对准误差或提高其他未对准补偿元件的有效性。
如图所示,机械位置调节机构1297包括定位螺钉1297A、1297B。第一定位螺钉1297A(或多个第一定位螺钉1297A)有助于调节线圈板配置1290”的相对XY位置,第二定位螺钉1297B有助于调节扰动器配置1250相对于线圈板配置1290”的Z位置。在各种实施方式中,定位螺钉1297A穿过并调节线圈板配置1290”附接或以其他方式联接到的对准和安装部分1217的位置。外壳1208’(例如其可以联接到或者是主体框架的一部分,例如图4的框架408)包围线圈板配置1290”,并且包括相对于相对运动操作的间隔件SP。如上所述(例如关于图12A),扰动器元件1251在线圈板配置1290”的孔1291内移动,并通过联接配置1253联接到探针悬置部分(例如参见图2-4的悬置部分307/407/407’),包括移动构件1212的上部(例如类似于图3和4的移动构件412)。在各种实施方式中,第二定位螺钉1297B可以作为联接配置1253的一部分包括在内,或者与联接配置1253一起操作,联接配置1253因此可以是至少部分可调节的,并且对此如上所述,第二定位螺钉1297B有助于调节扰动器元件1251相对于线圈板配置1290”的Z位置。
参考图4,图17B示出了探针位置检测部分511”的示例性实施方式,其中采用机械调节机构597来调节线圈板配置590”和/或扰动器配置550的相对位置(例如线圈板配置或扰动器配置550相对于彼此和/或线圈板配置的壳体/外壳的相对X、Y和/或Z位置等)。在各种实施方式中,线圈板配置590″(例如包括基板571T、571B以及场产生线圈561和/或其基板)可以包括额外的间隔(例如围绕边缘和/或在中心等),以允许可调节的定位范围。应当理解,机械调节机构597可以用于减少未对准情况,类似于上面参照图17A描述的操作。
如图所示,机械位置调节机构597包括定位螺钉597A、597B。第一定位螺钉597A(或多个第一定位螺钉597A)有助于调节线圈板配置590”的相对XY位置,第二定位螺钉597B有助于调节扰动器结构550相对于线圈板配置590”的Z位置。在各种实施方式中,定位螺钉597A穿过并调节线圈板配置590”附接或以其他方式联接到的对准和安装部分517的位置。外壳508’(例如其可以联接到或者是主体框架的一部分,例如图4的框架408)包围线圈板配置590”,并且包括相对于相对运动操作的间隔件SP。在各种实施方式中,扰动器元件551在线圈板配置590″的孔591内移动(例如在场产生线圈561及其基板内),并且通过联接配置553联接到探针悬置部分(例如参见图2-4的悬置部分307/407/407'),包括移动构件412的上部。在各种实施方式中,第二定位螺钉597B可以作为联接配置553的一部分被包括在内,或者与联接配置553一起操作,联接配置553因此可以是至少部分可调节的,并且对此如上所述,第二定位螺钉597B有助于调节扰动器元件551相对于线圈板配置590”的Z位置。在各种实施方式中,第二定位螺钉597B的一部分、移动构件412和/或联接配置553的其他部分可以在基板571B的孔591B内移动(例如并且对此在一些实施方式中,基板571T可以包括类似的孔591T,其可以提供到第二定位螺钉597B的入口以进行调节)。关于图17A和17B,应当理解,用或不用散列线示出的某些元件可以包括孔或开口(例如如能够进行某些相对运动等)。扰动器元件551、1251在相应的探针位置检测部分511’、1211’内的这种相对运动的示例可以至少部分地基于图3关于扰动器元件451在探针位置检测部分411内的相对运动的图示来理解。
参考图12B,图18A至18C示出了示例性实施方式,其中导电短路1299(例如零欧姆电阻器)形式的未对准补偿元件可被添加到线圈板配置1290”’以补偿未对准误差。更具体地,在各种实施方式中,可以添加导电短路1299(例如在如图18B和18C所示的位置)以调节电流路径,并且基本调节线圈板配置1290”’的一个或多个可调节线圈的线圈尺寸,以便有效地使某些确定的偏移归零或者以其他方式补偿。在各种实施方式中,可调节线圈位于外层的线圈板配置的顶部和/或底部(例如图12B中的轴向感测线圈配置TASCC’或BASCC’的附近或一部分),对此导电短路1299可被容易地添加或移除,而不需要接近线圈板配置的内层。
在各种实施方式中,当最初制造/生产线圈板配置时,某些未对准补偿元件(例如图15A至15C的屏蔽1261’、1263)可被包括作为制造/生产的一部分(例如作为减少由于线圈的任何未对准而可能发生的任何未对准误差的一般技术)。在各种实施方式中,在线圈板配置被制造/生产之后,可以进行测量和/或可以进行测试以确定可能存在什么偏移(例如由于在制造/生产期间可能已经发生的线圈未对准)。基于这样的测试/测量,可以做出关于一种或多种偏移补偿技术的应用的某些确定(例如上面关于图16、17A、17B和18A至18C描述的那些)。例如,关于图16、18B和18C的技术,基于这样的测试/测量,可以确定未对准补偿元件(例如销、导电短路等)应该被放置/定位/添加在哪里,以便补偿偏移并实现期望的偏移补偿配置。作为另一示例,关于图17A和17B的技术,基于这样的测试/测量(例如其可以最初和/或在诸如图16、18B和18C的技术已被执行以进行更大的调节之后被执行,并且对此图17A和17B的技术然后被执行以进行更精细调节),可以确定应该进行什么和/或多少调节,以便补偿偏移(例如剩余的偏移)并且实现期望的偏移补偿配置。在各种实施方式中,一种或多种补偿技术的多次迭代(例如包括重复测试和/或任何指示的偏移的主动监测等)可被执行,包括继续进行调节,直到获得期望的偏移补偿配置(例如其中各个偏移误差已降低到可接受水平的配置等)。
虽然图15A至15C、16、17A和18A至18C已经参考图12B和13A进行了一般性讨论,但在此讨论的补偿和减少/解决偏移误差的技术可以在其他实施方式中使用,例如上面参考图3、4和5以及参考图9A、9B和10讨论的实施方式。
在各种实施方式中,由于探针位置检测部分的部件之间的串扰,可能会出现至少一些信号误差。在一些实施方式中,串扰可以指由系统的一个电路、通道或部件产生或在其中产生的信号或场在系统的另一个电路、通道或部件中产生不期望的影响的情况。这种串扰可能由从一个电路、通道或部件到另一个的不期望耦合(例如电容、电感、导电等)引起。例如,关于扫描探头的某些配置,例如本文所述的那些,串扰可能发生在任何场产生线圈配置(包括与其的耦合)、感测线圈配置和/或扰动器配置之间。根据本文公开的原理,并且如下文更详细讨论,一个或多个场产生线圈耦合和串扰减少配置CCRC将信号处理和控制电路(例如图4的信号处理和控制电路480;图6的信号处理和控制电路680等)耦合到场产生线圈配置以提供线圈驱动信号,同时有助于减少探针位置检测部分的各种部件之间的串扰。场产生线圈耦合和串扰减少配置CCRC配置为减少串扰,否则如果场产生线圈配置直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。
如下文将更详细描述,图19至24示出了根据本文公开的原理的各种实施方式的示例。应当理解,这种原理可以用于各种配置和类型的探针位置检测部分和相关的电子器件,例如上面参考图3-18描述的探针位置检测部分411、511、511’、911、1011、1111、1211、1211’、1211”和1311。此外,这种原理也可以用于这种探针位置检测部分的其他配置和/或各种元件的组合。
具体而言,图19至24示出了探针位置检测部分1911的各种实施例,其使用感应感测原理,并且包括线圈板配置1990和扰动器配置1950。如图所示(例如在图22-24中)的线圈板配置1990的场产生线圈板部分1990M包括场产生线圈配置1960,其包括具有两匝的多匝场产生线圈1961,对此两个相应的场产生线圈部分1961B和1961T沿着中心轴线与扰动器运动体积的中平面大致等距,并且名义上是平面的且正交于中心轴线。场产生线圈部分可以通过一个或多个通孔联接在一起。线圈板配置1990可以包括一个或多个PCB,每个具有线圈位于其中的一个或多个层。例如,线圈板配置1990可以具有类似于图4的多板线圈板配置的配置,除了具有场产生线圈561的场产生线圈配置560之外,该配置还包括接收器线圈部分570,其包括平面顶部线圈基板571T和平面底部线圈基板571B。在另一示例中,线圈板配置1990可以具有类似于图9的线圈板配置990的配置。
图示的扰动器配置1950的扰动器元件1951是单个圆形平面扰动器元件。扰动器配置1950可以具有不同的配置,例如类似于图5的扰动器配置550、图9的扰动器配置950或图12A和12B的扰动器配置1250的配置。探针位置检测部分1911通常包括从图19至24中省略的其他元件,以简化说明,例如接收器线圈部分(例如参见图5的接收器线圈部分570;图9的接收器线圈部分970、图12B的接收器线圈部分1270等)。
在图19-24中,场产生线圈耦合和串扰减少配置CCRC-1至CCRC-6将信号处理和控制电路(例如图4的信号处理和控制电路480;图6的信号处理和控制电路680等)耦合到场产生线圈配置1960,如上所述,这有助于减少探针位置检测部分1911的各种部件之间的串扰。例如,由场产生线圈耦合和串扰减少配置CCRC-1至CCRC-6减少的串扰可以包括场产生线圈配置1960及与其的各种连接和探针位置检测部分1911的各种其他部件比如扰动器配置1950的扰动器元件1951、轴向感测线圈(图19-24中未示出,见图5、6和12B的TASCC和BASCC)、旋转感测线圈(图19-24中未示出,见图5、6和12的TRSC1-4和BRSC1-4)和归一化线圈(图19-24中未示出,见图12B的TRN和BRN)之间的串扰。
图19示出了一实施例,其中场产生线圈耦合和串扰减少配置CCRC-1包括导电耦合部分CCP-1和导电屏蔽CSD-1。导电耦合部分CCP-1包括导体CON-1961B和CON-1961T,它们通过导电耦合部分CCP-1的柔性电缆1964耦合回信号处理和控制电路(例如图4的信号处理和控制电路480等)。导电屏蔽CSD-1图示为接近(例如覆盖)导体CON-1961B和CON-1961T的至少一部分(导电屏蔽CSD-1图示为透明的,以便示出导体CON-1961B和CON-1961T的被屏蔽的部分,但通常可能不透明)。虽然柔性电缆1964在图19中示出,但其他类型的电线、电缆、光纤等或其各种组合可以用作导电耦合部分CCP-1的一部分。电容器C2图示为耦合在导体CON-1961B和CON-1961T之间(例如,如下面将参考图21至24更详细描述,其可以耦合在导体CON-1961B和CON-1961T联接到的两个通孔之间,并且在一些实施方式中可以是并联电容器配置PCC的一部分和/或作为场产生线圈耦合和串扰减少配置的一部分的三电流分支配置TCB的一部分)。
以下描述了在信号处理和控制电路(例如图4的信号处理和控制电路480等)和场产生线圈1961(即包括场产生线圈部分1961B和1961T)之间流动的电流的电流路径(例如对于AC电流,其可以在两个方向上流动,但为了简单起见,下面的示例是相对于单个方向来描述的)。注意,诸如以下示例中的电流路径在图21至24中更详细地示出。图19至24中提供了箭头,用于示出与所述示例相关的电流方向。应当理解,关于AC电流,示例电流流动方向(即在一示例方向上)可以在任何实施方式和描述中反转(例如图19和20相对于电流的第一方向示出,而图21相对于电流的第二方向示出,但对此应当理解,方向可以在任何示例中反转)。
如图19(以及图20)中部分所示,对于在示例方向上从信号处理和控制电路流向场产生线圈1961的电流,导体CON-1961T耦合到电容器C2的一侧(例如通过通孔,如下面关于图21至24更详细描述,该通孔也可以耦合到场产生线圈1961的场产生线圈部分1961T),这因此对应于通过这些部件的电流路径。对于在从场产生线圈1961到信号处理和控制电路的示例方向上沿着返回路径流动的电流,电容器C2的另一侧耦合到导体CON-1961B(例如通过通孔,如下面将参考图21至24更详细描述,该通孔也可以耦合到场产生线圈1961的场产生线圈部分1961B),这因此对应于通过这些部件的电流路径。
导电屏蔽CSD-1示出为接近(例如覆盖)导体CON-1961B和CON-1961T的接近场产生线圈1961(例如其包括场产生线圈部分1961B和1961T,这将在下面参考图21至24更详细描述)的至少部分。导电屏蔽CSD-1可以包括靠近(例如覆盖,比如上方和/或下方)导体CON-1961B和CON-1961T的至少部分(例如包括靠近场产生线圈1961和干扰元件1951的至少部分)的导电屏蔽部分(例如包括窄铜垫或套筒或镜像导电垫等)。
应当理解,如果导电屏蔽CSD-1没有包括在图19的配置中,则可能会出现某些类型的串扰(例如这可能会在旋转感测线圈信号中引入误差等)。例如,作为一种类型的串扰,由于导体CON-1961B、CON-1961T和扰动器元件1951(例如其可被称为标度元件)之间的耦合,可能会出现电缆耦合扰动器(标度)电流CCScS。这种串扰可能主要在扰动器元件1951的一侧影响标称扰动器电流NScC,这可能在旋转感测线圈信号中引入误差(图19中未示出,参见图5、6和12的TRSC1-4和BRSC1-4),因为耦合的影响在扰动器元件1951的不同侧是不同的。更具体地,在各种实施方式中,最靠近(例如接近)导体CON-1961B、CON-1961T的扰动器元件1951一侧的影响可能最大。导电屏蔽CSD-1减少了导体CON-1961B、CON-1961T和扰动器配置1950的扰动器元件1951之间的这种耦合,并因此减少了由此导致的串扰(例如否则可能导致来自旋转感测线圈的信号中的串扰误差)。在各种实施方式中,导电屏蔽CSD-1本身可以在X-Y方向上引入相对小的偏移,这在一些配置中可以通过镜像屏蔽配置来减小/抵消,如下面将参考图20更详细描述。
图20示出了一实施例,其中场产生线圈耦合和串扰减少配置CCRC-2包括导电耦合部分CCP-2、导电屏蔽CSD-2、镜短截线导电耦合部分CCP-2M和镜短截线导电屏蔽CSD-2M。导电耦合部分CCP-2包括导体CON-1961B和CON-1961T,它们通过导电耦合部分CCP-2的柔性电缆1964耦合回信号处理和控制电路(例如图4的信号处理和控制电路480等)。导电屏蔽CSD-2图示为靠近(例如覆盖)导体CON-1961B和CON-1961T的靠近场产生线圈1961(例如其包括场产生线圈部分1961B和1961T的至少部分,如下面将参考图21至24更详细描述)。导电屏蔽CSD-2可以包括靠近(例如覆盖,比如上方和/或下方)导体CON-1961B和CON-1961T的至少部分(例如包括靠近场产生线圈1961和扰动器元件1951的至少部分)的导电屏蔽部分(例如包括窄铜垫或套筒或镜像导电垫等)。为了便于说明,导电屏蔽CSD-2相对于导体CON-1961B和CON-1961T是透明的。
与图19所示的导电屏蔽CSD-1相比,图20的导电屏蔽CSD-2的较大尺寸提供了额外的屏蔽,并且相应地减少了扰动器配置1950和与场产生线圈配置1960相关的耦合之间的耦合,因此减少了串扰(例如可能不利地影响旋转感测线圈配置中的信号等)。在各种实施方式中,与图19的配置相比,由图20的较大导电屏蔽CSD-2提供的耦合的增加的减少可能以引入较大偏移(例如在X-Y方向)为代价,对此在为给定应用选择屏蔽尺寸时可以考虑和平衡这些因素。
由导电屏蔽CSD-2引入的任何偏移将主要与探针位置检测部分1911的一侧相关。为了减少这种偏移,镜短截线导电屏蔽CSD-2M配置成镜像导电屏蔽CSD-2(例如在探针位置检测部分1911的与导电屏蔽CSD-2相反的一侧)。此外,为了进一步减少偏移,镜短截线导电耦合部分CCP-2M配置成镜像导电耦合部分CCP-2(例如在探针位置检测部分1911的相对侧)。
镜短截线导电屏蔽CSD-2M位于相对于中心轴线的第二位置,第一导电屏蔽CSD-2位于相对于中心轴线的第一位置,对此所述第一和第二位置关于中心轴线对称(例如在探针位置检测部分1911的相对侧,比如在正交于Z方向的平面内)。类似地,镜短截线导电耦合部分CCP-2M位于相对于中心轴线的第二位置,第一导电耦合部分CCP-2位于相对于中心轴线的第一位置,对此所述第一和第二位置关于中心轴线对称(例如在探针位置检测部分1911的相对侧,比如在正交于Z方向的平面内)。镜短截线导电耦合部分CCP-2M和镜短截线导电屏蔽CSD-2M以及对称放置至少部分地补偿了由导电耦合部分CCP-2和导电屏蔽CSD-2引入的偏移。
图20所示的实施方式还包括靠近镜导电耦合部分CCP-2M并与场产生线圈1961的场产生线圈部分1961B和1961T串联耦合的第一电容器C1,以及靠近场产生线圈配置1960并耦合在导体CON-1961B和CON-1961T之间的第二电容器C2(例如,如下面将参照图21至24更详细描述,其可以耦合在导体CON-1961B和CON-1961T耦合到的两个通孔之间)。因此,第二电容器C2与信号处理和控制电路(例如图4的信号处理和控制电路480;图6的信号处理和控制电路680等)并联。第一电容器C1和第二电容器C2可以相对于中心轴线大致彼此对称地定位,并且位于场产生线圈板部分1990M的一部分上或中,例如位于场产生线圈板部分1990M的顶部上或中或者其底部上或中。例如,参考由场产生线圈1961限定的场产生线圈平面FGCP(例如参见图21至24),在各种实施方式中,第一和第二电容器C1、C2可以位于场产生线圈平面上方或场产生线圈平面下方。
在各种实施方式中,电容器C1和C2确定场产生线圈1961的阻抗的至少一部分,其配置与信号处理和控制电路(例如图4的信号处理和控制电路480;图6的信号处理和控制电路680等)匹配并设置LC谐振频率(例如包括场产生线圈1961和导电耦合部分CCP-2的谐振回路RL的谐振频率)。在各种实施方式中,谐振回路RL的主要目的之一是增加信号幅度(例如其功能类似于电压的电变压器,例如对于线圈驱动信号具有+/-2.5V的驱动器电压,并且在场产生线圈1961上实现>+/-5V)。谐振回路RL还可以实现某些滤波功能,例如减少耦合到感测线圈上的噪声。
在各种实施方式中,将第一电容器C1和第二电容器C2放置在由场产生线圈1961限定的场产生线圈平面FGCP的一侧可能会引入轴向方向上的某些不平衡(例如在电磁场等中),这可能引入串扰,从而在所产生(例如由轴向感测线圈,图19-24中未示出,参见图5、6和12B的TASCC和BASCC)的信号中引入误差。在某些实施方式中,将电容器C2放置在场产生线圈平面FGCP的一侧所引入的信号误差可能比将电容器C1放置在场产生线圈平面FGCP的一侧所引入的信号误差更大。为了减少这种潜在的信号误差,在各种实施方式中(例如,如下面将参考图21至24更详细描述),电容器C1和C2中的一个或两个(例如在某些实施方式中优选地至少包括电容器C2)可被制成并联电容器配置PCC的一部分(例如在场产生线圈平面FGCP的相对侧上具有相应的附加电容器)和/或三电流分支配置TCB的一部分。
在图21中,场产生线圈耦合和串扰减少配置CCRC-3包括导电耦合部分CCP-3,其包括导体CON-1961B和CON-1961T,其通过导电耦合部分CCP-3的柔性电缆1964耦合回信号处理和控制电路(例如图4的信号处理和控制电路480等)。代替如图20所示的跨过连接耦合到场产生线圈部分1961B和1961T的单个电容器C2,图21的场产生线圈耦合和串扰减少配置CCRC-3包括具有一对电容器C2U、C2L的并联电容器配置PCC。电容器C2U相对于场产生线圈平面FGCP位于顶侧,电容器C2L相对于场产生线圈平面FGCP位于底侧。
从概念上讲,应当注意,图21的镜像电容器配置(例如包括镜像电容器C2U的电容器C2L)有助于改善电路/部件/信号的轴向和/或其他对称性。更具体地,如果单个电容器C2仅在一侧(例如场产生线圈平面FGCP的一侧),则该配置(例如沿轴向方向)可能在其他方面有些不平衡/不对称(例如相对于场产生线圈平面FGCP),这可能对应于更高的串扰和/或其他信号不平衡(例如在单个电容器的方向上)。通过在任一侧(例如场产生线圈平面FGCP的一侧)具有镜像配置的对称电容器,可以减少这样的问题,对此相应的影响可以至少部分地自消除和/或以其他方式更加平衡(例如相对于顶部和底部感测线圈,比如图5、6和12B的TASCC和BASCC等,并且对此不平衡信号可能导致扰动器元件/探针悬置部分/探针等的不正确位置确定)。应当理解,当以差分配置处理这种平衡/对称线圈信号时,这种平衡/对称线圈信号的某些部分可以有效地自抵消。虽然图21示出了使用并联电容器配置PCC来代替图20所示的单个电容器C2,但在图20的一些实施方式中,也可以使用类似的并联电容器配置来代替单个电容器C1。
以下描述了在信号处理和控制电路(例如图4的信号处理和控制电路480等)和场产生线圈1961(即包括场产生线圈部分1961B和1961T)之间流动的电流的电流路径(例如对于AC电流,其可以在两个方向上流动,但为了简单起见,下面的示例是相对于单个方向来描述的)。图21中提供的箭头指示了根据以下描述的电流流动方向。应当注意,以下描述的耦合在图22-24中更详细地示出。如图21中部分所示,对于在示例方向上从信号处理和控制电路流向场产生线圈1961的电流,导体CON-1961B耦合到通孔VIA-A,这因此对应于通过这些部件的电流路径。对于在从场产生线圈1961到信号处理和控制电路的示例方向上沿着返回路径流动的电流,通孔VIA-B耦合到导体CON-1961T,这因此对应于通过这些部件的电流路径。
在图21中,对于在示例方向上流过并联电容器配置PCC(即包括电容器C2U和C2L)的电流,电容器C2U耦合在通孔VIA-A和VIA-B的上部之间,并且电容器C2L耦合在通孔VIA-A和VIA-B的下部之间,这对应于通过这些序列部件的电流路径。更具体地,来自导体CON-1961B的一部分电流向上流过通孔VIA-A的上部并跨过电容器C2U,向下流过通孔VIA-B的上部并通过导体CON-1961T流出,并且来自导体CON-1961B的一部分电流向下流过通孔VIA-A的下部并跨过电容器C2L,向上流过通孔VIA-B的下部并通过导体CON-1961T流出。在各种实施方式中,电容器C2U可以是场产生线圈耦合和串扰减少配置CCRC-3的上分支UB的一部分,电容器C2L可以是其下分支LB的一部分。在各种实施方式中,流过上分支UB和下分支LB中的每个以及相应地流过电容器C2U和C2L中的每个的电流可以大致相等(例如从而导致对磁场/电磁场的平衡影响,例如相对于顶部和底部感测线圈,比如图5、6和12B中的TASCC和BASCC等,对此当以差分配置处理时,平衡/对称线圈信号可以有效地自抵消)。
如果从图21中省略电容器C2L,电流将流过场产生线圈平面FGCP上方的电容器C2U,而没有相应的电流流过场产生线圈平面FGCP下方。这种配置可能导致相对于场产生线圈平面FGCP的相对不平衡影响(例如在磁场上),并因此导致由轴向感测线圈产生的信号中的串扰误差(例如来自对应于通过电容器C2U的电流影响的串扰)。通过将电容器C2L包括为具有电容器C2U的并联电容器配置PCC的一部分,使得相似的电流出现在场产生线圈平面FGCP上方和下方的近似相等的距离和相似的相对位置(例如具有相似或相同的X、Y坐标)。这种平衡的配置(例如相对于场产生线圈平面FGCP)有助于减少任何相应的误差(例如串扰误差),否则这些误差可能导致确定的位置信号(例如由轴向感测线圈中产生的信号导致)。
在图22中,场产生线圈耦合和串扰减少配置CCRC-4将信号处理和控制电路(例如图4的信号处理和控制电路480等)耦合到场产生线圈配置1960的场产生线圈1961(即包括场产生线圈部分1961B和1961T)。在图22的示例中,场产生线圈耦合和串扰减少配置CCRC-4包括通孔VIA-A、VIA-B和VIA-C、电容器C2U和C2L(例如作为并联电容器配置PCC的一部分)、导电屏蔽CSD以及导体CON-1961B和CON-1961T。
在图22中,作为场产生线圈耦合和串扰减少配置CCRC-4的一部分,导体CON-1961B和CON-1961T(例如作为导电耦合部分CCP-4的一部分)耦合回信号处理和控制电路(例如图4的信号处理和控制电路480等),并且对此导电屏蔽CSD示出为接近(例如覆盖)导体CON-1961B和CON-1961T的至少一部分。特别是,导电屏蔽CSD示出为靠近(例如覆盖)导体CON-1961B和CON-1961T的靠近场产生线圈1961(即其包括场产生线圈部分1961B和1961T)的至少部分。如上在图19的描述中所述,在各种实施方式中,导电屏蔽CSD-1可以包括靠近(例如覆盖,比如上方和/或下方)导体CON-1961B和CON-1961T的至少部分(例如包括靠近场产生线圈1961和扰动器元件1951的至少部分)的导电屏蔽部分(例如包括窄铜垫或套筒或镜像导电垫等)。
如以上在图19的描述中进一步指出,如果导电屏蔽CSD不包括在图22的配置中,则导体CON-1961B和CON-1961T(其靠近并仅附着在该配置的一侧)可能产生主要在该配置一侧的影响(例如电磁场影响),这可能使电磁场和由感测线圈(例如参见图5、6和12的TRSC1-4和BRSC1-4)感测的相应信号不平衡。在导体CON-1961B和CON-1961T附近包含导电屏蔽CSD有助于减少一侧的这种影响,从而改善信号的整体对称性(即减少一侧的串扰影响)。例如,关于扰动器元件1951(例如参见图19),在各种实施方式中,扰动器元件1951的最靠近(例如接近)导体CON-1961B、CON-1961T的一侧的影响可能最大,因此对其具有最大量的耦合。导电屏蔽CSD减少了导体CON-1961B、CON-1961T和扰动器配置1950的扰动器元件1951之间的这种耦合(例如磁场耦合),并因此减少了由此导致的串扰(例如否则可能导致来自旋转感测线圈等的信号中的串扰误差)。
以下描述了在信号处理和控制电路(例如图4的信号处理和控制电路480等)和场产生线圈1961(即包括场产生线圈部分1961B和1961T)之间流动的电流的电流路径(例如对于AC电流,其可以在两个方向上流动,但为了简单起见,下面的示例是相对于单个方向描述的)。图22中提供的箭头根据以下描述指示了电流的方向。对于在示例方向上从信号处理和控制电路流向场产生线圈1961的电流,导体CON-1961B耦合到通孔VIA-A,因此这对应于通过这些部件的电流路径。对于在从场产生线圈1961到信号处理和控制电路的示例方向上沿着返回路径流动的电流,通孔VIA-B耦合到导体CON-1961T,这因此对应于通过这些部件的电流路径。
对于沿示例方向流过场产生线圈1961的电流,通孔VIA-A耦合到场产生线圈部分1961B的一端,对此场产生线圈部分1961B的另一端耦合到通孔VIA-C,通孔VIA-C耦合到场产生线圈部分1961T的一端,对此场产生线圈部分1961T的另一端耦合到通孔VIA-B,因此这对应于通过场产生线圈1961的该序列部件的电流路径。更具体地说,在如图22所示的方向上,来自导体CON-1961B的一部分电流向下流过通孔VIA-A的下部并沿顺时针方向流过场产生线圈部分1961B,向上流过通孔VIA-C以沿顺时针方向流过场产生线圈部分1961T,然后向下流过通孔VIA-B的下部并通过导体CON-1961T流出。
此外,如上参考图21所述,对于在示例方向上流过并联电容器配置PCC(即包括电容器C2U和C2L)的电流,电容器C2U耦合在通孔VIA-A和VIA-B的上部之间,并且电容器C2L耦合在通孔VIA-A和VIA-B的下部之间,这对应于通过这些序列部件的电流路径。更具体地,来自导体CON-1961B的一部分电流向上流过通孔VIA-A的上部并跨过电容器C2U,向下流过通孔VIA-B的上部并通过导体CON-1961T流出,来自导体CON-1961B的一部分电流向下流过通孔VIA-A的下部并跨过电容器C2L,向上流过通孔VIA-B的下部并通过导体CON-1961T流出。在各种实施方式中,电容器C2U可以是场产生线圈耦合和串扰减少配置CCRC-4的上分支UB的一部分,电容器C2L可以是场产生线圈耦合和串扰减少配置-4的下分支LB的一部分。
如上所述,在各种实施方式中,场产生线圈1961限定场产生线圈平面FGCP(例如位于场产生线圈部分1961B和1961T之间的中点,这可以近似平分通孔VIA-A和VIA-B,这可以在导体CON-1961B和CON-1961T分别接触通孔VIA-A和VIA-B的相同或相似位置,并且对此在各种实施方式中,导体CON-1961B和CON-1961T的至少部分可以位于场产生线圈平面FGCP中)。在各种实施方式中,场产生线圈平面FGCP正交于中心轴线并穿过场产生线圈1961,对此场产生线圈耦合和串扰减少配置CCRC-4的上分支UB(例如包括电容器C2U)和下分支LB(例如包括电容器C2L)分别位于场产生线圈平面FGCP的上方和下方。在图22的示例中,上分支UB和下分支LB关于场产生线圈平面FGCP对称,是镜像电流分布配置的一部分(例如通过下分支LB的电流与通过上分支UB的电流大致相同并且与之镜像),并且并联连接(例如分别并联连接在通孔VIA-A和VIA-B的上部和下部)。
如上参考图21所述,如果从图22的配置中省略电容器C2L,电流将流过场产生线圈平面FGCP上方的电容器C2U,而没有相应的电流流过场产生线圈平面FGCP下方。这种配置可能导致相对于场产生线圈平面FGCP的相对不平衡影响(例如在磁场上),并因此导致由轴向感测线圈产生的信号中的串扰误差(例如来自对应于通过电容器C2U的电流影响的串扰)。通过将电容器C2L包括为具有电容器C2U的并联电容器配置PCC的一部分,使得相似的电流出现在场产生线圈平面FGCP上方和下方的近似相等的距离和相似的相对位置(例如具有相似或相同的X、Y坐标)。这种平衡的配置(例如相对于场产生线圈平面FGCP)有助于减少任何相应的误差(例如串扰误差),否则这些误差可能导致确定的位置信号(例如由轴向感测线圈中产生的信号导致)。
应当理解,在使用多于一个场产生线圈的实施方式中(例如参见图5和6的场产生线圈561T和561B),可以为每个场产生线圈的耦合提供并联电容器配置PCC,用于耦合到信号处理和控制电路(例如图6的信号处理和控制电路680等)。在这样的实施方式中,每个场产生线圈可以限定各自的场产生线圈平面,其正交于中心轴线并且穿过各自的场产生线圈,并且对此每个各自的并联电容器配置PCC可以包括位于各自的场产生线圈平面上方和下方的对应的上分支和下分支(例如每个包括各自的电容器)。
在图23中,场产生线圈耦合和串扰减少配置CCRC-5将信号处理和控制电路(例如图4的信号处理和控制电路480等)耦合到场产生线圈1961(即包括场产生线圈部分1961T和1961B)。在图23的示例中,场产生线圈耦合和串扰减少配置CCRC-5包括通孔VIA-A到VIA-E、电容器C2U和C2L(例如作为并联电容器配置PCC的一部分)、导电屏蔽CSD和导体CON-1961T’、CON-1961T”、CON-1961B’和CON-DE。如下文将更详细描述,与图22的主要区别在于,在图23中,通孔VIA-D和VIA-E以及导体CON-DE被包括作为扭转配置TWC的一部分。
在图23中,作为场产生线圈耦合和串扰减少配置CCRC-5的一部分,导体CON-1961T’和CON-1961B’(例如作为导电耦合部分CCP-5的一部分)耦合回信号处理和控制电路(例如图4的信号处理和控制电路480等),并且对此导电屏蔽CSD示出为接近(例如覆盖)导体CON-1961T’和CON-1961B’的至少部分。具体而言,导电屏蔽CSD示出为靠近(例如覆盖)导体CON-1961T’和CON-1961B’的靠近场产生线圈1961(即包括场产生线圈部分1961B和1961T)的至少部分。
以下描述在信号处理和控制电路(例如图2的信号处理和控制电路380等)和场产生线圈1961(即包括场产生线圈部分1961T和1961B)之间流动的电流的电流路径(例如对于AC电流,其可以在两个方向上流动,但为了简单起见,下面的示例相对于单个方向来描述)。根据下面的描述,图23中提供的箭头指示电流流动方向。对于在示例方向上从信号处理和控制电路流向场产生线圈1961的电流,导体CON-1961T’耦合到通孔VIA-D,其通过导体CON-DE耦合到通孔VIA-E。通孔VIA-E通过导体CON-1961T”耦合至通孔VIA-B。因此,从导体CON-1961T’到通孔VIA-B的部件之间的耦合对应于通过该序列部件的电流路径。通孔VIA-D、通孔VIA-E和导体CON-DE是扭曲配置TWC的部分,这将在下面更详细描述。对于在从场产生线圈1961到信号处理和控制电路的示例方向上沿着返回路径流动的电流,通孔VIA-A耦合到导体CON-1961B’,其因此对应于通过这些部件的电流路径。
扭曲配置TWC减小导体CON-1961B’和CON-1961T’在靠近该配置的一侧时可能产生的影响(例如,也如本文关于导电屏蔽CSD的目的所述)。更具体地说,导体CON-1961B’和CON-1961T’可以产生主要在该配置的一侧的影响/贡献(例如电磁场影响/贡献),如果不解决,这些影响/贡献可能至少部分地使由感测线圈感测的电磁场和相应信号不平衡(例如参见图5、6和12的TRSC1-4和BRSC1-4等)。包含扭转配置TWC(即包括导体CON-1961T”和CON-DE)有效地反转在各自方向上承载电流的导体部分的相对位置,因此有助于平均相应的影响和耦合等(例如导致某些影响/贡献的至少部分自消除等)。
对于沿示例方向流过场产生线圈1961的电流,通孔VIA-B耦合到场产生线圈部分1961T的一端,对此场产生线圈部分1961T的另一端耦合到通孔VIA-C,其耦合到场产生线圈部分1961B的一端,对此场产生线圈部分1961B的另一端耦合到通孔VIA-A,这对应于通过该序列部件的电流路径。更具体地,在图23所示的方向上,来自导体CON-1961T”的一部分电流向上流过过通孔VIA-B的上部,并以逆时针方向流过场产生线圈部分1961T,向下流过过通孔VIA-C,以逆时针方向流过场产生线圈部分1961B,然后向上流过通孔VIA-A的下部,并通过导体CON-1961B’流出。
此外,如上文关于图21和22所述,对于在示例方向上流过并联电容器配置PCC(即包括电容器C2U和C2L)的电流,电容器C2U耦合在通孔VIA-A和VIA-B的上部之间,电容器C2L耦合在通孔VIA-A和VIA-B的下部之间,这对应于通过这些序列部件的电流路径。更具体地,来自导体CON-1961T”的一部分电流向上流过通孔VIA-B的上部并跨过电容器C2U,向下流过通孔VIA-A的上部并通过导体CON-1961B’流出,而来自导体CON-1961T”的一部分电流向下流过通孔VIA-B的下部并跨过电容器C2L,向上流过通孔VIA-A的下部并通过导体CON-1961B’流出。如上所述,电容器C2U可以是场产生线圈耦合和串扰减少配置CCRC-5的上分支UB的一部分,电容器C2L可以是其下分支LB的一部分。
在图24中,场产生线圈耦合和串扰减少配置CCRC-6将信号处理和控制电路(例如图4的信号处理和控制电路480等)耦合到场产生线圈1961(即包括场产生线圈部分1961B和1961T)。在图24的示例中,场产生线圈耦合和串扰减少配置CCRC-6包括通孔VIA-A1、VIA-A2、VIA-B1、VIA-B2和VIA-C、电容器C2、导电屏蔽CSD以及导体CON-1961T、CON-1961B、CON-A2B1和CON-A2B2。如下文将更详细描述,与图22的主要区别在于,在图24中使用了不同的电流配置(例如包括导体CON-A2B2作为较低电流分支LCB,对此没有使用较低的电容器,比如电容器C2L,尽管对此可以实现某些类似的平衡电流影响)。
在图24中,类似于图22和23的配置,作为场产生线圈耦合和串扰减少配置CCRC-6的一部分,导体CON-1961T和CON-1961B(例如作为导电耦合部分CCP-6的一部分)耦合回信号处理和控制电路(例如图4的信号处理和控制电路480等),并且对此导电屏蔽CSD示出为接近(例如覆盖)导体CON-1961B和CON-1961T的至少部分。特别地,导电屏蔽CSD示出为靠近(例如覆盖)导体CON-1961B和CON-1961T的靠近场产生线圈1961(即包括场产生线圈部分1961B和1961T)的至少部分。
以下描述在信号处理和控制电路(例如图4的信号处理和控制电路480等)和场产生线圈1961(即包括场产生线圈部分1961B和1961T)之间流动的电流的电流路径(例如对于AC电流,其可以在两个方向上流动,但为了简单起见,下面的示例相对于单个方向来描述)。图24中提供的箭头指示根据以下描述的电流流动方向。对于在示例方向上从信号处理和控制电路流向场产生线圈1961的电流,导体CON-1961B耦合到通孔VIA-A1,因此这对应于通过这些部件的电流路径。对于在从场产生线圈1961到信号处理和控制电路的示例方向上沿着返回路径流动的电流,通孔VIA-B2耦合到导体CON-1961T,这因此对应于通过这些部件的电流路径。
在图24的示例中,场产生线圈耦合和串扰减少配置CCRC-6包括三电流分支配置TCB。在各种实施方式中,三电流分支配置TCB可以具有被认为对应于双纽线或数字“8”字形的形状。三电流分支配置TCB包括电流在第一方向上流动的中间电流分支MCB(例如包括导体CON-A2B1),以及分别上电流分支UCB和下电流分支LCB(例如分别包括电容器C2和导体CON-A2B2),每个耦合到中间电流分支MCB,并且具有在近似与第一方向相反的第二方向上流动的电流。在各种实施方式中,上电流分支UCB和下电流分支LCB可以分别在中间电流分支MCB和/或场产生线圈平面FGCP的上方和下方近似均匀地间隔开。
对于沿示例方向流过三电流分支配置TCB的电流,电容器C2(例如作为上电流分支UCB)耦合在通孔VIA-A1和VIA-B1的上部之间,导体CON-A2B1(例如作为中间电流分支MCB)耦合在通孔VIA-B1和VIA-A2的中部之间,并且导体CON-A2B2(例如作为下电流分支LCB)耦合在通孔VIA-A2和VIA-B2的下部之间,这因此对应于通过该序列部件的电流路径。在各种实施方式中,关于在示例方向上流动的电流,流过导体CON-A2B1(例如作为中间电流分支MCB)的电流可被称为在第一方向上,流过电容器C2(例如作为上电流分支UCB)和导体CON-A2B2(例如作为下电流分支LCB)的电流可被称为在第二方向上(例如对此第二方向可以近似与第一方向相反)。更具体地,在如图24所示的方向上,来自导体CON-1961B的一部分电流向上流过通孔VIA-A1的上部并穿过电容器C2(例如在第二方向上),向下流过通孔VIA-B1的上部并穿过导体CON-A2B1(例如在第一方向上),向下流过通孔VIA-A2的下部并穿过导体CON-A2B2(例如在第二方向上),以及向上流过通孔VIA-B2的下部并通过导体CON-1961T流出。
类似于并联电容器配置PCC的讨论,如果在图24的三电流分支配置TCB中省略了导体CON-A2B2(例如作为下电流分支LCB),电流将流过场产生线圈平面FGCP上方的电容器C2,而没有相应的电流流过场产生线圈平面FGCP下方。这种配置可能导致相对于场产生线圈平面FGCP的相对不平衡影响(例如在磁场上),并因此导致由轴向感测线圈产生的信号中的串扰误差(例如来自对应于通过电容器C2的电流影响的串扰)。通过将导体CON-A2B2(例如作为下电流分支LCB)包括为三电流分支配置TCB的一部分,可以使类似的电流出现在场产生线圈平面FGCP上方和下方近似相等的距离和类似的相对位置(例如具有类似或相同的X、Y坐标)。这种平衡配置(例如相对于场产生线圈平面FGCP)有助于减少任何相应的误差(例如串扰误差),否则这些误差可能导致确定的位置信号(例如由轴向感测线圈中产生的信号导致)。
在各种实施方式中,下电流分支LCB和上电流分支UCB也可以或替代地分别被称为场产生线圈耦合和串扰减少配置CCRC-6的上分支UB和下分支LB。在各种实施方式中,先前描述的下分支LB和上分支UB(例如图21至23的场产生线圈耦合和串扰减少配置中的每个)也可以或替代地分别被称为相应场产生线圈耦合和串扰减少配置的上电流分支UCB和下电流分支LCB。在图21至24的所有描述的场产生线圈耦合和串扰减少配置中,可以使相似的电流出现在场产生线圈平面FGCP上方和下方的近似相等的距离和相似的相对X和Y坐标位置(例如具有相似或相同的X、Y坐标)(例如对此这种平衡配置可以帮助减少潜在的串扰误差等)。
对于沿示例方向流过场产生线圈1961的电流,通孔VIA-A1耦合到场产生线圈部分1961B的一端,对此场产生线圈部分1961B的另一端耦合到通孔VIA-C,其耦合到场产生线圈部分1961T的一端,对此场产生线圈部分1961T的另一端耦合到通孔VIA-B1,其通过三电流分支配置TCB的下部(例如包括导体CON-A2B1和CON-A2B2)耦合到通孔VIA-B2,其对应于通过该序列部件的电流路径。更具体地,在如图24所示的方向上,来自导体CON-1961B的一部分电流向下流过通孔VIA-A1的下部并沿顺时针方向流过场产生线圈部分1961B,向上流过通孔VIA-C以沿顺时针方向流过场产生线圈部分1961T,然后向下流过通孔VIA-B1的上部并穿过导体CON-A2B1,向下流过通孔VIA-A2的下部并穿过导体CON-A2B2,以及向上流过通孔VIA-B2的下部并通过导体CON-1961T流出。
虽然图19至24已经参照某些图(例如图3和图4)中示出的某些配置进行了一般性讨论,但这里讨论的补偿和减少/解决串扰误差的技术可以在其他实施方式中使用,例如上面参照图5和6、参照图9A、9B和10以及参照图12B和13A讨论的实施方式。
在一些实施方式中,扫描探头包括探针悬置部分、探针位置检测部分、信号处理和控制电路以及场产生线圈耦合和串扰减少配置。探针悬置部分附接到扫描探头的框架,并且包括配置为刚性地耦合到探针的探针联接部分,以及配置为使探针联接部分能够沿轴向方向轴向运动并且使探针联接部分能够绕旋转中心旋转运动的探针运动机构。
探针位置检测部分沿着平行于轴向方向并且名义上与旋转中心对齐的中心轴线布置,并且基于感应感测原理。探针位置检测部分包括包含至少一个场产生线圈的场产生线圈配置、包含至少一个顶部轴向感测线圈的顶部轴向感测线圈配置(TASCC)、包含至少一个底部轴向感测线圈的底部轴向感测线圈配置(BASCC)、N个顶部旋转感测线圈(TRSC)和N个底部旋转感测线圈(BRSC),其中N是大于3的整数。
扰动器配置包括提供扰动器区域的导电扰动器元件,其沿着中心轴线位于扰动器运动体积中。扰动器元件通过联接配置联接到探针悬置部分,并且响应于探针悬置部分的偏转而在扰动器运动体积中相对于未偏转位置移动。扰动器元件可被描述为响应于轴向运动而在沿着轴向方向的操作运动范围+/-Rz上移动,并且响应于旋转运动而在沿着正交于轴向方向的正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上运动。场产生线圈配置响应于线圈驱动信号在扰动器运动体积中产生大致沿轴向方向变化的磁通量。
信号处理和控制电路可操作地连接到探针位置检测部分的线圈,以提供线圈驱动信号,并配置为输入来自接收器线圈部分的信号,该信号包括由相应旋转和轴向感测线圈提供的相应信号分量。它还配置为输出指示扰动器元件或探针中的至少一个相对于扫描探头的框架的轴向位置和旋转位置的信号。
场产生线圈耦合和串扰减少配置将信号处理和控制电路耦合到至少一个场产生线圈以提供线圈驱动信号,并且配置为减少串扰,否则如果至少一个场产生线圈直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。
在一些实施方式中,场产生线圈耦合和串扰减少配置具有第一上分支和第一下分支。在一些这样的实施方式中,至少一个场产生线圈包括第一场产生线圈,其限定正交于中心轴线并穿过第一场产生线圈的第一场产生线圈平面,对此所述场产生线圈耦合和串扰减少配置的第一上分支和第一下分支分别位于第一场产生线圈平面的上方和下方。在一些这样的实施方式中,第一上分支和第一下分支是以下中的至少一个:关于第一场产生线圈平面对称;镜像电流分布配置的一部分;配置为分别在第一场产生线圈平面的上方和下方的近似相等距离和相似的相对X和Y坐标位置承载相似的电流;或者并联连接。在一些这样的实施方式中,第一上分支包括第一上电容器,第一下分支包括第一下电容器,对此第一上电容器和第一下电容器并联连接。
在一些这样的实施方式中,至少一个场产生线圈包括第二场产生线圈,其限定正交于中心轴线并穿过第二场产生线圈的第二场产生线圈平面,对此第一场产生线圈和第二场产生线圈分别对应于顶部场产生线圈和底部场产生线圈,并且场产生线圈耦合和串扰减少配置包括分别位于第二场产生线圈平面的上方和下方的第二上分支和第二下分支。在一些这样的实施方式中,第一上分支包括第一上电容器,第一下分支包括第一下电容器,对此第一上电容器和第一下电容器并联连接;并且第二上分支包括第二上电容器,第二下分支包括第二下电容器,对此第二上电容器和第二下电容器并联连接。
在一些实施方式中,场产生线圈耦合和串扰减少配置具有镜像电流分布配置。在一些这样的实施方式中,镜像电流分布配置包括并联连接的一对电容器。在一些这样的配置中,镜像电流分布配置包括三电流分支配置,其包括具有沿第一方向流动的电流的中间电流分支,以及各自耦合到中间电流分支并且具有沿与第一方向大致相反的第二方向流动的电流的上电流分支和下电流分支。
在一些实施方式中,至少一个场产生线圈包括第一场产生线圈。在一些这样的实施方式中,场产生线圈耦合和串扰减少配置包括第一导电耦合部分,其包括将第一场产生线圈耦合到信号处理和控制电路的第一导体,对此提供了第一扭转配置,其使得第一导体的贡献抵消。
在一些这样的实施方式中,场产生线圈耦合和串扰减少配置包括将第一场产生线圈耦合到信号处理和控制电路的第一导电耦合部分,对此第一导电耦合部分的至少一部分靠近第一场产生线圈,以及位于第一场产生线圈和第一导电耦合部分附近用于屏蔽第一导电耦合部分的第一导电屏蔽。在一些这样的实施方式中,场产生线圈耦合和串扰减少配置还包括第二导电屏蔽,其相对于中心轴线位于第二位置,并且第一导电屏蔽相对于中心轴线位于第一位置,对此第一位置和第二位置关于中心轴线对称。
在一些实施方式中,一种方法包括沿着工件的表面移动本文公开的扫描探头,并且当扫描探头沿着工件的表面移动时,基于扫描探头产生的感应感测信号产生三维位置信息。
在一些实施方式中,系统包括本文公开的扫描探头、驱动机构和配置为将驱动机构联接到扫描探头的附接部分。
尽管已经说明和描述了本公开的优选实施方式,但是基于本公开内容,对于本领域技术人员而言,所示出和描述的特征布置和操作序列中的许多变化将是显而易见的。可以使用各种替代形式来实现本文公开的原理。此外,上述各种实施方式可以结合起来提供进一步的实施方式。本说明书中提到的所有美国专利和美国专利申请的全部内容通过引用并入本文。如果必要的话,可以修改实施方式的各个方面以利用各专利和申请的概念来提供进一步的实施方式。
根据以上详细描述,可以对实施方式进行这些和其他改变。一般而言,在随附的权利要求中,所使用的术语不应被解释为将权利要求限制在说明书和权利要求书中公开的具体实施方式中,而应被解释为包括所有可能的实施方式连同这些权利要求所声称的等同物。

Claims (15)

1.一种用于坐标测量机的扫描探头,该扫描探头包括:
联接到扫描探头的框架的探针悬置部分,包括:
探针联接部分,其配置为刚性地联接到探针;以及
探针运动机构,其配置为使探针联接部分能够沿轴向方向轴向运动,并且使探针联接部分能够绕旋转中心旋转运动;以及
沿着中心轴线布置的探针位置检测部分,所述中心轴线平行于轴向方向且名义上与旋转中心对齐,探针位置检测部分包括:
场产生线圈配置,包括至少一个场产生线圈;
顶部轴向感测线圈配置,包括至少一个顶部轴向感测线圈;
底部轴向感测线圈配置,包括至少一个底部轴向感测线圈;以及
N个顶部旋转感测线圈和N个底部旋转感测线圈,其中N是大于3的整数;
扰动器配置,包括提供扰动器区域的导电扰动器元件,其中扰动器元件沿着中心轴线位于扰动器运动体积中,并且扰动器元件通过联接配置联接到探针悬置部分,其中响应于探针悬置部分的偏转,扰动器元件在扰动器运动体积中相对于未偏转位置移动,响应于轴向运动,扰动器元件在沿着轴向方向的操作运动范围+/-Rz上移动,并且响应于旋转运动,在沿着正交于轴向方向的正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上运动,所述场产生线圈配置响应于线圈驱动信号在扰动器运动体积中产生大致沿轴向方向变化的磁通量;
信号处理和控制电路,其可操作地连接到探针位置检测部分的线圈,以提供线圈驱动信号,并配置为输入信号,该信号包括由相应旋转和轴向感测线圈提供的相应信号分量,并输出指示扰动器元件或探针中的至少一个相对于扫描探头的框架的轴向位置和旋转位置的信号;以及
场产生线圈耦合和串扰减少配置,其将信号处理和控制电路耦合到至少一个场产生线圈以提供线圈驱动信号,并且配置为减少串扰,否则如果至少一个场产生线圈直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。
2.根据权利要求1所述的扫描探头,其中,所述场产生线圈耦合和串扰减少配置包括第一上分支和第一下分支。
3.根据权利要求2所述的扫描探头,其中,所述至少一个场产生线圈包括第一场产生线圈,其限定正交于所述中心轴线并穿过第一场产生线圈的第一场产生线圈平面,对此所述场产生线圈耦合和串扰减少配置的第一上分支和第一下分支分别位于第一场产生线圈平面的上方和下方。
4.根据权利要求3所述的扫描探头,其中,所述第一上分支和所述第一下分支是以下中的至少一个:
关于所述第一场产生线圈平面对称;
镜像电流分布配置的一部分;
配置为分别在第一场产生线圈平面的上方和下方的近似相等距离和相似的相对X和Y坐标位置承载相似的电流;或者
并联连接。
5.根据权利要求3所述的扫描探头,其中,所述第一上分支包括第一上电容器,并且所述第一下分支包括第一下电容器,对此所述第一上电容器和所述第一下电容器并联连接。
6.根据权利要求3所述的扫描探头,其中,所述至少一个场产生线圈包括第二场产生线圈,其限定正交于所述中心轴线并穿过第二场产生线圈的第二场产生线圈平面,对此所述第一场产生线圈和第二场产生线圈分别对应于顶部场产生线圈和底部场产生线圈,并且所述场产生线圈耦合和串扰减少配置包括分别位于第二场产生线圈平面的上方和下方的第二上分支和第二下分支。
7.根据权利要求6所述的扫描探头,其中:
所述第一上分支包括第一上电容器,所述第一下分支包括第一下电容器,对此所述第一上电容器和第一下电容器并联连接;并且
所述第二上分支包括第二上电容器,所述第二下分支包括第二下电容器,对此所述第二上电容器和第二下电容器并联连接。
8.根据权利要求1所述的扫描探头,其中,所述场产生线圈耦合和串扰减少配置包括镜像电流分布配置。
9.根据权利要求8所述的扫描探头,其中,所述镜像电流分布配置包括并联连接的一对电容器。
10.根据权利要求8所述的扫描探头,其中,所述镜像电流分布配置包括三电流分支配置,其包括具有沿第一方向流动的电流的中间电流分支,以及各自耦合到中间电流分支并且具有沿与第一方向大致相反的第二方向流动的电流的上电流分支和下电流分支。
11.根据权利要求1所述的扫描探头,其中:
所述至少一个场产生线圈包括第一场产生线圈;并且
所述场产生线圈耦合和串扰减少配置包括:
第一导电耦合部分,包括将第一场产生线圈耦合到所述信号处理和控制电路的第一导体,对此提供了第一扭转配置,其使得第一导体的贡献抵消。
12.根据权利要求1所述的扫描探头,其中:
所述至少一个场产生线圈包括第一场产生线圈;并且
所述场产生线圈耦合和串扰减少配置包括:
第一导电耦合部分,其将第一场产生线圈耦合到所述信号处理和控制电路;以及
第一导电屏蔽,其位于第一场产生线圈和第一导电耦合部分附近,用于屏蔽第一导电耦合部分。
13.根据权利要求12所述的扫描探头,其中,所述场产生线圈耦合和串扰减少配置还包括第二导电屏蔽,其相对于所述中心轴线位于第二位置,并且所述第一导电屏蔽相对于所述中心轴线位于第一位置,对此所述第一位置和第二位置关于所述中心轴线对称。
14.一种方法,包括:
沿着工件的表面移动扫描探头;以及
当扫描探头沿着工件的表面移动时,基于扫描探头产生的感应感测信号产生三维位置信息,其中,扫描探头包括:
联接到扫描探头的框架的探针悬置部分,包括:
探针联接部分,其配置为刚性地联接到探针;以及
探针运动机构,其配置为使探针联接部分能够沿轴向方向轴向运动,并且使探针联接部分能够绕旋转中心旋转运动;以及
沿着中心轴线布置的探针位置检测部分,所述中心轴线平行于轴向方向且名义上与旋转中心对齐,探针位置检测部分包括:
场产生线圈配置,包括至少一个场产生线圈;
顶部轴向感测线圈配置,包括至少一个顶部轴向感测线圈;
底部轴向感测线圈配置,包括至少一个底部轴向感测线圈;以及
N个顶部旋转感测线圈和N个底部旋转感测线圈,其中N是大于3的整数;
扰动器配置,包括提供扰动器区域的导电扰动器元件,其中扰动器元件沿着中心轴线位于扰动器运动体积中,并且扰动器元件通过联接配置联接到探针悬置部分,其中响应于探针悬置部分的偏转,扰动器元件在扰动器运动体积中相对于未偏转位置移动,响应于轴向运动,扰动器元件在沿着轴向方向的操作运动范围+/-Rz上移动,并且响应于旋转运动,在沿着正交于轴向方向的正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上运动,所述场产生线圈配置响应于线圈驱动信号在扰动器运动体积中产生大致沿轴向方向变化的磁通量;
信号处理和控制电路,其可操作地连接到探针位置检测部分的线圈,以提供线圈驱动信号,并配置为输入信号,该信号包括由相应旋转和轴向感测线圈提供的相应信号分量,并输出指示扰动器元件或探针中的至少一个相对于扫描探头的框架的轴向位置和旋转位置的信号;以及
场产生线圈耦合和串扰减少配置,其将信号处理和控制电路耦合到至少一个场产生线圈以提供线圈驱动信号,并且配置为减少串扰,否则如果至少一个场产生线圈直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。
15.一种系统,包括:
扫描探头;
驱动机构;以及
将扫描探头附接到驱动机构的附接部分,其中,扫描探头包括:
联接到扫描探头的框架的探针悬置部分,包括:
探针联接部分,其配置为刚性地联接到探针;以及
探针运动机构,其配置为使探针联接部分能够沿轴向方向轴向运动,并且使探针联接部分能够绕旋转中心旋转运动;以及
沿着中心轴线布置的探针位置检测部分,所述中心轴线平行于轴向方向且名义上与旋转中心对齐,探针位置检测部分包括:
场产生线圈配置,包括至少一个场产生线圈;
顶部轴向感测线圈配置,包括至少一个顶部轴向感测线圈;
底部轴向感测线圈配置,包括至少一个底部轴向感测线圈;以及
N个顶部旋转感测线圈和N个底部旋转感测线圈,其中N是大于3的整数;
扰动器配置,包括提供扰动器区域的导电扰动器元件,其中扰动器元件沿着中心轴线位于扰动器运动体积中,并且扰动器元件通过联接配置联接到探针悬置部分,其中响应于探针悬置部分的偏转,扰动器元件在扰动器运动体积中相对于未偏转位置移动,响应于轴向运动,扰动器元件在沿着轴向方向的操作运动范围+/-Rz上移动,并且响应于旋转运动,在沿着正交于轴向方向的正交X和Y方向的相应操作运动范围+/-Rx和+/-Ry上运动,所述场产生线圈配置响应于线圈驱动信号在扰动器运动体积中产生大致沿轴向方向变化的磁通量;
信号处理和控制电路,其可操作地连接到探针位置检测部分的线圈,以提供线圈驱动信号,并配置为输入信号,该信号包括由相应旋转和轴向感测线圈提供的相应信号分量,并输出指示扰动器元件或探针中的至少一个相对于扫描探头的框架的轴向位置和旋转位置的信号;以及
场产生线圈耦合和串扰减少配置,其将信号处理和控制电路耦合到至少一个场产生线圈以提供线圈驱动信号,并且配置为减少串扰,否则如果至少一个场产生线圈直接连接到信号处理和控制电路而没有场产生线圈耦合和串扰减少配置,则串扰会发生。
CN202111623134.5A 2020-12-28 2021-12-28 用于指示测量装置探针位置的感应位置检测配置 Pending CN114688958A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US17/135,665 2020-12-28
US17/135,672 US11543899B2 (en) 2018-11-01 2020-12-28 Inductive position detection configuration for indicating a measurement device stylus position and including coil misalignment compensation
US17/135,672 2020-12-28
US17/135,665 US11644298B2 (en) 2018-11-01 2020-12-28 Inductive position detection configuration for indicating a measurement device stylus position
US17/527,655 2021-11-16
US17/527,655 US11740064B2 (en) 2018-11-01 2021-11-16 Inductive position detection configuration for indicating a measurement device stylus position

Publications (1)

Publication Number Publication Date
CN114688958A true CN114688958A (zh) 2022-07-01

Family

ID=78957974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111623134.5A Pending CN114688958A (zh) 2020-12-28 2021-12-28 用于指示测量装置探针位置的感应位置检测配置

Country Status (3)

Country Link
EP (1) EP4019889B1 (zh)
JP (1) JP2022104628A (zh)
CN (1) CN114688958A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688956A (zh) * 2020-12-28 2022-07-01 株式会社三丰 用于指示测量装置探针位置的感应位置检测配置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561240A (zh) * 2009-05-31 2009-10-21 哈尔滨工业大学 基于球形电容极板的超精密非接触式三维瞄准与测量传感器
WO2013007285A1 (de) * 2011-07-08 2013-01-17 Carl Zeiss Industrielle Messtechnik Gmbh Korrektur und/oder vermeidung von fehlern bei der messung von koordinaten eines werkstücks
CN206212347U (zh) * 2016-11-23 2017-05-31 广州市佛达信号设备有限公司 一种车辆前照灯近光光源驱动电路
CN109186434A (zh) * 2018-08-07 2019-01-11 哈尔滨工业大学 基于三维量子隧穿的非接触亚纳米传感方法与装置
US20200141717A1 (en) * 2018-11-01 2020-05-07 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
CN111566488A (zh) * 2018-01-18 2020-08-21 艾克斯塞拉公司 用于测试印刷电路板的测试针、测试探针、及飞针测试器
CN212161457U (zh) * 2020-05-27 2020-12-15 深圳市美创电感制品有限公司 一种高可靠性的电感组件装置
CN114688954A (zh) * 2020-12-31 2022-07-01 株式会社三丰 坐标测量机探头的感应式位置传感器信号增益控制
CN114688956A (zh) * 2020-12-28 2022-07-01 株式会社三丰 用于指示测量装置探针位置的感应位置检测配置
CN114688957A (zh) * 2020-12-28 2022-07-01 株式会社三丰 包括线圈未对准补偿的感应位置检测配置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0130940B2 (de) 1983-07-05 1993-12-01 C.A. Weidmüller GmbH & Co. Induktive Sensoranordnung und Messanordnung zur Verwendung derselben
GB8607199D0 (en) * 1986-03-24 1986-04-30 Renishaw Plc Position sensing probe
US5841274A (en) 1997-01-29 1998-11-24 Mitutoyo Corporation Induced current absolute position transducer using a code-track-type scale and read head
EP1478898B1 (de) 2002-02-28 2006-07-05 Carl Zeiss Industrielle Messtechnik GmbH Tastkopf für koordinaten-messgeräte
US7652275B2 (en) 2006-07-28 2010-01-26 Mitutoyo Corporation Non-contact probe control interface
JP5410317B2 (ja) 2010-02-05 2014-02-05 株式会社ミツトヨ 三次元測定機
JP6049786B2 (ja) * 2015-03-05 2016-12-21 株式会社ミツトヨ 測定プローブ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561240A (zh) * 2009-05-31 2009-10-21 哈尔滨工业大学 基于球形电容极板的超精密非接触式三维瞄准与测量传感器
WO2013007285A1 (de) * 2011-07-08 2013-01-17 Carl Zeiss Industrielle Messtechnik Gmbh Korrektur und/oder vermeidung von fehlern bei der messung von koordinaten eines werkstücks
CN206212347U (zh) * 2016-11-23 2017-05-31 广州市佛达信号设备有限公司 一种车辆前照灯近光光源驱动电路
CN111566488A (zh) * 2018-01-18 2020-08-21 艾克斯塞拉公司 用于测试印刷电路板的测试针、测试探针、及飞针测试器
CN109186434A (zh) * 2018-08-07 2019-01-11 哈尔滨工业大学 基于三维量子隧穿的非接触亚纳米传感方法与装置
US20200141717A1 (en) * 2018-11-01 2020-05-07 Mitutoyo Corporation Inductive position detection configuration for indicating a measurement device stylus position
CN212161457U (zh) * 2020-05-27 2020-12-15 深圳市美创电感制品有限公司 一种高可靠性的电感组件装置
CN114688956A (zh) * 2020-12-28 2022-07-01 株式会社三丰 用于指示测量装置探针位置的感应位置检测配置
CN114688957A (zh) * 2020-12-28 2022-07-01 株式会社三丰 包括线圈未对准补偿的感应位置检测配置
CN114688954A (zh) * 2020-12-31 2022-07-01 株式会社三丰 坐标测量机探头的感应式位置传感器信号增益控制

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688956A (zh) * 2020-12-28 2022-07-01 株式会社三丰 用于指示测量装置探针位置的感应位置检测配置

Also Published As

Publication number Publication date
EP4019889B1 (en) 2024-05-01
JP2022104628A (ja) 2022-07-08
EP4019889A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
EP3647713B1 (en) Inductive position detection configuration for indicating a measurement device stylus position
US11543899B2 (en) Inductive position detection configuration for indicating a measurement device stylus position and including coil misalignment compensation
US11740064B2 (en) Inductive position detection configuration for indicating a measurement device stylus position
CN111141199B (zh) 用于指示测量装置探针位置的感应位置检测配置
US11644298B2 (en) Inductive position detection configuration for indicating a measurement device stylus position
EP4019888B1 (en) Inductive position detection configuration for indicating a measurement device stylus position and including coil misalignment compensation
EP4019886A1 (en) Inductive position detection configuration for indicating a measurement device stylus position
US11644299B2 (en) Inductive position sensor signal gain control for coordinate measuring machine probe
US20070103171A1 (en) Capacitance sensor type measuring apparatus
EP4019889B1 (en) Inductive position detection configuration for indicating a measurement device stylus position
CN111141200B (zh) 用于指示测量装置探针位置的感应位置检测配置
EP4202355A1 (en) Modular configuration for coordinate measuring machine probe
EP4202354A1 (en) Shielding for sensor configuration and alignment of coordinate measuring machine probe
CN113495235A (zh) 集成磁力计和检测磁场的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination