CN114684920A - 诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法 - Google Patents

诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法 Download PDF

Info

Publication number
CN114684920A
CN114684920A CN202210320306.XA CN202210320306A CN114684920A CN 114684920 A CN114684920 A CN 114684920A CN 202210320306 A CN202210320306 A CN 202210320306A CN 114684920 A CN114684920 A CN 114684920A
Authority
CN
China
Prior art keywords
packed bed
wetland
denitrification
artificial wetland
heterotrophic nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210320306.XA
Other languages
English (en)
Inventor
杨垒
王佳
任勇翔
郭淋凯
李晓彤
王宇超
路颢琪
李艳丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202210320306.XA priority Critical patent/CN114684920A/zh
Publication of CN114684920A publication Critical patent/CN114684920A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)

Abstract

本发明公开了一种诱导异养硝化‑好氧反硝化菌群富集强化人工湿地脱氮的方法,将常规人工湿地系统中的填料床深度缩短至0.1m,所述填料床下层为5cm陶瓷珠填料,上层为5cm细沙填料;以限制填料床种植的植物垂向生长空间,诱导植物根系发生冗余现象,增强人工湿地植物的根际泌氧溢碳能力,驱动植物根际异养硝化‑好氧反硝化菌群大量富集成为优势菌属,使得人工湿地的COD、总氮、氨氮去除效率得到大幅提升。极浅的填料床大大节约了建设与运行费用,具有节材提效的双重作用。

Description

诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法
技术领域
本发明属于污水处理技术领域,特别涉及一种诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮的方法。
背景技术
人工湿地作为一种新型的水处理工艺,具有低能耗、建设和运行成本低、景观效果好等优点越来越为人们所重视。近年来,人工湿地技术已从理论发展到实践,广泛用于处理不同的水体,包括河流、湖泊、生活污水、农业排水/径流和工业废水。虽然人工湿地显示出了良好的脱氮潜力,但不同类型湿地系统在处理不同水体过程总体呈现出较大差异,TN去除率不足50%。需要说明的是,微生物作用是人工湿地对氮污染物去除的主要途径,占总脱氮率的80%。但是人工湿地的运行过程中存在溶解氧浓度低、物质扩散混合动力弱、填料易堵塞等缺陷,限制了污染物好氧转化途径,导致湿地系统氮循环受阻,不利于充分发挥其脱氮效能。
目前强化增氧的手段主要包括预曝气、跌水曝气、潮汐流增氧、出水回流和人工机械曝气等,虽然这些手段可为湿地系统提供高溶解氧,有效提高其对氨氮和有机物的去除性能,但大大增加了建设与运行费用。且传统理论认为,反硝化是一个严格的缺氧过程,氧会抑制反硝化作用酶(膜质硝酸盐还原酶),并且在有机质氧化过程中氧是首选的电子受体,从而阻止了硝氮和亚硝氮作为电子受体。在单一好氧或厌氧环境下,自养微生物的好氧硝化与异养微生物的缺氧反硝化其中之一必将受到抑制。异养硝化-好氧反硝化(HN-AD)细菌突破了传统生物脱氮的局限,使硝化和反硝化在好氧环境中同时发生,提高了生物脱氮和有机物的能力。然而目前关于好氧反硝化生物脱氮在人工湿地应用方面大多是作为菌剂直接添加,并不能有效控制好氧反硝化功能菌剂的流失,无法使其富集成为优势菌属。
因此,降低人工湿地建设成本、改善填料床溶解氧条件、使异养硝化-好氧反硝化菌群富集成为优势菌属从而强化人工湿地脱氮是亟待解决的问题。
发明内容
针对上述现有技术存在的人工湿地运行过程中溶解氧不足、填料堵塞而导致微生物脱氮效率低的技术问题,本发明的目的在于,提供一种诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮的方法。
为了实现上述任务,本发明采取如下的技术解决方案:
一种诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法,其特征在于,将常规人工湿地系统中的填料床深度缩短至0.1m,所述填料床下层为5cm陶瓷珠填料,上层为5cm细沙填料;以限制填料床种植的植物垂向生长空间,诱导植物根系发生冗余现象,增强人工湿地植物的根际泌氧溢碳能力,驱动植物根际异养硝化-好氧反硝化菌群大量富集成为优势菌属,使得人工湿地的COD、总氮、氨氮去除效率得到大幅提升。
本发明的诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮的方法,与现有技术相比,具有以下有益技术效果:
1、通过限制根系垂向生长空间能够诱导植物根系生长冗余,庞大的根系组织显著提高了根系分泌物含量和填料床中基质溶解氧浓度,驱动根际好氧微生物(异养硝化细菌和好氧反硝化细菌)的富集和功能表达,使得人工湿地系统的COD、总氮、氨氮去除效率得到大幅提升。不但保证填料床的基质内部充足的氧气,而且系统运行的能耗低。
2、填料床中基质选择陶瓷珠,利用不同粒径搭配来保证填料床的基质更高的孔隙率和渗透性,且填料床极浅(0.1m)不存在传统人工湿地堵塞、短流等问题。
3、采用该方法对常规人工湿地系统的改造简单、没有成本的增加,运行管理方便。内部无机械设备,不存在设备检修和维护的工作。可用于普通市政污水处理、污水深度处理、湖泊、河流等低污染水体处理,可采用出水循环、多级串联等手段取得良好的效果。
附图说明
图1是人工湿地结构大样;
图2是不同深度填料床的人工湿地对COD、TN、NH4 +的去除效果图;
图3是不同深度填料床的人工湿地中根际溶解氧与分泌物浓度图;
图4是不同深度填料床的人工湿地中根际微生物属水平的群落结构。
图5是不同深度填料床人工湿地中napAB基因丰度值。
图中的标记分别表示:1、进水管,2、进水阀门,3、穿孔取样管,4、美人蕉,5、溢流管,6、出水阀门,7、出水管,8、细沙填料,9、陶瓷珠填料。
以下结合附图和实施例对本发明进一步详细说明。
具体实施方式
经申请人研究发现,在人工湿地中,污染物的去除与植物根际区域的微生物息息相关,使得植物根际成为湿地净化污水的核心区域。传统的人工湿地,填料床深度在0.6-1.2m范围内,长期的运行过程中,湿地仍受深床氧含量低、填料床易堵塞等问题所限,致使微生物好氧硝化作用受到抑制。目前的改进方法,如曝气人工湿地、潮汐流湿地等工程措施进行辅助充氧,虽然能营造高溶解氧环境,但大大削弱了人工湿地低耗高效这一优势。且高溶解氧环境下,缺氧反硝化作用受到限制,导致人工湿地脱氮效率低。在保证低能耗条件下如何创造湿地系统的高溶解氧环境,从而实现微生物脱氮效率,目前尚无突破性进展。
申请人从高效、低成本、生态友好型水处理理念出发,通过控制植物根系垂向生长,结合根系冗余技术强化人工湿地内植物的根际效应,以增强氧化还原环境能够有效富集异养硝化-好氧反硝化菌群,促进人工湿地基质生物膜形成,提高人工湿地脱氮效率。
本实施例给出一种诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮的方法,将常规人工湿地系统中的填料床深度缩短至0.1m,所述填料床下层为5cm陶瓷珠填料,上层为5cm细沙填料;以限制填料床种植的植物垂向生长空间,诱导植物根系发生冗余现象,增强人工湿地植物的根际泌氧溢碳能力,驱动植物根际异养硝化-好氧反硝化菌群大量富集成为优势菌属,使得人工湿地的COD、总氮、氨氮去除效率得到大幅提升。
在本实施例中,具体步骤如下。
(1)改造人工湿地
如图1所示,常规人工湿地主要包括:进水管1、进水阀门2、穿孔取样管3、美人蕉4、溢流管5、出水阀门6、出水管7。
将常规人工湿地改造成填料床为0.1m(以下称0.1m极浅人工湿地),对照组为传统人工湿地,填料床深度为1.2m(以下称1.2m常规人工湿地),其中:
0.1m极浅人工湿地,填料床下层为厚度5cm的陶瓷珠填料9(粒径5~10mm),上层为厚度5cm的细沙填料8;
1.2m常规人工湿地,填料床下层为厚度110cm的陶瓷珠填料9(粒径5~10mm),上层为厚度10cm的细沙填料;
在0.1m极浅人工湿地和填料床1.2m常规人工湿地的上方10cm处设置进水管1,底部设置排水管7。中间设置DN5cm的穿孔取样管3,便于测定系统中的水质指标,穿孔取样管3的底部不直接接触出水管7,防止穿孔取样管3中的水直接排出。在出水处设置溢流管5控制湿地运行水位。进水管1、出水管7分别配有进水阀门2、出水阀门6。
(2)人工湿地运行情况:
0.1m极浅人工湿地和1.2m常规人工湿地的进水为自控系统,由根箱上部的进水管间歇进水,两种人工湿地每两小时进水一次,0.1m极浅人工湿地每次进水18mL,1.2m常规人工湿地每次进水610mL,水力停留时间在4.6~4.7d,水力负荷分别为0.006、0.098m3/m2·d。水从出水管7排出,用于取样检测,水样检测指标包括:COD浓度、总氮浓度,氨氮浓度、溶解氧浓度。
(3)植物:
选用常见湿地植物美人蕉4,选取长势相同,生长良好的成熟美人蕉4种植于两种人工湿地中,种植密度为50株/m2,。待两种人工湿地运行稳定后,取受试植物美人蕉4根系测定24h根系分泌物含量。
(4)模拟水质:
根据生活污水水质,确定本试验研究中配制人工污水污染物浓度分别为:COD:226.0mg/L、TN:40.0mg/L、NH4 +-N:30.0mg/L、NO3 --N:10.0mg/L。
0.1m极浅人工湿地和1.2m常规人工湿地运行120天结束后,取植物根系以及根系附着填料,浸泡在无菌水中,将水样超声振荡后过0.22μm膜获得根际微生物样本,检测微生物群落结构和丰度。
测试及分析方法:COD测定采用重铬酸钾法、TN测定采用过硫酸钾氧化-紫外分光光度法、氨氮采用纳氏试剂光度法、溶解氧采样便携式溶解氧仪测定、根系分泌物含量以植物释放的可溶性有机物(DOC)表示,使用总有机碳分析仪测定、填料生物膜提取采用超声剥落法、微生物群落组成与丰度采用16S rRNA高通量测序。
结果分析:1.2m常规人工湿地对COD、TN、NH4 +-N的去除率分别为69.09%、60.84%、59.81%;通过缩短填料床深度至0.1m,即0.1m极浅人工湿地,COD、TN、NH4 +-N去除率显著提高,分别是88.88%、91.71%、94.41%(图2)。与1.2m常规人工湿地相比,0.1m极浅人工湿地的美人蕉根系出现系冗余现象,平均根长分别是1.2m常规人工湿地的2.23倍;平均主根数是1.32倍;根系密度、根质量密度是3.33~4.52倍;根系活性是1.31倍(表1)。
表1:不同人工湿地中美人蕉根系指标的变化
Figure BDA0003570269080000061
在基质表层以下0~0.1m,0.1m极浅人工湿地的DO值(1.896mg/L)显著高于1.2m常规人工湿地(0.589mg/L),且0.1m极浅人工湿地内根系分泌物的浓度远高于1.2m常规人工湿地,单株植物24h内释放的根系分泌物浓度是1.2m常规人工湿地的4.59倍(图3)。通过高通量测序结果可知,0.1m极浅人工湿地和1.2m常规人工湿地中的优势菌属均为不动杆菌属(Acinetobacter)、金黄杆菌属(Chryseobacterium)、微小杆菌属(Exiguobacterium)以及假单胞菌属(Pseudomonas)黄杆菌属(Flavobacterium)以及索氏菌属(Thauera)等6种(图4)。值得注意的是,在0.1m极浅人工湿地富集出了高丰度的具有异养硝化-好氧反硝化脱氮作用的不动杆菌(丰度38.34%)和假单胞菌(7.69%丰度),其丰度总和是1.2m常规人工湿地的1.44倍。通过PICRUSt2算法对高通量测序获得的样本中的16SrRNA数据进行分析,可知随着人工湿地填料床深度的增加napAB基因丰度相应减少(图5)。Nap是调控好氧反硝化发生的标志物,从分子生物学角度说明在0.1m极浅人工湿地中的填料床深度下,更容易富集好氧反硝化细菌,诱导微生物发生好氧反硝化作用。
因此在植物根系生长垂向胁迫下(0.1m极浅人工湿地)诱发出根系冗余现象,不仅可以通过其巨大的表面积为微生物提供附着区域,而且过量生长的根系强化根系溢碳能力。由于0.1m极浅人工湿地的填料床体积相对较小,使植物根系分泌物浓度相对较高,可以为根际微生物的生长繁殖提供足够的能量和碳源。此外,由于0.1m极浅人工湿地的填料床深度极浅,大气富氧和根系泌氧的双重作用显著提高,使湿地基质保持较高的溶解氧环境,促进异养硝化-好氧反硝化菌群的优势富集,进而提高了人工湿地微生物脱氮效率。

Claims (3)

1.一种诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法,其特征在于,将常规人工湿地系统中的填料床深度缩短至0.1m,所述填料床下层为5cm陶瓷珠填料,上层为5cm细沙填料;以限制填料床种植的植物垂向生长空间,诱导植物根系发生冗余现象,增强人工湿地植物的根际泌氧溢碳能力,驱动植物根际异养硝化-好氧反硝化菌群大量富集成为优势菌属,使得人工湿地的COD、总氮、氨氮去除效率得到大幅提升。
2.如权利要求1所述的方法,其特征在于,所述的植物为美人蕉,种植密度为50株/m2,
3.如权利要求1所述的方法,其特征在于,所述陶瓷珠填料粒径为5~10mm。
CN202210320306.XA 2022-03-29 2022-03-29 诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法 Pending CN114684920A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210320306.XA CN114684920A (zh) 2022-03-29 2022-03-29 诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210320306.XA CN114684920A (zh) 2022-03-29 2022-03-29 诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法

Publications (1)

Publication Number Publication Date
CN114684920A true CN114684920A (zh) 2022-07-01

Family

ID=82141212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210320306.XA Pending CN114684920A (zh) 2022-03-29 2022-03-29 诱导异养硝化-好氧反硝化菌群富集强化人工湿地脱氮方法

Country Status (1)

Country Link
CN (1) CN114684920A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108483619A (zh) * 2018-04-03 2018-09-04 中国科学院水生生物研究所 一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108483619A (zh) * 2018-04-03 2018-09-04 中国科学院水生生物研究所 一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨逢乐等: "《高原湖泊低污染水治理技术及应用》", 31 August 2014, 冶金工业出版社 *
王新伟: "细沙作为极浅型潜流人工湿地填料的可行性研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
田雪雪: "异养硝化—好氧反硝化菌强化人工湿地脱氮作用的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Du et al. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water
Fu et al. Effects of substrate type on denitrification efficiency and microbial community structure in constructed wetlands
Lee et al. Nitrogen removal in constructed wetland systems
Yang et al. Autotrophic nitrogen removal in an integrated fixed-biofilm activated sludge (IFAS) reactor: Anammox bacteria enriched in the flocs have been overlooked
Zhan et al. Treatment of secondary effluent by a novel tidal-integrated vertical flow constructed wetland using raw sewage as a carbon source: Contribution of partial denitrification-anammox
Zhang et al. The ammonium nitrogen oxidation process in horizontal subsurface flow constructed wetlands
Liu et al. Double-layer substrate of shale ceramsite and active alumina tidal flow constructed wetland enhanced nitrogen removal from decentralized domestic sewage
Zhang et al. Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands
CN108516617A (zh) 一种污水脱氮处理系统中高密度厌氧氨氧化细菌富集的方法
Wang et al. Nitrogen removal from summer to winter in a field pilot-scale multistage constructed wetland-pond system
Sooknah A review of the mechanisms of pollutant removal in water hyacinth systems
Zhang et al. Efficiency, granulation, and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating wastewater with low COD/TN ratio
CN107686167A (zh) 一种处理农村生活污水的潜流人工湿地生态系统及处理方法
Yang et al. Nitrogen removal from rural domestic wastewater by subsurface wastewater infiltration system: A review
Wang et al. Response of denitrobacteria involved in nitrogen removal for treatment of simulated livestock wastewater using a novel bioreactor
Zhao et al. Ecological floating bed for decontamination of eutrophic water bodies: Using alum sludge ceramsite
Xu et al. Effect of drained-flooded time ratio on ammonia nitrogen removal in a constructed wetland-microbial fuel cell system by tidal flow operation
Li et al. Myriophyllum elatinoides growth and rhizosphere bacterial community structure under different nitrogen concentrations in swine wastewater
CN116947220A (zh) 一种基于潜流微生物群落修复水体生态环境的方法
Li et al. Comparison of nitrogen removal performance and mechanism from low-polluted wastewater by constructed wetlands with two oxygen supply strategies: Tidal flow and intermittent aeration
Sun et al. Design and operation insights concerning a pilot-scale S0-driven autotrophic denitrification packed-bed process
Ren et al. Regulatory strategies and microbial response characteristics of single-level biological aerated filter-enhanced nitrogen removal
Fan et al. Microbial community and nitrogen transformation pathway in bioretention system for stormwater treatment in response to formulated soil medium
Xu et al. Improving the removal efficiency of nitrogen and organics in vertical-flow constructed wetlands: The correlation of substrate, aeration and microbial activity
CN114275895A (zh) 一种高效脱氮污水处理工艺与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220701