CN114677415A - Image registration method, apparatus, computer equipment and readable storage medium - Google Patents
Image registration method, apparatus, computer equipment and readable storage medium Download PDFInfo
- Publication number
- CN114677415A CN114677415A CN202210237538.9A CN202210237538A CN114677415A CN 114677415 A CN114677415 A CN 114677415A CN 202210237538 A CN202210237538 A CN 202210237538A CN 114677415 A CN114677415 A CN 114677415A
- Authority
- CN
- China
- Prior art keywords
- dynamic
- images
- image
- pet
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本申请涉及一种图像配准方法、装置、计算机设备和可读存储介质。该方法包括:获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据,根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像,获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像得到配准后的类动态PET图像,基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像。采用本方法能够获取配准后的类动态PET图像,然后基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,使得配准后的动态PET图像能够体现结构信息和明显的图像特征,从而能够提高动态PET图像配准结果的准确度。
The present application relates to an image registration method, apparatus, computer equipment and readable storage medium. The method includes: acquiring respiration data and initial dynamic PET data within a first preset time period after the tracer is administered to the object to be tested, and determining corresponding multi-frame dynamic MR images within the first preset time period according to the respiration data; Obtain the dynamic-like PET images corresponding to the dynamic MR images of each frame, and obtain the registered dynamic-like PET images from the dynamic-like PET images of each frame. Registration is performed to obtain a registered dynamic PET image. The method can obtain the registered dynamic PET images, and then register multiple frames of initial dynamic PET images based on the registered dynamic PET images, so that the registered dynamic PET images can reflect the structural information and obvious Therefore, the accuracy of dynamic PET image registration results can be improved.
Description
技术领域technical field
本申请涉及医学图像处理技术领域,特别是涉及一种图像配准方法、装置、计算机设备及可读存储介质。The present application relates to the technical field of medical image processing, and in particular, to an image registration method, apparatus, computer equipment and readable storage medium.
背景技术Background technique
基于动态正电子发射型计算机断层显像(Positron Emission Computed Tomography,PET)的动力学参数分析能够揭示示踪剂的生化过程,为临床揭示病理机制提供依据。Kinetic parameter analysis based on dynamic positron emission computed tomography (PET) can reveal the biochemical process of the tracer and provide a basis for clinically revealing the pathological mechanism.
为了分析示踪剂的生化过程,需要先向待测对象的检测成像部位注射示踪剂,然后采集连续一段时间内的初始PET图像,再对初始PET图像进行动力学参数分析。由于待测对象难以长时间保持身体姿态完全固定,造成不同时间点采集的初始PET图像会产生位移,因此在进行动力学参数分析前,一般需要先对初始PET图像进行配准处理,以提高动力学参数定量的精度。In order to analyze the biochemical process of the tracer, it is necessary to inject the tracer into the detection imaging site of the object to be tested, and then collect the initial PET images for a continuous period of time, and then analyze the kinetic parameters of the initial PET images. Since it is difficult for the object to be tested to keep the body posture completely fixed for a long time, the initial PET images collected at different time points will be displaced. Therefore, before the dynamic parameter analysis, it is generally necessary to perform registration processing on the initial PET images to improve the dynamic Accuracy of quantification of scientific parameters.
然而,相关技术中对初始PET图像进行配准时,会存在配准结果不够准确的问题。However, in the related art, when the initial PET image is registered, there is a problem that the registration result is not accurate enough.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种图像配准方法、装置、计算机设备及可读存储介质。Based on this, it is necessary to provide an image registration method, apparatus, computer device and readable storage medium for the above technical problems.
第一方面,本申请提供了一种图像配准方法,该方法包括:In a first aspect, the present application provides an image registration method, the method comprising:
获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;Acquiring respiration data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;Obtaining the quasi-dynamic PET image corresponding to each frame of quasi-dynamic MR image, and determining the registered quasi-dynamic PET image through each frame of quasi-dynamic PET image;
基于配准后的类动态PET图像,对多帧初始动态PET数据进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。Based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET data are registered to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
在其中一个实施例中,基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像,包括:In one embodiment, based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET images are registered to obtain registered dynamic PET images, including:
基于各帧类动态PET图像,对第一预设时间段内的初始动态PET数据进行时间映射,得到各帧类动态PET图像的映射初始动态PET数据;Based on the dynamic PET images of each frame type, time mapping is performed on the initial dynamic PET data within the first preset time period to obtain the mapped initial dynamic PET data of the dynamic PET images of each frame type;
对各帧类动态PET图像的映射初始动态PET数据进行重建,得到对应的映射初始动态PET图像;Reconstructing the mapped initial dynamic PET data of each frame-like dynamic PET image to obtain the corresponding mapped initial dynamic PET image;
通过配准后的类动态PET图像,对对应的映射初始动态PET图像进行配准,得到配准后的动态PET图像。Through the registered quasi-dynamic PET images, the corresponding mapped initial dynamic PET images are registered to obtain the registered dynamic PET images.
在其中一个实施例中,通过各帧类动态PET图像确定配准后的类动态PET图像,包括:In one embodiment, the registered dynamic-like PET images are determined by each frame of dynamic-like PET images, including:
获取各帧类动态MR图像对应的形变场;Obtain the deformation field corresponding to each frame type of dynamic MR image;
根据各帧类动态MR图像对应的形变场,对对应的类动态PET图像进行配准,得到配准后的类动态PET图像。According to the deformation field corresponding to each frame-like dynamic MR image, the corresponding dynamic-like PET image is registered to obtain the registered dynamic-like PET image.
在其中一个实施例中,获取各帧类动态MR图像对应的形变场,包括:In one embodiment, obtaining the deformation field corresponding to each frame-like dynamic MR image includes:
基于多帧样本MR图像确定参考图像;determining a reference image based on multiple frames of sample MR images;
通过参考图像分别对各帧类动态MR图像进行图像配准,得到各帧类动态MR图像对应的形变场。Image registration is performed on the dynamic MR images of each frame type through the reference image, and the deformation fields corresponding to the dynamic MR images of each frame type are obtained.
在其中一个实施例中,根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像,包括:In one embodiment, determining the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data includes:
将呼吸数据输入至预测模型,得到第一预设时间段内相应的多帧类动态MR图像。The respiratory data is input into the prediction model to obtain corresponding multi-frame dynamic MR images within the first preset time period.
在其中一个实施例中,上述方法还包括:In one embodiment, the above method further includes:
获取待测对象施予示踪剂前的第二预设时间段内的多帧样本MR图像和样本呼吸数据;acquiring multiple frames of sample MR images and sample respiration data within a second preset time period before the subject to be tested is administered the tracer;
通过多帧样本MR图像和样本呼吸数据对初始预测模型进行训练,得到预测模型。The initial prediction model is trained by using multiple frames of sample MR images and sample respiration data to obtain the prediction model.
在其中一个实施例中,获取各帧类动态MR图像对应的类动态PET图像,包括:In one embodiment, acquiring the dynamic-like PET images corresponding to the dynamic-like MR images of each frame includes:
获取第一预设时间段内的初始PET数据;obtaining initial PET data within a first preset time period;
对各帧类动态MR图像与第一预设时间段内的初始PET数据进行时间映射,得到各帧类动态MR图像的映射PET数据;performing time mapping on the dynamic MR images of each frame type and the initial PET data in the first preset time period to obtain the mapped PET data of the dynamic MR images of each frame type;
对映射PET数据进行重建,得到各帧类动态MR图像对应的类动态PET图像。The mapped PET data is reconstructed to obtain the dynamic-like PET images corresponding to the dynamic-like MR images of each frame.
第二方面,本申请提供了一种图像配准装置,该装置包括:In a second aspect, the present application provides an image registration device, the device comprising:
数据采集模块,用于获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;a data acquisition module, used to acquire respiratory data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
第一图像确定模块,用于根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;a first image determination module, configured to determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
第二图像确定模块,用于获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;The second image determination module is used to obtain the dynamic-like PET images corresponding to the dynamic MR images of each frame, and determine the registered dynamic-like PET images through the dynamic-like PET images of each frame;
配准模块,用于根据配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。The registration module is used for registering multiple frames of initial dynamic PET images according to the registered quasi-dynamic PET images to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are obtained by reconstructing the initial dynamic PET data Image.
第三方面,本申请提供了一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In a third aspect, the present application provides a computer device, including a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;Acquiring respiration data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;Obtaining the quasi-dynamic PET image corresponding to each frame of quasi-dynamic MR image, and determining the registered quasi-dynamic PET image through each frame of quasi-dynamic PET image;
基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。Based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET images are registered to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
第四方面,本申请提供了一种可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以下步骤:In a fourth aspect, the present application provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;Acquiring respiration data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;Obtaining the quasi-dynamic PET image corresponding to each frame of quasi-dynamic MR image, and determining the registered quasi-dynamic PET image through each frame of quasi-dynamic PET image;
基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。Based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET images are registered to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
上述图像配准方法、装置、计算机设备和可读存储介质,计算机设备获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据,根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像,获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像,基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;上述方法可以通过呼吸数据直接获取类动态MR图像,然后基于类动态MR图像和初始动态PET数据获取具有成像部位的组织/器官结构特征的类动态PET图像,并且基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,使得配准后的动态PET图像能够体现结构信息和明显的图像特征,从而能够提高动态PET图像配准结果的准确度。The above image registration method, device, computer equipment and readable storage medium, the computer equipment obtains the respiration data and the initial dynamic PET data within the first preset time period after the tracer is administered to the object to be tested, and determines the first image according to the respiration data. The corresponding multi-frame dynamic MR images within a preset time period are obtained, and the dynamic PET images corresponding to each frame of dynamic MR images are obtained, and the registered dynamic PET images are determined from the dynamic PET images of each frame. The dynamic-like PET image is obtained by registering multiple frames of the initial dynamic PET image to obtain the registered dynamic PET image; the above method can directly obtain the dynamic-like MR image through the respiratory data, and then based on the dynamic-like MR image and the initial dynamic PET data Obtain a dynamic-like PET image with the structural features of the tissue/organ of the imaging site, and based on the registered dynamic-like PET image, perform registration on multiple frames of the initial dynamic PET image, so that the registered dynamic PET image can reflect the structural information. And obvious image features, which can improve the accuracy of dynamic PET image registration results.
附图说明Description of drawings
图1为一个实施例中图像配准方法的应用环境图;1 is an application environment diagram of an image registration method in one embodiment;
图2为一个实施例中图像配准方法的流程示意图;2 is a schematic flowchart of an image registration method in one embodiment;
图3为一个实施例中对多帧初始动态PET图像进行配准的方法流程示意图;3 is a schematic flowchart of a method for registering multiple frames of initial dynamic PET images in one embodiment;
图4为另一个实施例中通过各帧类动态PET图像得到配准后的类动态PET图像的方法流程示意图;4 is a schematic flowchart of a method for obtaining a registered dynamic-like PET image through each frame of dynamic-like PET images in another embodiment;
图5为另一个实施例中获取各帧类动态MR图像对应的形变场的方法流程示意图;5 is a schematic flowchart of a method for obtaining a deformation field corresponding to each frame type dynamic MR image in another embodiment;
图6为另一个实施例中图像配准过程中的多帧不同类图像示意图;6 is a schematic diagram of multiple frames of different types of images in an image registration process in another embodiment;
图7为另一个实施例中获取各帧类动态MR图像对应的类动态PET图像的方法流程示意图;7 is a schematic flowchart of a method for obtaining a dynamic-like PET image corresponding to each frame of dynamic-like MR images in another embodiment;
图8为另一个实施例中时间点与样本MR数据、呼吸数据的对应关系图;Fig. 8 is a corresponding relationship diagram between time points and sample MR data and respiration data in another embodiment;
图9为一个实施例中图像配准装置的结构框图;9 is a structural block diagram of an image registration apparatus in one embodiment;
图10为一个实施例中计算机设备的内部结构图。Figure 10 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请提供的图像配准方法,可以适用于图1所示的图像配准系统,能够应用于医学图像配准或医学图像校准场景下。上述图像配准系统包括扫描系统和计算机设备,扫描系统包括医学扫描设备以及能够承载待测对象的工具,该工具可以为扫描床、扫描架、扫描板等等。计算机设备和扫描系统中的医学扫描设备之间可以为通信连接,该通信方式可以为Wi-Fi,移动网络或蓝牙连接等等。上述医学扫描设备可以为电子计算机断层扫描系统、计算机X线摄影系统或者直接数字化X线摄影系统、磁共振(Magnetic Resonance,MR)扫描设备等等,还可以为一种能够采集多类医学数据的扫描系统;上述计算机设备可以为各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,但不限于这些。在实际应用中,待测对象可以以不同姿态躺在承载工具上,医学扫描设备可以对待测对象的目标成像部位进行扫描得到扫描数据,医学扫描设备并将扫描数据发送给计算机设备,计算机设备对扫描数据进行重建并分析,最终实现图像配准。可选的,医学扫描设备扫描结束后,可以将医学扫描设备中的磁共振线圈从待测对象的身体上移开,并将承载工具归位。可选的,上述目标成像部位可以为待测对象的脑、肺、腹部以及心脏、血管和关节等等成像部位;上述待测对象可以为人体、动物体等等。在医学上,为了给临床揭示病理机制提供依据,需要对扫描得到的医学图像进行动力学参数分析。The image registration method provided by the present application can be applied to the image registration system shown in FIG. 1 , and can be applied to medical image registration or medical image calibration scenarios. The above-mentioned image registration system includes a scanning system and computer equipment. The scanning system includes a medical scanning equipment and a tool capable of carrying the object to be measured. The tool can be a scanning bed, a scanning frame, a scanning board, and the like. The computer device and the medical scanning device in the scanning system may be a communication connection, and the communication mode may be Wi-Fi, a mobile network, or a Bluetooth connection, and so on. The above-mentioned medical scanning device can be an electronic computed tomography system, a computer X-ray photography system or a direct digital X-ray photography system, a magnetic resonance (Magnetic Resonance, MR) scanning device, etc. Scanning system; the above-mentioned computer equipment can be various personal computers, notebook computers, smart phones, tablet computers and portable wearable devices, but not limited to these. In practical applications, the object to be tested can lie on the carrier in different postures, the medical scanning device can scan the target imaging part of the object to be tested to obtain scan data, the medical scanning device sends the scanned data to the computer device, and the computer device The scan data is reconstructed and analyzed to achieve image registration. Optionally, after the medical scanning device scans, the magnetic resonance coil in the medical scanning device can be removed from the body of the object to be measured, and the carrying tool can be returned to its position. Optionally, the target imaging site may be imaging sites such as the brain, lung, abdomen, heart, blood vessels, and joints of the object to be tested; the object to be tested may be a human body, an animal body, or the like. In medicine, in order to provide a basis for clinically revealing the pathological mechanism, it is necessary to analyze the dynamic parameters of the scanned medical images.
其中,动力学参数分析能够揭示示踪剂的生化过程,因此,需要对待测对象施予示踪剂,然后对施予示踪剂的待测对象进行扫描获取医学图像,再对此时获取到的医学图像进行动力学参数分析。可选的,待测对象受到示踪剂在体内积累时间特性的限制,因此,本实施例需要连续采集一定时长的数据,进行重建后生成动态医学图像,然后对动态医学图像进行动力学参数分析以揭示示踪剂的生化过程,进一步医护人员可以根据示踪剂的生化过程确定待测对象的病理结果。在实际场景中,待测对象难以长时间保持身体姿态完全,获取到的动态医学图像与实际会有偏差,因此,在对动态医学图像进行动力学参数分析前,一般需要先对动态医学图像进行配准处理,以提高动力学参数定量的精度。上述动态医学图像可以为动态正电子发射计算机断层显像(Positron Emission Computed Tomography,PET)图像、电子计算机断层扫描(Computed Tomogr aphy,CT)图像、MR图像等等。但在本实施例中,动态医学图像为动态PET图像。Among them, kinetic parameter analysis can reveal the biochemical process of the tracer. Therefore, it is necessary to administer the tracer to the test object, and then scan the test object to which the tracer is applied to obtain a medical image, and then obtain the medical image at this time. Dynamic parameter analysis of medical images. Optionally, the object to be tested is limited by the accumulation time characteristics of the tracer in the body. Therefore, in this embodiment, it is necessary to continuously collect data for a certain period of time, generate a dynamic medical image after reconstruction, and then perform dynamic parameter analysis on the dynamic medical image. In order to reveal the biochemical process of the tracer, further medical staff can determine the pathological result of the object to be tested according to the biochemical process of the tracer. In the actual scene, it is difficult for the object to be tested to maintain a complete body posture for a long time, and the obtained dynamic medical image may deviate from the actual one. Registration processing to improve the accuracy of kinetic parameter quantification. The above dynamic medical images may be dynamic positron emission tomography (Positron Emission Computed Tomography, PET) images, Computed Tomography (Computed Tomography, CT) images, MR images, and the like. However, in this embodiment, the dynamic medical image is a dynamic PET image.
在一个实施例中,如图2所示,提供了一种图像配准方法,以该方法应用于计算机设备为例进行说明,包括以下步骤:In one embodiment, as shown in FIG. 2, an image registration method is provided, and the method is applied to a computer device as an example for description, including the following steps:
S100、获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据。S100. Acquire respiration data and initial dynamic PET data within a first preset time period after the subject to be tested is administered the tracer.
具体的,医学扫描设备在对待测对象的任意一个或多个成像部位进行扫描前,医护人员可以先对待测对象的一个或多个成像部位静脉施予一定量的示踪剂,随着组织内示踪剂的积累,在特定时间段内,与被施予示踪剂的成像部位的组织/器官会产生一定的生化反应,并且在该生化反应过程中,病灶区域的组织/器官与非病灶区域的组织/器官会产生明显的区别,这些都是从动态PET图像中能够体现的。Specifically, before the medical scanning device scans any one or more imaging parts of the object to be measured, the medical staff can firstly apply a certain amount of tracer to the vein of the one or more imaging parts of the object to be measured. Accumulation of the tracer, within a specific period of time, will produce a certain biochemical reaction with the tissue/organ at the imaging site to which the tracer is administered, and during this biochemical reaction, the tissue/organ in the focal area is compared with the non-focal area. The tissues/organs will produce obvious differences, which can be reflected from dynamic PET images.
可选的,在组织/器官的生化反应过程中,医学扫描设备可以对施予示踪剂的成像部位扫描,以得到动态PET图像,其中,随着成像部位的组织/器官内示踪剂的积累,动态PET图像的对比度会有显著变化,但是,也不是时间越长,动态PET图像的对比度就越大,在一段时间段内,动态PET图像的对比度会达到一个峰值,因此,上述特定时间段包括了动态PET图像的对比度达到峰值的时间点。可选的,特定时间段的起始时间点可以为结束施予示踪剂的时间点,还可以为结束施予示踪剂的时间点之后的某一时间点。可选的,上述示踪剂可以为不同的核素药物,是对待测对象无危害的。Optionally, during the biochemical reaction of the tissue/organ, the medical scanning device may scan the imaging site where the tracer is administered to obtain a dynamic PET image, wherein, with the accumulation of the tracer in the tissue/organ at the imaging site , the contrast of the dynamic PET image will change significantly, but it is not that the longer the time, the greater the contrast of the dynamic PET image, and the contrast of the dynamic PET image will reach a peak within a period of time. Therefore, the above specific time period The time points at which the contrast of dynamic PET images peaked were included. Optionally, the starting time point of the specific time period may be the time point at which the tracer administration ends, or may be a certain time point after the time point at which the tracer administration ends. Optionally, the above-mentioned tracer may be a different nuclide drug, which is harmless to the object to be tested.
在实际应用中,医学扫描设备可以对待测对象被施予示踪剂的一个或多个成像部位进行扫描,获取第一预设时间段内扫描得到的初始PET数据,并且在采集初始PET数据的同时还可以同步采集待测对象的呼吸数据。医学扫描设备可以将扫描采集到的第一预设时间段内的初始PET数据和呼吸数据均发送至计算机设备,计算机设备可以对第一预设时间段内多个子时间段内的初始PET数据进行重建,得到第一预设时间段对应的多帧动态PET图像。每个子时间段对应一帧动态PET图像。In practical applications, the medical scanning device may scan one or more imaging sites where the tracer is administered to the object to be tested, acquire initial PET data scanned within a first preset time period, and at the time of acquiring the initial PET data At the same time, the breathing data of the object to be tested can also be collected synchronously. The medical scanning device can send both the initial PET data and the respiration data in the first preset time period collected by the scan to the computer device, and the computer device can perform the initial PET data in the multiple sub-time periods in the first preset time period. Reconstruction to obtain multiple frames of dynamic PET images corresponding to the first preset time period. Each sub-period corresponds to one frame of dynamic PET image.
需要说明的是,各帧动态PET图像可以对应第一预设时间段内的一个子时间段内的初始PET数据。可选的,第一预设时间段可以包括多个子时间段,每个子时间段均有对应的一帧初始动态PET图像;每个子时间段所对应的时长可以相等,也可以不相等;多个子时间段组合在一起的时长可以小于或者等于第一预设时间段对应的时长。It should be noted that each frame of dynamic PET images may correspond to initial PET data in a sub-time period within the first preset time period. Optionally, the first preset time period may include a plurality of sub-time periods, and each sub-time period has a corresponding initial dynamic PET image; the time lengths corresponding to each sub-time period may be equal or unequal; The combined duration of the time periods may be less than or equal to the duration corresponding to the first preset time period.
另外,计算机设备将医学扫描设备扫描得到的初始PET数据可以进行静态重建得到静态PET图像,但在本实施例中,计算机设备将医学扫描设备扫描得到的初始PET数据重建成动态PET图像,并且重建动态PET图像时可以采用动态重建算法。其中,动态PET图像的对比度大于静态PET图像的对比度。上述动态重建算法可以为反投影法、迭代重建算法、滤波反投影法、傅里叶变换法等等,对此本实施例不作限定。In addition, the computer equipment can perform static reconstruction of the initial PET data scanned by the medical scanning equipment to obtain a static PET image, but in this embodiment, the computer equipment reconstructs the initial PET data scanned by the medical scanning equipment into a dynamic PET image, and reconstructs Dynamic reconstruction algorithms can be used for dynamic PET images. The contrast of the dynamic PET image is greater than that of the static PET image. The above dynamic reconstruction algorithm may be a back-projection method, an iterative reconstruction algorithm, a filtered back-projection method, a Fourier transform method, etc., which is not limited in this embodiment.
S200、根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像。S200. Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the breathing data.
具体的,计算机设备可以对第一预设时间段内的呼吸数据进行算术运算、数据转换、分析、数据比对和/或重建等等处理,得到第一预设时间段内相应的多帧类动态MR图像。或者,计算机设备还可以先对第一预设时间段内的呼吸数据进行算术运算、数据转换、分析、数据比对和/或重建等等预处理,然后再采用特定算法对预处理结果进行特定处理,得到第一预设时间段内相应的多帧类动态MR图像。可选的,上述算术运算可以为加法运算、减法运算、除法运算、乘法运算、指数运算和/或对数运算等等。Specifically, the computer device may perform arithmetic operations, data conversion, analysis, data comparison and/or reconstruction, etc. on the respiratory data within the first preset time period, to obtain corresponding multi-frame classes within the first preset time period Dynamic MR images. Alternatively, the computer device may also perform preprocessing such as arithmetic operation, data conversion, analysis, data comparison and/or reconstruction on the respiratory data within the first preset time period, and then use a specific algorithm to perform specific preprocessing on the result. processing to obtain corresponding multi-frame dynamic MR images within the first preset time period. Optionally, the above arithmetic operations may be addition operations, subtraction operations, division operations, multiplication operations, exponential operations, and/or logarithmic operations, and the like.
需要说明的是,各帧类动态MR图像对应的子时间段的长度可以相等,也可以不相等。可选的,各帧类动态MR图像的子时间段的时长可以大于或者等于对应帧的初始动态PET图像的子时间段的时长。可选的,第一预设时间段内可以获取多帧类动态MR图像;每帧类动态MR图像可以为第一预设时间段内的某个子时间段内生成的动态MR图像。其中,每帧类动态MR图像对应的子时间段与每帧动态PET图像对应的子时间段不同。It should be noted that the lengths of the sub-time periods corresponding to the dynamic MR images of each frame type may be equal or unequal. Optionally, the duration of the sub-period of the dynamic MR image of each frame type may be greater than or equal to the duration of the sub-period of the initial dynamic PET image of the corresponding frame. Optionally, multiple frames of quasi-dynamic MR images may be acquired within the first preset time period; each frame of quasi-dynamic MR images may be dynamic MR images generated within a certain sub-period within the first preset period of time. The sub-period corresponding to each frame of the dynamic MR image is different from the sub-period corresponding to each frame of the dynamic PET image.
S300、获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像。S300 , acquiring a dynamic-like PET image corresponding to each frame of the dynamic-like MR image, and determining the registered dynamic-like PET image by using each frame of the dynamic-like PET image.
在本实施例中,第一预设时间段内的初始PET数据具有对应的多帧类动态PET图像,各帧初始动态PET图像具有对应的类动态PET图像。在本实施例中,初始PET数据也可以称为动态PET数据。可选的,各帧初始动态PET图像的子时间段的时长可以小于或者等于对应帧的类动态PET图像的子时间段的时长。In this embodiment, the initial PET data within the first preset time period has corresponding multiple frames of dynamic-like PET images, and each frame of the initial dynamic PET image has a corresponding dynamic-like PET image. In this embodiment, the initial PET data may also be referred to as dynamic PET data. Optionally, the duration of the sub-period of the initial dynamic PET image of each frame may be less than or equal to the duration of the sub-period of the dynamic-like PET image of the corresponding frame.
可以理解的是,计算机设备可以通过各帧类动态MR图像和对应帧的动态PET图像进行映射处理、转换处理和/或分析处理等等,得到各帧类动态MR图像对应各帧的类动态PET图像。可选的,映射处理可以理解为尺寸相同的类动态MR图像和对应动态PET图像中对应位置的像素点的像素值之间的映射后,并将映射位置上的两个像素点的像素值叠加或者相减等运算的过程。可选的,转换处理可以理解为通过一个预设值或多个预设值与类动态MR图像中不同位置的像素点的像素值进行算术运算的过程。分析处理可以理解为对类动态MR图像中的各像素点的像素分辨率进行分析的过程。It can be understood that the computer equipment can perform mapping processing, conversion processing, and/or analysis processing, etc., through the dynamic MR image of each frame and the dynamic PET image of the corresponding frame, so as to obtain the dynamic PET corresponding to each frame of the dynamic MR image of each frame. image. Optionally, the mapping process can be understood as the mapping between the dynamic MR image of the same size and the pixel value of the pixel at the corresponding position in the corresponding dynamic PET image, and the pixel values of the two pixels at the mapped position are superimposed. Or the process of subtraction and other operations. Optionally, the conversion process can be understood as a process of performing an arithmetic operation on a preset value or multiple preset values and pixel values of pixel points at different positions in the quasi-dynamic MR image. The analysis process can be understood as a process of analyzing the pixel resolution of each pixel point in the dynamic MR image.
进一步,计算机设备可以将任意一帧类动态MR图像作为参考图像,对各帧类动态PET图像进行图像配准,得到配准后的类动态PET图像。其中,上述类动态PET图像可以体现待测对象的成像成像部位的组织/器官的边界、形状等信息,也就是,类动态PET图像中携带有组织/器官的结构信息,且类动态PET图像与其它医学图像相比,可以体现图像中的明显特征点。Further, the computer equipment may use any frame of the dynamic MR image as a reference image, and perform image registration on each frame of the dynamic PET image to obtain the registered dynamic PET image. The above-mentioned dynamic-like PET image can reflect information such as the boundary and shape of the tissue/organ in the imaging part of the object to be tested, that is, the dynamic-like PET image carries the structural information of the tissue/organ, and the dynamic-like PET image and the Compared with other medical images, it can reflect the obvious feature points in the image.
S400、基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像。多帧初始动态PET图像为对初始动态PET数据重建得到的图像。S400. Based on the registered quasi-dynamic PET images, register multiple frames of initial dynamic PET images to obtain registered dynamic PET images. The multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
进一步,计算机设备可以通过携带有组织/器官结构信息的配准后的类动态PET图像,对多帧初始动态PET图像进行配准,以提高动态PET图像配准结果的准确性。其中,计算机设备可以将配准后的类动态PET图像作为参考图像,采用配准算法对各帧初始动态PET图像进行配准,得到配准后的动态PET图像。可选的,计算机设备还可以分别对配准后的类动态PET图像和各帧初始动态PET图像进行算术运算,以实现对各帧初始动态PET图像进行配准,得到配准后的动态PET图像。Further, the computer equipment can register multiple frames of initial dynamic PET images through the registered dynamic PET images carrying tissue/organ structure information, so as to improve the accuracy of dynamic PET image registration results. The computer equipment can use the registered dynamic PET image as a reference image, and use a registration algorithm to register the initial dynamic PET image of each frame to obtain a registered dynamic PET image. Optionally, the computer device may also perform arithmetic operations on the registered quasi-dynamic PET images and the initial dynamic PET images of each frame, so as to realize the registration of the initial dynamic PET images of each frame, and obtain the registered dynamic PET images. .
在本实施例中,第一预设时间段内待测对象几乎为同一姿态。在实际处理过程中,动态PET图像、类动态PET图像和类动态MR图像的尺寸可以相同。In this embodiment, the object to be measured has almost the same posture within the first preset time period. In the actual processing process, the size of the dynamic PET image, the dynamic PET image and the dynamic MR image can be the same.
上述图像配准方法中,计算机设备可以获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据,根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像,获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像,基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;上述方法可以通过呼吸数据直接获取类动态MR图像,然后基于类动态MR图像和初始动态PET数据获取具有成像部位的组织/器官结构特征的类动态PET图像,并且基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,使得配准后的动态PET图像能够体现结构信息和明显的图像特征,从而能够提高动态PET图像配准结果的准确度;同时,上述方法能够降低获取类动态MR图像的复杂性,并且还可以让医护人员从配准后的动态PET图像中准确获取待测对象的病理机制,进一步提高诊疗方法的准确性,并且能够及时采取有效治疗方法对待测对象进行治疗。In the above image registration method, the computer equipment can obtain the respiration data and the initial dynamic PET data in the first preset time period after the tracer is administered to the object to be tested, and determine the corresponding multiple data in the first preset time period according to the respiration data. Frame-like dynamic MR images, obtain the dynamic-like PET images corresponding to each frame-like dynamic MR image, and determine the registered dynamic-like PET images through each frame-like dynamic PET image. Frame initial dynamic PET images are registered to obtain registered dynamic PET images; the above method can directly obtain dynamic MR images through respiratory data, and then obtain tissues/organs with imaging sites based on dynamic MR images and initial dynamic PET data. Similar dynamic PET images with structural features, and based on the registered dynamic PET images, multiple frames of initial dynamic PET images are registered, so that the registered dynamic PET images can reflect the structural information and obvious image features, so as to be able to Improve the accuracy of dynamic PET image registration results; at the same time, the above method can reduce the complexity of obtaining dynamic MR images, and also allow medical staff to accurately obtain the pathological mechanism of the object to be tested from the registered dynamic PET images, The accuracy of diagnosis and treatment methods can be further improved, and effective treatment methods can be taken in time to treat the object to be tested.
作为其中一个实施例,如图3所示,上述S400中基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像的步骤,可以通过以下步骤实现:As one of the embodiments, as shown in FIG. 3 , in the above step S400 , based on the registered dynamic PET images, multiple frames of initial dynamic PET images are registered, and the registered dynamic PET images can be obtained through the following steps Steps to achieve:
S410、基于各帧类动态PET图像,对第一预设时间段内的初始动态PET数据进行时间映射,得到各帧类动态PET图像的映射初始动态PET数据。S410. Based on the dynamic PET images of each frame type, perform time mapping on the initial dynamic PET data in the first preset time period to obtain the mapped initial dynamic PET data of the dynamic PET images of each frame type.
具体的,第一预设时间段内的各帧类动态PET图像与部分初始动态PET数据对应,因此,计算机设备可以根据各帧类动态PET图像对应的子时间段和各帧初始动态PET数据对应的子时间段,对各帧类动态PET图像与各帧初始动态PET数据进行时间映射,得到各帧类动态PET图像的映射初始动态PET数据。Specifically, each frame-like dynamic PET image in the first preset time period corresponds to part of the initial dynamic PET data. Therefore, the computer device can correspond to each frame of initial dynamic PET data according to the sub-time period corresponding to each frame-like dynamic PET image and each frame. In the sub-time period, time mapping is performed on each frame-like dynamic PET image and each frame's initial dynamic PET data, and the mapped initial dynamic PET data of each frame-like dynamic PET image is obtained.
S420、对各帧类动态PET图像的映射初始动态PET数据进行重建,得到对应的映射初始动态PET图像。S420: Reconstruct the mapped initial dynamic PET data of each frame-like dynamic PET image to obtain a corresponding mapped initial dynamic PET image.
具体的,计算机设备可以采用直接反投影法、迭代法或二维傅立叶变换重建法,对各帧类动态PET图像的映射初始动态PET数据进行重建,得到各帧类动态PET图像对应的映射初始动态PET图像。Specifically, the computer equipment can use the direct back-projection method, the iterative method or the two-dimensional Fourier transform reconstruction method to reconstruct the mapped initial dynamic PET data of each frame type of dynamic PET image, and obtain the mapped initial dynamic PET image corresponding to each frame type of dynamic PET image. PET image.
示例性的,若第一预设时间段内有两帧类动态PET图像和四帧初始动态PET图像,两帧类动态PET图像分别为类动态PET图像1、类动态PET图像2,四帧初始动态PET图像分别为初始动态PET图像1、初始动态PET图像2、初始动态PET图像3、初始动态PET图像4,其中,类动态PET图像1对应的子时间段为[0,2],类动态PET图像2对应的子时间段为[2,4],初始动态PET图像1对应的子时间段为[0,1],初始动态PET图像2对应的子时间段为[1,2],初始动态PET图像3对应的子时间段为[2,3],初始动态PET图像4对应的子时间段为[3,4](区间内的数据均表示时间点),则计算机设备可以将初始动态PET图像1对应的子时间段[0,1]和初始动态PET图像2对应的子时间段[1,2]映射至类动态PET图像1对应的子时间段[0,2]中,并且将初始动态PET图像3对应的子时间段[2,3]和初始动态PET图像4对应的子时间段[3,4]映射至类动态PET图像2对应的子时间段[2,4]中,分别类动态PET图像1的映射初始动态PET图像1和映射初始动态PET图像2,类动态PET图像2的映射初始动态PET图像3和映射初始动态PET图像4。Exemplarily, if there are two frames of quasi-dynamic PET images and four frames of initial dynamic PET images within the first preset time period, the two frames of quasi-dynamic PET images are respectively quasi-dynamic PET image 1 and quasi-dynamic PET image 2, and the four frames of initial PET images are respectively quasi-dynamic PET image 1 and quasi-dynamic PET image 2. The dynamic PET images are respectively the initial dynamic PET image 1, the initial dynamic PET image 2, the initial dynamic PET image 3, and the initial dynamic PET image 4, wherein the sub-time period corresponding to the dynamic PET image 1 is [0, 2], and the dynamic PET image 1 corresponds to The sub-period corresponding to PET image 2 is [2, 4], the sub-period corresponding to the initial dynamic PET image 1 is [0, 1], and the sub-period corresponding to the initial dynamic PET image 2 is [1, 2]. The sub-time period corresponding to the dynamic PET image 3 is [2, 3], and the sub-time period corresponding to the initial dynamic PET image 4 is [3, 4] (the data in the interval represent time points), then the computer equipment can The sub-period [0, 1] corresponding to the PET image 1 and the sub-period [1, 2] corresponding to the initial dynamic PET image 2 are mapped to the sub-period [0, 2] corresponding to the quasi-dynamic PET image 1, and the The sub-period [2, 3] corresponding to the initial dynamic PET image 3 and the sub-period [3, 4] corresponding to the initial dynamic PET image 4 are mapped to the sub-period [2, 4] corresponding to the quasi-dynamic PET image 2, The dynamic PET image-like 1 is mapped to the initial dynamic PET image 1 and the mapped initial dynamic PET image 2, and the dynamic PET image-like 2 is mapped to the initial dynamic PET image 3 and the mapped initial dynamic PET image 4, respectively.
或者,若第一预设时间段内的类动态PET图像1对应的子时间段为[0,4],类动态PET图像2对应的子时间段为[5,9],初始动态PET图像1对应的子时间段为[0,1.5],初始动态PET图像2对应的子时间段为[2.5,4],初始动态PET图像3对应的子时间段为[5,6.5],初始动态PET图像4对应的子时间段为[7.5,9](区间内的数据均表示时间点),则计算机设备可以将初始动态PET图像1对应的子时间段[0,1.5]和初始动态PET图像2对应的子时间段[2.5,4]映射至类动态PET图像1对应的子时间段[0,4]中,并且将初始动态PET图像3对应的子时间段[5,6.5]和初始动态PET图像4对应的子时间段[7.5,9]映射至类动态PET图像2对应的子时间段[5,9]中,分别类动态PET图像1的映射初始动态PET图像1和映射初始动态PET图像2,类动态PET图像2的映射初始动态PET图像3和映射初始动态PET图像4。Or, if the sub-time period corresponding to the dynamic-like PET image 1 in the first preset time period is [0, 4], the sub-time period corresponding to the dynamic-like PET image 2 is [5, 9], and the initial dynamic PET image 1 The corresponding sub-period is [0, 1.5], the sub-period corresponding to the initial dynamic PET image 2 is [2.5, 4], the sub-period corresponding to the initial dynamic PET image 3 is [5, 6.5], and the initial dynamic PET image corresponds to the sub-period [5, 6.5]. 4 The corresponding sub-time period is [7.5, 9] (the data in the interval all represent time points), then the computer equipment can correspond the sub-time period [0, 1.5] corresponding to the initial dynamic PET image 1 to the initial dynamic PET image 2. The sub-time period [2.5, 4] of is mapped to the sub-time period [0, 4] corresponding to the dynamic PET image 1, and the sub-time period [5, 6.5] corresponding to the initial dynamic PET image 3 and the initial dynamic PET image 4 The corresponding sub-time period [7.5, 9] is mapped to the sub-time period [5, 9] corresponding to the dynamic PET image 2, and the mapped initial dynamic PET image 1 and the mapped initial dynamic PET image 2 of the dynamic PET image 1 are respectively mapped. , the like dynamic PET image 2 is mapped to the initial dynamic PET image 3 and the mapped initial dynamic PET image 4.
在本实施例中,各帧初始动态PET图像对应的子时间段的时长可以相等;各帧类动态PET图像对应的子时间段的时长大于对应的各帧初始动态PET图像对应的子时间段的时长。In this embodiment, the durations of the sub-periods corresponding to the initial dynamic PET images of each frame may be equal; the duration of the sub-periods corresponding to the dynamic PET images of each frame type is greater than the duration of the sub-periods corresponding to the corresponding initial dynamic PET images of each frame duration.
S430、通过配准后的类动态PET图像,对对应的映射初始动态PET图像进行配准,得到配准后的动态PET图像。S430 , performing registration on the corresponding mapped initial dynamic PET image through the registered quasi-dynamic PET image, to obtain a registered dynamic PET image.
具体的,各帧类动态PET图像均有对应的配准后的类动态PET图像。其中,计算机设备可以将各帧配准后的类动态PET图像分别作为参考图像,采用图像配准算法对各帧配准后的类动态PET图像对应的映射初始动态PET图像进行配准,得到配准后的动态PET图像。Specifically, each frame-like dynamic PET image has a corresponding registered dynamic-like PET image. The computer equipment can use the registered dynamic-like PET images of each frame as a reference image, and use an image registration algorithm to register the mapped initial dynamic PET images corresponding to the registered dynamic-like PET images of each frame, and obtain the registered dynamic PET image. Post-calibration dynamic PET images.
上述图像配准方法可以基于配准后的类动态PET图像,对对应的映射初始动态PET图像进行配准,使得配准后的动态PET图像能够体现结构信息和明显的图像特征,从而能够提高动态PET图像配准结果的准确度;同时,通过上述方法还可以让医护人员从配准后的动态PET图像中准确获取待测对象的病理机制,进一步提高诊疗方法的准确性,并且能够及时采取有效治疗方法对待测对象进行治疗。The above-mentioned image registration method can register the corresponding initial dynamic PET image of the mapping based on the registered quasi-dynamic PET image, so that the registered dynamic PET image can reflect the structural information and obvious image features, so that the dynamic PET image can be improved. The accuracy of the PET image registration results; at the same time, the above method can also allow medical staff to accurately obtain the pathological mechanism of the object to be tested from the registered dynamic PET images, further improve the accuracy of the diagnosis and treatment methods, and can take effective measures in time. The treatment method treats the subject to be tested.
作为其中一个实施例,如图4所示,上述S300中通过各帧类动态PET图像确定配准后的类动态PET图像的步骤,可以通过以下步骤实现:As one of the embodiments, as shown in FIG. 4 , the step of determining the registered quasi-dynamic PET image by using each frame of quasi-dynamic PET images in the above S300 can be realized by the following steps:
S310、获取各帧类动态MR图像对应的形变场。S310: Acquire a deformation field corresponding to each frame type dynamic MR image.
具体的,计算机设备可以对各帧类动态MR图像进行算术运算、转换、分析和/或对比等处理,得到各帧类动态MR图像对应的形变场。在本实施例中,图像可以用矩阵的形式表示,矩阵的尺寸大小与图像的尺寸大小可以相同。若图像的尺寸大小为3×3,则矩阵的尺寸大小也是3×3,矩阵中的第一行第一列的数据可以为图像中第一行第一列的像素点的像素值和第一行第一列的像素点的位置(1,1),矩阵中的第一行第二列的数据可以为图像中第一行第二列的像素点的像素值和第一行第二列的像素点的位置(1,2)图像中其它像素点的像素值与矩阵中对应位置上的数据也有对应关系。Specifically, the computer equipment may perform arithmetic operation, conversion, analysis, and/or comparison processing on each frame type dynamic MR image, and obtain the deformation field corresponding to each frame type dynamic MR image. In this embodiment, the image may be represented in the form of a matrix, and the size of the matrix may be the same as the size of the image. If the size of the image is 3×3, the size of the matrix is also 3×3, and the data in the first row and the first column of the matrix can be the pixel value of the pixel in the first row and the first column in the image and the first The position of the pixel in the first row and column (1, 1), the data in the first row and the second column in the matrix can be the pixel value of the pixel in the first row and the second column in the image and the pixel value in the first row and the second column in the image. The position of the pixel point (1, 2) also has a corresponding relationship between the pixel values of other pixel points in the image and the data at the corresponding position in the matrix.
需要说明的是,形变场可以通过形变场矩阵表示,该形变场矩阵的大小可以等于类动态MR图像的像素矩阵大小。可选的,形变场矩阵中不同位置的数值可以表示类动态MR图像中对应的像素点的形变值。It should be noted that the deformation field may be represented by a deformation field matrix, and the size of the deformation field matrix may be equal to the size of the pixel matrix of the dynamic MR image. Optionally, the numerical values at different positions in the deformation field matrix may represent the deformation values of the corresponding pixel points in the dynamic MR image.
其中,如图5所示,上述S310中获取各帧类动态MR图像对应的形变场的步骤,可以包括:Wherein, as shown in FIG. 5 , the step of obtaining the deformation field corresponding to each frame type dynamic MR image in the above S310 may include:
S311、基于多帧样本MR图像确定参考图像。S311. Determine a reference image based on the multi-frame sample MR images.
具体的,医护人员在对待测对象的一个或多个成像部位施予一定量的示踪剂前的一段时间段内,医学扫描设备可以对待测对象的成像部位进行扫描,获取样本MR数据,并将样本MR数据发送给计算机设备。计算机设备可以对该段时间段内的样本MR数据进行重建,得到多帧样本MR图像。各帧样本MR图像均有对应的子时间段,且各帧样本MR图像对应的子时间段组合在一起的时间段与医学扫描设备采集到的样本MR数据的时间段相等。Specifically, within a period of time before the medical staff administers a certain amount of tracer to one or more imaging parts of the object to be measured, the medical scanning device can scan the imaging parts of the object to be measured, obtain sample MR data, and then The sample MR data is sent to a computer device. The computer equipment can reconstruct the sample MR data in the period of time to obtain multiple frames of sample MR images. Each frame of sample MR image has a corresponding sub-time period, and the combined time period of the sub-time periods corresponding to each frame of sample MR image is equal to the time period of the sample MR data collected by the medical scanning device.
其中,计算机设备可以从多帧样本MR图像中选取任意一帧MR图像作为参考图像。但在本实施例中,计算机设备可以选取与第一预设时间段的起始时间点最近的子时间段对应的一帧样本MR图像作为参考图像。其中,对应的样本MR数据中可以携带组织/器官的弛豫属性,也就是样本MR数据中可以包括T1WI序列和/或T2WI序列等等。T1WI序列表示核磁共振的T1序列,T2WI序列表示核磁共振的T2序列。Wherein, the computer device may select any frame of MR images from the multiple frames of sample MR images as a reference image. However, in this embodiment, the computer device may select a frame of sample MR images corresponding to the sub-time period closest to the start time point of the first preset time period as the reference image. The corresponding sample MR data may carry the relaxation properties of the tissue/organ, that is, the sample MR data may include T1WI sequences and/or T2WI sequences, and the like. The T1WI sequence represents the T1 sequence of NMR, and the T2WI sequence represents the T2 sequence of NMR.
S312、通过参考图像分别对各帧类动态MR图像进行图像配准,得到各帧类动态MR图像对应的形变场。S312 , performing image registration on the dynamic MR images of each frame type respectively by using the reference image, to obtain a deformation field corresponding to the dynamic MR image of each frame type.
可以理解的是,计算机设备可以采用图像配准算法,通过选取的参考图像对各帧类动态MR图像进行图像配准,得到各帧类动态MR图像对应的形变场。该形变场对应的形变场矩阵可以等于参考图像与各帧类动态MR图像中各像素点的像素值之间的差值。It can be understood that the computer equipment can use an image registration algorithm to perform image registration on each frame type of dynamic MR image through the selected reference image, and obtain the deformation field corresponding to each frame type of dynamic MR image. The deformation field matrix corresponding to the deformation field may be equal to the difference between the pixel value of each pixel point in the reference image and each frame-type dynamic MR image.
本实施例可以获取各帧类动态MR图像对应的形变场,进而通过各帧类动态MR图像对应的形变场,以方便对对应时间段的各帧类动态PET图像进行配准,使得类动态PET图像的配准能够考虑到类动态MR图像的结构密度,从而能够提高图像配准结果的准确度。In this embodiment, the deformation fields corresponding to the dynamic MR images of each frame type can be obtained, and then the deformation fields corresponding to the dynamic MR images of each frame type can be used to facilitate the registration of the dynamic PET images of each frame type in the corresponding time period. Image registration can take into account the structure density of dynamic MR images, so that the accuracy of image registration results can be improved.
S320、根据各帧类动态MR图像对应的形变场,对对应的类动态PET图像进行配准,得到配准后的类动态PET图像。S320. According to the deformation fields corresponding to the dynamic MR images of each frame, register the corresponding dynamic PET images to obtain the registered dynamic PET images.
同时,计算机设备可以采用图像配准算法,通过各帧类动态MR图像对应的形变场对对应的类动态PET图像进行配准,得到配准后的类动态PET图像。At the same time, the computer equipment can use an image registration algorithm to register the corresponding dynamic PET images through the deformation fields corresponding to the dynamic MR images of each frame, so as to obtain the registered dynamic PET images.
在本实施例中,上述图像配准算法可以为基于图像灰度的匹配算法或者基于图像特征的匹配算法,还可以为其它的图像匹配算法,对此本实施例不做限定。其中,上述基于图像灰度的匹配算法可以为平均绝对差算法、绝对误差和算法、误差平方和算法、平均误差平方和算法、归一化积相关算法、序贯相似性算法等等;上述基于图像特征的匹配算法可以为特征提取、特征匹配、模型参数估计、图像变换和灰度插值算法等等。图6为图像配准过程中,一待测对象的某一成像部位对应的多帧类动态MR图像、配准后的类动态MR图像、类动态PET图像、配准后的类动态PET图像、动态PET图像以及配准后的动态PET图像示意图。In this embodiment, the above-mentioned image registration algorithm may be an image grayscale-based matching algorithm or an image feature-based matching algorithm, or may be other image matching algorithms, which are not limited in this embodiment. Wherein, the above-mentioned matching algorithms based on image grayscale may be mean absolute difference algorithm, absolute error sum algorithm, error sum of squares algorithm, mean error sum of squares algorithm, normalized product correlation algorithm, sequential similarity algorithm, etc.; The matching algorithm of image features can be feature extraction, feature matching, model parameter estimation, image transformation and grayscale interpolation algorithms, and so on. Fig. 6 is a multi-frame dynamic MR image corresponding to a certain imaging part of an object to be tested, a registered dynamic MR image, a dynamic PET image, a registered dynamic PET image, a registered dynamic PET image, Schematic diagram of the dynamic PET image and the registered dynamic PET image.
上述图像配准方法中,计算机设备可以获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和多帧初始动态PET图像,根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像,获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像得到配准后的类动态PET图像,基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;上述方法可以通过呼吸数据直接获取类动态MR图像,然后基于类动态MR图像和初始动态PET数据获取具有成像部位的组织/器官结构特征的类动态PET图像,并且基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,使得配准后的动态PET图像能够体现结构信息和明显的图像特征,从而能够提高动态PET图像配准结果的准确度;同时,上述方法还可以让医护人员从配准后的动态PET图像中准确获取待测对象的病理机制,进一步提高诊疗方法的准确性,并且能够及时采取有效治疗方法对待测对象进行治疗。In the above-mentioned image registration method, the computer equipment can acquire the respiration data and multiple frames of initial dynamic PET images within the first preset time period after the tracer is administered to the object to be tested, and determine the corresponding parameters within the first preset time period according to the respiration data. The multi-frame quasi-dynamic MR images are obtained, the quasi-dynamic PET images corresponding to each frame of quasi-dynamic MR images are obtained, and the registered quasi-dynamic PET images are obtained through each frame of quasi-dynamic PET images. Based on the registered quasi-dynamic PET images, Multi-frame initial dynamic PET images are registered to obtain registered dynamic PET images; the above method can directly obtain dynamic-like MR images through respiratory data, and then obtain tissues with imaging sites based on dynamic-like MR images and initial dynamic PET data. Organ-like dynamic PET images, and based on the registered dynamic PET images, multiple frames of initial dynamic PET images are registered, so that the registered dynamic PET images can reflect structural information and obvious image features, Therefore, the accuracy of the dynamic PET image registration result can be improved; at the same time, the above method can also allow medical staff to accurately obtain the pathological mechanism of the object to be measured from the registered dynamic PET image, further improve the accuracy of the diagnosis and treatment method, and can Take effective treatment methods in a timely manner to treat the subjects to be tested.
作为其中一个实施例中,上述S200中根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像的步骤,可以包括:将呼吸数据输入至预测模型,得到第一预设时间段内相应的多帧类动态MR图像。As one of the embodiments, the step of determining the corresponding multi-frame dynamic MR images in the first preset time period according to the respiratory data in the above S200 may include: inputting the respiratory data into the prediction model to obtain the first preset time period corresponding multi-frame dynamic MR images.
具体的,计算机设备可以将第一预设时间段的呼吸数据输入至预测模型,预测模型输出第一预设时间段内相应的多帧类动态MR图像。其中,预测模型可以为预先训练好的网络模型,且在上述S200中的步骤执行之前,预测模型已被训练好。上述预测模型可以由卷积神经网络模型、循环神经网络模型、对抗神经网络模型中的至少一种组成。Specifically, the computer device may input the respiratory data of the first preset time period into the prediction model, and the prediction model outputs the corresponding multi-frame dynamic MR images in the first preset time period. The prediction model may be a pre-trained network model, and the prediction model has been trained before the steps in S200 are performed. The above prediction model may be composed of at least one of a convolutional neural network model, a recurrent neural network model, and an adversarial neural network model.
其中,在执行上述将呼吸数据输入至预测模型,得到第一预设时间段内相应的多帧类动态MR图像的步骤之前,上述图像配准方法还可以包括:获取待测对象施予示踪剂前的第二预设时间段内的多帧样本MR图像和样本呼吸数据;通过多帧样本MR图像和样本呼吸数据对初始预测模型进行训练,得到预测模型。Wherein, before performing the above-mentioned step of inputting the respiratory data into the prediction model to obtain the corresponding multi-frame dynamic MR images in the first preset time period, the above-mentioned image registration method may further include: acquiring the object to be measured and applying the tracer multi-frame sample MR images and sample respiration data in the second preset time period before the dose; the initial prediction model is trained by using the multi-frame sample MR images and sample respiration data to obtain a prediction model.
需要说明的是,计算机设备可以通过施予示踪剂之前第二预设时间段内的多帧样本MR图像和样本呼吸数据,对初始预测模型进行网络模型训练,得到预先训练好的预测模型。也就是,将第二预设时间段内的多帧样本MR图像和样本呼吸数据输入至初始预测模型中,进行循环迭代训练,得到最优的预测模型。可选的,第二预设时间段的时长可以大于、小于或者等于第一预设时间段的时长。It should be noted that the computer equipment can perform network model training on the initial prediction model by using multiple frames of sample MR images and sample respiration data within the second preset time period before the tracer is administered to obtain a pre-trained prediction model. That is, the multi-frame sample MR images and sample respiration data in the second preset time period are input into the initial prediction model, and cyclic iterative training is performed to obtain the optimal prediction model. Optionally, the duration of the second preset time period may be greater than, less than or equal to the duration of the first preset time period.
可以理解的是,计算机设备可以将第二预设时间段内的多帧样本MR图像和样本呼吸数据输入至初始预测模型中,得到类动态MR预测结果,并通过损失函数计算类动态MR预测结果与标准类动态MR图像之间的预测误差值,并根据预测误差值更新初始预测模型中的初始网络参数,不断迭代以上训练步骤,直到预测误差值满足预设误差阈值或迭代次数达到预设迭代次数阈值为止,得到预先训练好的预测模型。在对待测对象的成像部位施予示踪剂前的第二时间段内,医学扫描设备可以扫描待测对象的成像部位,得到样本MR数据。计算机设备可以将第二时间段进行分段处理,得到多个子时间段,然后对每个时间段内的样本MR数据进行重建,得到多个子时间段对应的多帧样本MR图像。各帧样本MR图像对应的子时间段的时长可以相等,也可以不相等。各帧样本MR图像对应的子时间段组合在一起对应的时间段可以等于第二预设时间段。可选的,上述标准类动态MR图像可以为理想化的类动态MR图像。It can be understood that the computer equipment can input the multi-frame sample MR images and sample respiration data in the second preset time period into the initial prediction model, obtain the dynamic-like MR prediction result, and calculate the dynamic-like MR prediction result through the loss function. The prediction error value between the standard dynamic MR image and the standard dynamic MR image, and update the initial network parameters in the initial prediction model according to the prediction error value, and iterate the above training steps continuously until the prediction error value meets the preset error threshold or the number of iterations reaches the preset iteration. Up to the threshold of times, a pre-trained prediction model is obtained. During the second time period before the tracer is applied to the imaging site of the object to be tested, the medical scanning device may scan the imaging site of the object to be tested to obtain sample MR data. The computer device may perform segmentation processing on the second time period to obtain multiple sub-time periods, and then reconstruct the sample MR data in each time period to obtain multi-frame sample MR images corresponding to the multiple sub-time periods. The durations of the sub-periods corresponding to the sample MR images of each frame may or may not be equal. The time period corresponding to the combination of the sub-time periods corresponding to the sample MR images of each frame may be equal to the second preset time period. Optionally, the above-mentioned standard dynamic-like MR image may be an idealized dynamic-like MR image.
上述图像配准方法可以利用与动态PET数据同步被采集到的呼吸数据就能够获取具有结构信息的类动态MR图像,从而缩小了数据采集时长,同时,可以通过呼吸数据直接得到类动态MR图像,并不需要先采集动态MR数据,再将动态MR数据重建成动态MR图像,之后对动态MR图像进行间接处理才能得到类动态MR图像的过程,从而减少了整个图像配准的数据处理过程,缩短了图像配准时长。The above-mentioned image registration method can obtain a dynamic MR image with structural information by using the respiratory data collected synchronously with the dynamic PET data, thereby shortening the data acquisition time. It is not necessary to collect dynamic MR data first, then reconstruct the dynamic MR data into dynamic MR images, and then indirectly process the dynamic MR images to obtain the process of quasi-dynamic MR images, thereby reducing the data processing process of the entire image registration and shortening the image registration time.
作为其中一个实施例,如图7所示,上述S300中获取各帧类动态MR图像对应的类动态PET图像的步骤,可以包括:As one of the embodiments, as shown in FIG. 7 , the step of obtaining the dynamic-like PET images corresponding to the dynamic-like MR images of each frame in the above S300 may include:
S330、获取第一预设时间段内的初始PET数据。S330: Acquire initial PET data within a first preset time period.
具体的,待测对象的成像部位被施予示踪剂后,医学扫描设备可以实时对施予示踪剂的成像部位扫描一段时间,以采集第一预设时间段内的初始PET数据,并将采集到的初始PET数据发送给计算机设备。或者,计算机设备还可以从云端或者本地数据中获取历史时间段内采集到的初始PET数据,即第一预设时间段内的初始PET数据。在本实施例中,对获取第一预设时间段内的初始PET数据的方式可以不做限定。图8示出了同一时间轴上第一预设时间段、第二预设时间段、施予示踪剂的时间点、以及对应的初始PET数据、样本MR数据以及呼吸数据的对应关系图。图8中训练序列可以为训练预测模型时采集到的多个子时间段的样本MR数据;序列1、序列2和序列3可以为施予示踪剂后对应的3个子时间段的样本MR数据,但是,施予示踪剂后对应的3个子时间段的样本MR数据在图像配准过程中可以不使用。Specifically, after the tracer is applied to the imaging part of the object to be tested, the medical scanning device can scan the imaging part to which the tracer is applied in real time for a period of time to collect initial PET data within the first preset time period, and The acquired initial PET data is sent to a computer device. Alternatively, the computer device may also acquire the initial PET data collected in the historical time period, that is, the initial PET data in the first preset time period, from the cloud or local data. In this embodiment, the manner of acquiring the initial PET data within the first preset time period may not be limited. FIG. 8 shows the first preset time period, the second preset time period, the time point of administering the tracer, and the corresponding relationship diagram of initial PET data, sample MR data and respiratory data on the same time axis. The training sequence in FIG. 8 may be the sample MR data of multiple sub-time periods collected when training the prediction model; the sequence 1, the sequence 2 and the sequence 3 may be the sample MR data of the three sub-time periods corresponding to the administration of the tracer, However, the sample MR data of the three sub-periods corresponding to the administration of the tracer may not be used in the image registration process.
S340、对各帧类动态MR图像与第一预设时间段内的初始PET数据进行时间映射,得到各帧类动态MR图像的映射PET数据。S340. Perform time mapping on the dynamic MR images of each frame type and the initial PET data in the first preset time period to obtain the mapped PET data of the dynamic MR images of each frame type.
具体的,对各帧类动态MR图像与第一预设时间段内的初始PET数据进行时间映射可以理解为,将各帧类动态MR图像的子时间段与第一预设时间段内对应子时间段进行时间映射,得到各帧类动态MR图像的映射PET数据。Specifically, the time mapping of the dynamic MR images of each frame type and the initial PET data within the first preset time period can be understood as: mapping the sub-time periods of the dynamic MR images of each frame type to the corresponding sub-periods within the first preset time period Time mapping is performed in the time period, and the mapped PET data of each frame type dynamic MR image is obtained.
S350、对映射PET数据进行重建,得到各帧类动态MR图像对应的类动态PET图像。S350. Reconstruct the mapped PET data to obtain a dynamic-like PET image corresponding to each frame of the dynamic-like MR image.
进一步,计算机设备可以对各子时间段内的映射PET数据进行重建,得到各帧类动态MR图像对应的类动态PET图像。Further, the computer equipment can reconstruct the mapped PET data in each sub-time period to obtain the dynamic-like PET images corresponding to the dynamic-like MR images of each frame.
上述图像配准方法可以获取类动态PET图像,进一步对类动态PET图像进行配准,然后基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,使得配准后的动态PET图像能够体现结构信息和明显的图像特征,从而能够提高动态PET图像配准结果的准确度。The above image registration method can obtain the dynamic-like PET images, further register the dynamic-like PET images, and then register multiple initial dynamic PET images based on the registered dynamic-like PET images, so that the registered dynamic PET images are registered. PET images can reflect structural information and obvious image features, which can improve the accuracy of dynamic PET image registration results.
为了便于本领域技术人员的理解,以执行主体为计算机设备为例介绍本申请提供的图像配准方法,具体的,该方法包括:In order to facilitate the understanding of those skilled in the art, the image registration method provided by the present application is introduced by taking the execution subject as a computer device as an example. Specifically, the method includes:
(1)获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据。(1) Acquiring respiration data and initial dynamic PET data within a first preset time period after the subject to be tested is administered the tracer.
(2)获取待测对象施予示踪剂前的第二预设时间段内的多帧样本MR图像和样本呼吸数据。(2) Acquiring multiple frames of sample MR images and sample respiration data within a second preset time period before the tracer is administered to the object to be tested.
(3)通过多帧样本MR图像和样本呼吸数据对初始预测模型进行训练,得到预测模型。(3) The initial prediction model is trained by using multiple frames of sample MR images and sample respiration data to obtain the prediction model.
(4)将呼吸数据输入至预测模型,得到第一预设时间段内相应的多帧类动态MR图像。(4) Input the respiratory data into the prediction model to obtain the corresponding multi-frame dynamic MR images within the first preset time period.
(5)对各帧类动态MR图像与第一预设时间段内的初始PET数据进行时间映射,得到各帧类动态MR图像的映射PET数据。(5) Time mapping is performed between the dynamic MR images of each frame type and the initial PET data in the first preset time period to obtain the mapped PET data of the dynamic MR images of each frame type.
(6)对映射PET数据进行重建,得到各帧类动态MR图像对应的类动态PET图像。(6) Reconstructing the mapped PET data to obtain the dynamic-like PET images corresponding to the dynamic-like MR images of each frame.
(7)基于多帧样本MR图像确定参考图像。(7) Determine the reference image based on the multi-frame sample MR images.
(8)通过参考图像分别对各帧类动态MR图像进行图像配准,得到各帧类动态MR图像对应的形变场。(8) Perform image registration on each frame type dynamic MR image through the reference image, and obtain the deformation field corresponding to each frame type dynamic MR image.
(9)根据各帧类动态MR图像对应的形变场,对对应的类动态PET图像进行配准,得到配准后的类动态PET图像。(9) According to the deformation field corresponding to each frame-like dynamic MR image, the corresponding dynamic-like PET image is registered to obtain the registered dynamic-like PET image.
(10)基于各帧类动态PET图像,对第一预设时间段内的各帧初始动态PET数据进行时间映射,得到各帧类动态PET图像的映射初始动态PET数据。(10) Based on the dynamic PET images of each frame type, time mapping is performed on the initial dynamic PET data of each frame within the first preset time period to obtain the mapped initial dynamic PET data of the dynamic PET image of each frame type.
(11)对各帧类动态PET图像的映射初始动态PET数据进行重建,得到对应的映射初始动态PET图像。(11) Reconstructing the mapped initial dynamic PET data of each frame-like dynamic PET image to obtain the corresponding mapped initial dynamic PET image.
(12)通过配准后的类动态PET图像,对对应的映射初始动态PET图像进行配准,得到配准后的动态PET图像。(12) Registering the corresponding mapped initial dynamic PET image through the registered dynamic PET image to obtain the registered dynamic PET image.
以上(1)至(12)的执行过程具体可以参见上述实施例的描述,其实现原理和技术效果类似,在此不再赘述。For details of the execution processes of the above (1) to (12), reference may be made to the descriptions of the foregoing embodiments, and the implementation principles and technical effects thereof are similar, and are not repeated here.
应该理解的是,虽然图2-5和7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-5和7中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the various steps in the flowcharts of FIGS. 2-5 and 7 are shown in sequence as indicated by arrows, these steps are not necessarily performed sequentially in the sequence indicated by arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 2-5 and 7 may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. These steps or stages The order of execution of the steps is not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or stages in the other steps.
在一个实施例中,如图9所示,提供了一种图像配准装置,包括:数据采集模块11、第一图像确定模块12、第二图像确定模块13和配准模块14,其中:In one embodiment, as shown in FIG. 9 , an image registration device is provided, including: a data acquisition module 11, a first image determination module 12, a second image determination module 13, and a registration module 14, wherein:
数据采集模块11,用于获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;The data acquisition module 11 is used to acquire respiratory data and initial dynamic PET data within the first preset time period after the tracer is administered to the subject to be tested;
第一图像确定模块12,用于根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;The first image determination module 12 is configured to determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
第二图像确定模块13,用于获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;The second image determination module 13 is configured to obtain the dynamic-like PET images corresponding to the dynamic MR images of each frame, and determine the registered dynamic-like PET images through the dynamic-like PET images of each frame;
配准模块14,用于根据配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。The registration module 14 is configured to register multiple frames of initial dynamic PET images according to the registered quasi-dynamic PET images to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are used for reconstructing the initial dynamic PET data. obtained image.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
在其中一个实施例中,配准模块14包括:第一时间映射单元、重建单元和第一配准单元,其中:In one of the embodiments, the registration module 14 includes: a first time mapping unit, a reconstruction unit and a first registration unit, wherein:
第一时间映射单元,用于根据各帧类动态PET图像,对第一预设时间段内的初始动态PET数据进行时间映射,得到各帧类动态PET图像的映射初始动态PET数据;a first time mapping unit, configured to perform time mapping on the initial dynamic PET data in the first preset time period according to the dynamic PET images of each frame type, to obtain the mapped initial dynamic PET data of the dynamic PET images of each frame type;
重建单元,用于对各帧类动态PET图像的映射初始动态PET数据进行重建,得到对应的映射初始动态PET图像;The reconstruction unit is used for reconstructing the mapped initial dynamic PET data of each frame-like dynamic PET image to obtain the corresponding mapped initial dynamic PET image;
第一配准单元,用于通过配准后的类动态PET图像,对对应的映射初始动态PET图像进行配准,得到配准后的动态PET图像。The first registration unit is used for registering the corresponding mapped initial dynamic PET image through the registered quasi-dynamic PET image to obtain the registered dynamic PET image.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
在其中一个实施例中,第二图像确定模块13包括:形变场获取单元和第二配准单元,其中:In one of the embodiments, the second image determination module 13 includes: a deformation field acquisition unit and a second registration unit, wherein:
形变场获取单元,用于获取各帧类动态MR图像对应的形变场;A deformation field acquisition unit, used to acquire the deformation field corresponding to each frame type of dynamic MR image;
第二配准单元,用于根据各帧类动态MR图像对应的形变场,对对应的类动态PET图像进行配准,得到配准后的类动态PET图像。The second registration unit is configured to register the corresponding dynamic-like PET images according to the deformation fields corresponding to the dynamic-like MR images of each frame, so as to obtain the registered dynamic-like PET images.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
在其中一个实施例中,形变场获取单元包括:参考图像确定子单元和图像配准子单元,其中:In one of the embodiments, the deformation field acquisition unit includes: a reference image determination subunit and an image registration subunit, wherein:
参考图像确定子单元,用于根据多帧样本MR图像确定参考图像;a reference image determination subunit, configured to determine a reference image according to the multi-frame sample MR images;
图像配准子单元,用于通过参考图像分别对各帧类动态MR图像进行图像配准,得到各帧类动态MR图像对应的形变场。The image registration subunit is used to perform image registration on the dynamic MR images of each frame type respectively by using the reference image, so as to obtain the deformation field corresponding to the dynamic MR image of each frame type.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
在其中一个实施例中,第一图像确定模块12具体用于将呼吸数据输入至预测模型,得到第一预设时间段内相应的多帧类动态MR图像。In one embodiment, the first image determination module 12 is specifically configured to input respiratory data into the prediction model to obtain corresponding multi-frame dynamic MR images within the first preset time period.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
在其中一个实施例中,上述图像配准装置还包括:数据获取模块和训练模块,其中:In one embodiment, the above-mentioned image registration apparatus further includes: a data acquisition module and a training module, wherein:
数据获取模块,用于获取待测对象施予示踪剂前的第二预设时间段内的多帧样本MR图像和样本呼吸数据;a data acquisition module, configured to acquire multiple frames of sample MR images and sample respiration data within the second preset time period before the tracer is administered to the subject to be tested;
训练模块,用于通过多帧样本MR图像和样本呼吸数据对初始预测模型进行训练,得到预测模型。The training module is used to train the initial prediction model by using the multi-frame sample MR images and sample breathing data to obtain the prediction model.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
在其中一个实施例中,第二图像确定模块13包括:数据获取单元、第二时间映射单元和数据重建单元,其中:In one of the embodiments, the second image determination module 13 includes: a data acquisition unit, a second time mapping unit and a data reconstruction unit, wherein:
数据获取单元,用于获取第一预设时间段内的初始PET数据;a data acquisition unit for acquiring initial PET data within a first preset time period;
第二时间映射单元,用于对各帧类动态MR图像与第一预设时间段内的初始PET数据进行时间映射,得到各帧类动态MR图像的映射PET数据;a second time mapping unit, configured to perform time mapping on the dynamic MR images of each frame type and the initial PET data in the first preset time period to obtain the mapped PET data of the dynamic MR images of each frame type;
数据重建单元,用于对映射PET数据进行重建,得到各帧类动态MR图像对应的类动态PET图像。The data reconstruction unit is used for reconstructing the mapped PET data to obtain the dynamic-like PET images corresponding to the dynamic-like MR images of each frame.
本实施例提供的图像配准装置,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。The image registration apparatus provided in this embodiment can execute the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
关于图像配准装置的具体限定可以参见上文中对于图像配准方法的限定,在此不再赘述。上述图像配准装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the image registration apparatus, reference may be made to the limitation of the image registration method above, which will not be repeated here. Each module in the above-mentioned image registration apparatus may be implemented in whole or in part by software, hardware, and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储呼吸数据和动态PET图像。该计算机设备的网络接口用于与外部的终点通过网络连接通信。该计算机程序被处理器执行时以实现一种强化程度分析方法。In one embodiment, a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 10 . The computer device includes a processor, memory, and a network interface connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The computer facility's database is used to store respiratory data and dynamic PET images. The network interface of the computer device is used to communicate with external endpoints over a network connection. The computer program, when executed by a processor, implements an intensification degree analysis method.
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 10 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;Acquiring respiration data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;Obtaining the quasi-dynamic PET image corresponding to each frame of quasi-dynamic MR image, and determining the registered quasi-dynamic PET image through each frame of quasi-dynamic PET image;
基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。Based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET images are registered to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
在一个实施例中,提供了一种可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;Acquiring respiration data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;Obtaining the quasi-dynamic PET image corresponding to each frame of quasi-dynamic MR image, and determining the registered quasi-dynamic PET image through each frame of quasi-dynamic PET image;
基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。Based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET images are registered to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer program product is provided, comprising a computer program that, when executed by a processor, implements the following steps:
获取待测对象施予示踪剂后第一预设时间段内的呼吸数据和初始动态PET数据;Acquiring respiration data and initial dynamic PET data within the first preset time period after the subject to be tested is administered the tracer;
根据呼吸数据确定第一预设时间段内相应的多帧类动态MR图像;Determine the corresponding multi-frame dynamic MR images within the first preset time period according to the respiratory data;
获取各帧类动态MR图像对应的类动态PET图像,并通过各帧类动态PET图像确定配准后的类动态PET图像;Obtaining the quasi-dynamic PET image corresponding to each frame of quasi-dynamic MR image, and determining the registered quasi-dynamic PET image through each frame of quasi-dynamic PET image;
基于配准后的类动态PET图像,对多帧初始动态PET图像进行配准,得到配准后的动态PET图像;多帧初始动态PET图像为对初始动态PET数据重建得到的图像。Based on the registered quasi-dynamic PET images, multiple frames of initial dynamic PET images are registered to obtain registered dynamic PET images; the multiple frames of initial dynamic PET images are images reconstructed from the initial dynamic PET data.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other media used in the various embodiments provided in this application may include at least one of non-volatile and volatile memory. The non-volatile memory may include Read-Only Memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, and the like. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, the RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, all It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210237538.9A CN114677415B (en) | 2022-03-10 | 2022-03-10 | Image registration method, device, computer equipment and readable storage medium |
PCT/CN2023/080829 WO2023169565A1 (en) | 2022-03-10 | 2023-03-10 | Image registration method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210237538.9A CN114677415B (en) | 2022-03-10 | 2022-03-10 | Image registration method, device, computer equipment and readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114677415A true CN114677415A (en) | 2022-06-28 |
CN114677415B CN114677415B (en) | 2025-06-24 |
Family
ID=82072676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210237538.9A Active CN114677415B (en) | 2022-03-10 | 2022-03-10 | Image registration method, device, computer equipment and readable storage medium |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114677415B (en) |
WO (1) | WO2023169565A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023169565A1 (en) * | 2022-03-10 | 2023-09-14 | 北京联影智能影像技术研究院 | Image registration method and system |
WO2024243816A1 (en) * | 2023-05-30 | 2024-12-05 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for positron emission tomography imaging |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140355855A1 (en) * | 2013-05-30 | 2014-12-04 | Siemens Aktiengesellschaft | System and Method for Magnetic Resonance Imaging Based Respiratory Motion Correction for PET/MRI |
CN110507343A (en) * | 2019-08-29 | 2019-11-29 | 上海联影医疗科技有限公司 | Sports ground acquisition methods and PET image bearing calibration, device and computer equipment |
US20210304457A1 (en) * | 2020-03-31 | 2021-09-30 | The Regents Of The University Of California | Using neural networks to estimate motion vectors for motion corrected pet image reconstruction |
CN113689477A (en) * | 2021-09-09 | 2021-11-23 | 上海联影医疗科技股份有限公司 | Multi-modality medical image registration method, system, readable storage medium and device |
CN113744264A (en) * | 2021-09-26 | 2021-12-03 | 上海联影医疗科技股份有限公司 | Image processing method and system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102114415B1 (en) * | 2013-01-29 | 2020-05-22 | 삼성전자주식회사 | Method and Apparatus for medical image registration |
CN107527359B (en) * | 2017-08-07 | 2020-04-10 | 东软医疗系统股份有限公司 | PET image reconstruction method and PET imaging equipment |
CN114677415B (en) * | 2022-03-10 | 2025-06-24 | 北京联影智能影像技术研究院 | Image registration method, device, computer equipment and readable storage medium |
-
2022
- 2022-03-10 CN CN202210237538.9A patent/CN114677415B/en active Active
-
2023
- 2023-03-10 WO PCT/CN2023/080829 patent/WO2023169565A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140355855A1 (en) * | 2013-05-30 | 2014-12-04 | Siemens Aktiengesellschaft | System and Method for Magnetic Resonance Imaging Based Respiratory Motion Correction for PET/MRI |
CN110507343A (en) * | 2019-08-29 | 2019-11-29 | 上海联影医疗科技有限公司 | Sports ground acquisition methods and PET image bearing calibration, device and computer equipment |
US20210304457A1 (en) * | 2020-03-31 | 2021-09-30 | The Regents Of The University Of California | Using neural networks to estimate motion vectors for motion corrected pet image reconstruction |
CN113689477A (en) * | 2021-09-09 | 2021-11-23 | 上海联影医疗科技股份有限公司 | Multi-modality medical image registration method, system, readable storage medium and device |
CN113744264A (en) * | 2021-09-26 | 2021-12-03 | 上海联影医疗科技股份有限公司 | Image processing method and system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023169565A1 (en) * | 2022-03-10 | 2023-09-14 | 北京联影智能影像技术研究院 | Image registration method and system |
WO2024243816A1 (en) * | 2023-05-30 | 2024-12-05 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for positron emission tomography imaging |
Also Published As
Publication number | Publication date |
---|---|
WO2023169565A1 (en) | 2023-09-14 |
CN114677415B (en) | 2025-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240070863A1 (en) | Systems and methods for medical acquisition processing and machine learning for anatomical assessment | |
CN110960241A (en) | Method and device for determining scanning parameters of medical image scanning and computer equipment | |
CN113989231A (en) | Determination method, apparatus, computer equipment and storage medium of kinetic parameters | |
CN109961419B (en) | Correction information acquisition method for attenuation correction of PET activity distribution image | |
CN114677415B (en) | Image registration method, device, computer equipment and readable storage medium | |
CN110415310A (en) | Medical scanning imaging method, device, storage medium and computer equipment | |
CN110458779B (en) | Method for acquiring correction information for attenuation correction of PET images of respiration or heart | |
US20240242398A1 (en) | Systems and methods for positron emission computed tomography image reconstruction | |
CN110063742A (en) | Scatter correction method, device, computer equipment and storage medium | |
CN111402356B (en) | Parameter imaging input function extraction method and device and computer equipment | |
US11495346B2 (en) | External device-enabled imaging support | |
CN114943690A (en) | Medical image processing method, device, computer equipment and readable storage medium | |
CN112365479A (en) | PET parameter image processing method, device, computer equipment and storage medium | |
KR102593628B1 (en) | Method and system for generating high-quality medical image | |
CN119584922A (en) | A positron emission tomography imaging method and system | |
US20230045406A1 (en) | System and method for hybrid imaging | |
US12154285B2 (en) | Deep learning for registering anatomical to functional images | |
US11823399B2 (en) | Multi-scan image processing | |
CN112790778B (en) | Acquisition error alignment | |
CN110215203B (en) | Electrocardiosignal acquisition method and device, computer equipment and storage medium | |
CN111035403A (en) | Scanning opportunity determination method, device, equipment and storage medium | |
CN110599560A (en) | Magnetic resonance imaging method, magnetic resonance imaging device, storage medium and computer equipment | |
US20250072846A1 (en) | Systems and methods for positron emission tomography imaging | |
CN115953406B (en) | Matching method, device, equipment and readable medium for medical image registration | |
US12000919B2 (en) | Systems and methods for magnetic resonance imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220628 Assignee: Shanghai Lianying Zhiyuan Medical Technology Co.,Ltd. Assignor: Beijing Lianying intelligent imaging technology Research Institute Contract record no.: X2025980007785 Denomination of invention: Image registration method, device, computer equipment, and readable storage medium License type: Common License Record date: 20250425 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
GR01 | Patent grant |