CN114671458A - Preparation method and application of perovskite material - Google Patents
Preparation method and application of perovskite material Download PDFInfo
- Publication number
- CN114671458A CN114671458A CN202210278843.2A CN202210278843A CN114671458A CN 114671458 A CN114671458 A CN 114671458A CN 202210278843 A CN202210278843 A CN 202210278843A CN 114671458 A CN114671458 A CN 114671458A
- Authority
- CN
- China
- Prior art keywords
- perovskite material
- preparation
- cspbx
- reaction
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 112
- 238000002360 preparation method Methods 0.000 title claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 67
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000012046 mixed solvent Substances 0.000 claims abstract description 15
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000007787 solid Substances 0.000 claims abstract description 9
- 238000005406 washing Methods 0.000 claims abstract description 8
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 7
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002798 polar solvent Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 239000012459 cleaning agent Substances 0.000 claims abstract description 6
- 239000004094 surface-active agent Substances 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 90
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 90
- 238000007254 oxidation reaction Methods 0.000 claims description 45
- 230000003647 oxidation Effects 0.000 claims description 43
- 230000001699 photocatalysis Effects 0.000 claims description 37
- 229910052724 xenon Inorganic materials 0.000 claims description 17
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 17
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical group CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 11
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 10
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 10
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 10
- 239000005642 Oleic acid Substances 0.000 claims description 10
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 10
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 10
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 10
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 8
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 5
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 5
- 239000005457 ice water Substances 0.000 claims description 5
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical group Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000011941 photocatalyst Substances 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000003786 synthesis reaction Methods 0.000 abstract description 6
- 239000011261 inert gas Substances 0.000 abstract description 4
- 239000012295 chemical reaction liquid Substances 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005286 illumination Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007144 microwave assisted synthesis reaction Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- -1 respectively Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G21/00—Compounds of lead
- C01G21/006—Compounds containing lead, with or without oxygen or hydrogen, and containing two or more other elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/864—Removing carbon monoxide or hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/135—Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及光催化氧化技术领域,具体涉及一种钙钛矿材料的制备方法与在光催化氧化一氧化碳中的应用。The invention relates to the technical field of photocatalytic oxidation, in particular to a preparation method of a perovskite material and application in photocatalytic oxidation of carbon monoxide.
背景技术Background technique
众所周知,一氧化碳(CO)是有毒的气体,对人类和环境都有巨大的影响。污染物一氧化碳主要来自于汽车和工业制造过程的尾气排放以及各种燃料的不完全燃烧。在过去的十多年中,人们对开发有效的将一氧化碳转化为其他无害气体的方法给予了很大的关注。因此,研究开发高效,低成本,且具有良好稳定性的一氧化碳光催化氧化催化剂具有重要意义。As we all know, carbon monoxide (CO) is a toxic gas that has a huge impact on humans and the environment. The pollutant carbon monoxide mainly comes from the exhaust emissions of automobiles and industrial manufacturing processes and the incomplete combustion of various fuels. Over the past decade or so, much attention has been paid to developing efficient methods for converting carbon monoxide into other harmless gases. Therefore, it is of great significance to research and develop high-efficiency, low-cost, and stable carbon monoxide photocatalytic oxidation catalysts.
目前,光催化氧化一氧化碳的材料主要采用的是稀土金属氧化物,双金属氧化物以及负载型双金属氧化物等,但这些材料普遍存在转化效率低、反应速率慢、实际应用差等缺点;并且光催化氧化一氧化碳反应大多存在反应体系复杂,反应机理不明确,产物选择性不佳等问题。因此,光催化氧化一氧化碳反应体系也极大地制约了其氧化效率。At present, the materials for photocatalytic oxidation of carbon monoxide mainly use rare earth metal oxides, bimetallic oxides and supported bimetallic oxides, etc., but these materials generally have disadvantages such as low conversion efficiency, slow reaction rate, and poor practical application; and Most of the photocatalytic oxidation of carbon monoxide have problems such as complex reaction system, unclear reaction mechanism, and poor product selectivity. Therefore, the photocatalytic oxidation of carbon monoxide also greatly restricts its oxidation efficiency.
针对以上问题,开发高稳定性、高效率的可见光氧化一氧化碳材料、提高产物的选择性,探究其最佳的反应体系,进而研究其反应机理尤为关键。在众多光催化材料中,CsPbX3钙钛矿纳米晶有着众多优异的光学性能以及独特的晶体结构和电子结构展现出了优异的光催化潜能,因此,被广大科研工作者所重视。In view of the above problems, it is particularly critical to develop high-stability and high-efficiency visible-light-oxidized carbon monoxide materials, improve product selectivity, explore its optimal reaction system, and then study its reaction mechanism. Among many photocatalytic materials, CsPbX3 perovskite nanocrystals have many excellent optical properties, unique crystal structure and electronic structure, showing excellent photocatalytic potential, so they are valued by the majority of scientific researchers.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有光催化氧化一氧化碳材料存在转化效率低、反应速率慢、实际应用差等不足,而提供了一种绿色环保、工艺简单且适于大规模生产的CsPbX3钙钛矿材料制备方法,将该方法制备的CsPbX3钙钛矿材料用于光催化氧化一氧化碳,能够解决现有光催化氧化一氧化碳材料所面临的转化效率低、反应速率慢以及实际应用差等缺陷。The purpose of the present invention is to provide a CsPbX 3 perovskite that is green, environmentally friendly, simple in process and suitable for large-scale production, aiming at the shortcomings of the existing photocatalytic oxidation of carbon monoxide materials such as low conversion efficiency, slow reaction rate and poor practical application. The material preparation method, the CsPbX 3 perovskite material prepared by the method is used for photocatalytic oxidation of carbon monoxide, which can solve the defects of low conversion efficiency, slow reaction rate and poor practical application faced by the existing photocatalytic oxidation of carbon monoxide.
本发明是通过如下技术方案实现的:The present invention is achieved through the following technical solutions:
一种钙钛矿材料的制备方法,其特征在于,所述的钙钛矿材料的化学式为CsPbX3,式中X为Cl、Br或I;A method for preparing a perovskite material, wherein the chemical formula of the perovskite material is CsPbX 3 , where X is Cl, Br or I;
所述钙钛矿材料的制备方法,包括如下步骤:The preparation method of the perovskite material comprises the following steps:
S1、在常温下,将铯前驱体和铅前驱体混合于微波瓶中,然后加入十八烯(ODE)、极性溶剂和表面活性剂,得到混合溶剂;S1. Mix the cesium precursor and the lead precursor in a microwave bottle at room temperature, and then add octadecene (ODE), a polar solvent and a surfactant to obtain a mixed solvent;
S2、将所述混合溶剂在常温条件下超声溶解,然后置于微波加热装置中加热反应,反应后停止微波加热并冷却,然后再将反应液速冷;S2, the mixed solvent is ultrasonically dissolved under normal temperature conditions, then placed in a microwave heating device for heating reaction, after the reaction, microwave heating is stopped and cooled, and then the reaction solution is rapidly cooled;
S3、向步骤S2速冷后的反应液中加入清洗剂,离心洗涤,得到固体CsPbX3钙钛矿材料。S3, adding a cleaning agent to the quick-cooled reaction solution in step S2, and centrifuging and washing to obtain a solid CsPbX 3 perovskite material.
具体的,本发明是针对现有光催化氧化一氧化碳材料与技术的不足,提供一种微波辅助加热合成CsPbX3钙钛矿材料的制备方法,其制备的材料是一种稳定、高效率的钙钛矿材料,并针对光催化氧化一氧化碳体系选择性不佳等缺陷,探究其最佳反应条件;该CsPbX3钙钛矿材料可以有效地促进光生载流子的分离,提高光反应效率,解决传统光催化氧化一氧化碳材料稳定性差、活性低,实际应用性差等缺陷。本发明提供的CsPbX3钙钛矿材料合成方法简单易行、生产成本低、产量可观、对环境友好。将制备的CsPbX3钙钛矿材料用于光催化氧化一氧化碳的体系,其反应条件温和,操作简单易行,具有广阔的应用前景。Specifically, the present invention aims at the deficiencies of existing photocatalytic oxidation carbon monoxide materials and technologies, and provides a preparation method for synthesizing CsPbX3 perovskite materials by microwave-assisted heating, and the prepared material is a stable and high-efficiency perovskite material. The CsPbX 3 perovskite material can effectively promote the separation of photogenerated carriers, improve the photoreaction efficiency, and solve the problem of traditional photocatalytic oxidation. Catalytic oxidation of carbon monoxide materials has the disadvantages of poor stability, low activity, and poor practical applicability. The method for synthesizing the CsPbX 3 perovskite material provided by the invention is simple and feasible, has low production cost, considerable yield and is environmentally friendly. The prepared CsPbX3 perovskite material is used in the system of photocatalytic oxidation of carbon monoxide, the reaction conditions are mild, the operation is simple and feasible, and it has broad application prospects.
进一步的,一种钙钛矿材料的制备方法:步骤S1中所述的铯前驱体为碳酸铯(Cs2CO3);所述的铅前驱体选自氯化铅(PbCl2)、溴化铅(PbBr2)、碘化铅(PbI2)中的任一种。其中:固体原料均为分析纯,纯度在99.90%以上。Further, a method for preparing a perovskite material: the cesium precursor described in step S1 is cesium carbonate (Cs 2 CO 3 ); the lead precursor is selected from lead chloride (PbCl 2 ), bromide Any of lead (PbBr 2 ) and lead iodide (PbI 2 ). Among them: the solid raw materials are all analytically pure, and the purity is above 99.90%.
进一步的,一种钙钛矿材料的制备方法:所述铯前驱体与所述铅前驱体的摩尔比为1:(3-5)。Further, a preparation method of a perovskite material: the molar ratio of the cesium precursor to the lead precursor is 1:(3-5).
进一步的,一种钙钛矿材料的制备方法:步骤S1中所述的十八烯与所述极性溶剂的体积比为(1-2):1;所述十八烯与所述表面活性剂的体积比为(5-10):1。Further, a preparation method of a perovskite material: the volume ratio of octadecene and the polar solvent described in step S1 is (1-2): 1; the octadecene and the surface active The volume ratio of the agent is (5-10):1.
进一步的,一种钙钛矿材料的制备方法:步骤S1中所述的极性溶剂为二乙二醇丁醚(DGBE);所述的表面活性剂为油酸(OA)与油胺(OAm)的混合物。Further, a preparation method of a perovskite material: the polar solvent described in step S1 is diethylene glycol butyl ether (DGBE); the surfactant is oleic acid (OA) and oleylamine (OAm )mixture.
进一步的,一种钙钛矿材料的制备方法:所述油酸与所述油胺的体积比为1:1。Further, a method for preparing a perovskite material: the volume ratio of the oleic acid to the oleylamine is 1:1.
进一步的,一种钙钛矿材料的制备方法:步骤S2、将所述混合溶剂在常温条件下超声溶解,然后置于微波加热装置中搅拌并加热至100-200℃,反应5-10分钟,反应结束后停止微波加热并冷却至65-75℃,然后再将反应液置于冰水浴中快速降温至室温。Further, a preparation method of a perovskite material: step S2, ultrasonically dissolving the mixed solvent at room temperature, and then placing it in a microwave heating device to stir and heat to 100-200° C., and react for 5-10 minutes, After the reaction, the microwave heating was stopped and cooled to 65-75°C, and then the reaction solution was placed in an ice-water bath and rapidly cooled to room temperature.
进一步的,一种钙钛矿材料的制备方法:步骤S3、向速冷后的反应液中加入清洗剂,离心洗涤2-3次,即得到固体CsPbX3钙钛矿材料;其中所述的清洗剂为乙酸乙酯。Further, a preparation method of a perovskite material: step S3, adding a cleaning agent to the quick-cooled reaction solution, and centrifugally washing 2-3 times to obtain a solid CsPbX 3 perovskite material; wherein the cleaning The agent is ethyl acetate.
一种钙钛矿材料的应用,其特征在于,将上述的制备方法制得的CsPbX3钙钛矿材料用于光催化氧化一氧化碳。An application of a perovskite material, characterized in that the CsPbX 3 perovskite material prepared by the above preparation method is used for photocatalytic oxidation of carbon monoxide.
进一步的,一种钙钛矿材料的应用:所述的CsPbX3钙钛矿材料在光催化氧化一氧化碳中的应用:以所述CsPbX3钙钛矿材料为光催化剂,以氮气为载气,以氧气为氧化剂,以氙灯为光源,将一氧化碳氧化为二氧化碳。Further, the application of a perovskite material: the application of the CsPbX 3 perovskite material in the photocatalytic oxidation of carbon monoxide: the CsPbX 3 perovskite material is used as a photocatalyst, and nitrogen is used as a carrier gas. Oxygen is used as an oxidant, and a xenon lamp is used as a light source to oxidize carbon monoxide to carbon dioxide.
具体的,本发明所述的钙钛矿材料的制备方法,采用微波辅助加热合成了CsPbX3(其中X=Cl、Br或I),并将CsPbX3钙钛矿材料应用于光催化氧化一氧化碳体系中,以钙钛矿材料作为催化剂、N2为载气、O2为氧化剂、氙灯为灯源,采用红外分析仪进行在线分析,以一氧化碳(CO)的消耗量来考察反应的转化率,主要将一氧化碳(CO)氧化为二氧化碳(CO2)。本发明的CsPbX3钙钛矿材料是在微波反应器中进行,CO催化氧化反应体系是在动态气流中研究,在催化评价装置中进行实验,将催化剂装入石英管中,然后通入CO、N2和O2混合气体,待气流平稳后,在用氙灯进行光照。Specifically, in the preparation method of the perovskite material of the present invention, CsPbX 3 (wherein X=Cl, Br or I) is synthesized by microwave-assisted heating, and the CsPbX 3 perovskite material is applied to the photocatalytic oxidation of carbon monoxide system Among them, the perovskite material was used as catalyst, N2 was used as carrier gas, O2 was used as oxidant, and xenon lamp was used as lamp source. Infrared analyzer was used for online analysis, and the consumption of carbon monoxide (CO) was used to investigate the conversion rate of the reaction. Carbon monoxide (CO) is oxidized to carbon dioxide (CO 2 ). The CsPbX 3 perovskite material of the present invention is carried out in a microwave reactor, the CO catalytic oxidation reaction system is studied in a dynamic gas flow, the experiment is carried out in a catalytic evaluation device, the catalyst is put into a quartz tube, and then CO, A mixture of N 2 and O 2 gas is used for illumination with a xenon lamp after the gas flow is stable.
本发明的有益效果:Beneficial effects of the present invention:
(1)本发明提供的钙钛矿材料的制备方法,其合成过程无需惰性气体保护且加热速度快,加热均匀,且更能精确控温,克服了重现性差、操作繁琐、不能大规模生产的问题,是一种绿色的制备方法。(1) The preparation method of the perovskite material provided by the present invention does not require inert gas protection in the synthesis process, the heating speed is fast, the heating is uniform, and the temperature is more accurately controlled, which overcomes poor reproducibility, cumbersome operation, and inability to large-scale production. The problem is a green preparation method.
(2)本发明将制备的CsPbX3钙钛矿材料引入光催化氧化一氧化碳反应体系中,解决了现有光催化氧化一氧化碳材料所面临的转化效率低、反应速率慢以及实际应用差等缺陷。(2) The present invention introduces the prepared CsPbX 3 perovskite material into the photocatalytic oxidation of carbon monoxide reaction system, and solves the defects of low conversion efficiency, slow reaction rate and poor practical application faced by the existing photocatalytic oxidation of carbon monoxide materials.
(3)本发明的钙钛矿材料制备方法,采用微波辅助合成工艺,微波辅助合成其穿透性强,加热速度快,加热均匀,且更能精确控温,使得量子点结晶质量大大提高,活性更强,最终获得高质量和高荧光产率的钙钛矿材料。(3) The preparation method of the perovskite material of the present invention adopts a microwave-assisted synthesis process, and the microwave-assisted synthesis has strong penetrability, fast heating speed, uniform heating, and more precise temperature control, so that the crystal quality of quantum dots is greatly improved, The activity is stronger, and finally a perovskite material with high quality and high fluorescence yield is obtained.
(4)本发明的钙钛矿材料制备方法,无需惰性气体保护,具有高重现性、合成过程简单、适于大规模生产以及绿色环保等优点。(4) The preparation method of the perovskite material of the present invention does not require inert gas protection, and has the advantages of high reproducibility, simple synthesis process, suitable for large-scale production, and environmental protection.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例1制备的CsPbX3钙钛矿材料的发射光谱,其中横坐标代表波长、纵坐标为相对强度,图中所标识的数值为峰值波长;Fig. 1 is the emission spectrum of the CsPbX perovskite material prepared in Example 1 of the present invention, wherein the abscissa represents the wavelength, the ordinate is the relative intensity, and the value marked in the figure is the peak wavelength;
图2为本发明实施例1制备的CsPbX3钙钛矿材料的X射线荧光衍射图谱,其横坐标代表入射光线和反射光线的夹角、纵坐标为相对强度;2 is the X-ray fluorescence diffraction pattern of the CsPbX perovskite material prepared in Example 1 of the present invention, the abscissa represents the angle between the incident light and the reflected light, and the ordinate is the relative intensity;
图3(a)-(c)为CsPbX3钙钛矿在构建一氧化碳氧化体系中光照后的活性对比图,其中横坐标代表时间,纵坐标代表浓度;图3(d)为CsPbBr3钙钛矿材料在氙灯光照和自然光照的反应对比图,其中横坐标代表时间,纵坐标代表浓度。Figure 3(a)-(c) is the activity comparison diagram of CsPbX 3 perovskite in the construction of carbon monoxide oxidation system after illumination, in which the abscissa represents time and the ordinate represents concentration; Figure 3(d) is CsPbBr 3 perovskite Comparison diagram of the reaction of materials under xenon light illumination and natural illumination, where the abscissa represents time and the ordinate represents concentration.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
一种钙钛矿材料的制备方法,所述钙钛矿材料的化学式为CsPbCl3;该CsPbCl3钙钛矿材料的制备方法,依次包括如下具体步骤:A preparation method of a perovskite material, wherein the chemical formula of the perovskite material is CsPbCl 3 ; the preparation method of the CsPbCl 3 perovskite material sequentially includes the following specific steps:
S1、分别称量1.0mol的碳酸铯(Cs2CO3)前驱体和3.0mol的氯化铅(PbCl2)前驱体,并在常温下将两者混合于微波瓶中,然后向微波瓶中加入5.0mL的十八烯(ODE)、5.0mL的二乙二醇丁醚(DGBE)、0.5mL的油酸(OA)以及0.5mL的油胺(OAm),得到混合溶剂;其中:碳酸铯和氯化铅原料均为分析纯,纯度在99.90%以上;S1. Weigh 1.0 mol of cesium carbonate (Cs 2 CO 3 ) precursor and 3.0 mol of lead chloride (PbCl 2 ) precursor respectively, and mix them in a microwave bottle at room temperature, and then put them into the microwave bottle Add 5.0 mL of octadecene (ODE), 5.0 mL of diethylene glycol butyl ether (DGBE), 0.5 mL of oleic acid (OA) and 0.5 mL of oleylamine (OAm) to obtain a mixed solvent; wherein: cesium carbonate The raw materials of lead chloride and lead chloride are all analytically pure, and the purity is above 99.90%;
S2、将上述的混合溶剂在常温条件下超声溶解,然后置于微波加热装置中搅拌并加热至100℃,保温反应5分钟,反应结束后停止微波加热并将反应液冷却至70℃,接着再将反应液置于冰水浴中快速降温至室温;S2, the above-mentioned mixed solvent is ultrasonically dissolved under normal temperature conditions, then placed in a microwave heating device and stirred and heated to 100 ° C, the reaction is incubated for 5 minutes, the microwave heating is stopped after the reaction is completed and the reaction solution is cooled to 70 ° C, then again The reaction solution was placed in an ice-water bath and rapidly cooled to room temperature;
S3、向步骤S2速冷后的反应液中加入乙酸乙酯,离心洗涤3次,得到固体CsPbCl3钙钛矿材料。S3, adding ethyl acetate to the quick-cooled reaction solution in step S2, and centrifuging and washing 3 times to obtain a solid CsPbCl 3 perovskite material.
取上述实施例1制备的CsPbCl3钙钛矿材料利用时间分辨荧光光谱仪,测试激发波长为365nm,入射光狭缝宽度1nm,出射光狭缝宽度0.5nm,其横坐标代表波长、纵坐标为荧光强度。从图1中可以看出,荧光峰位于528nm,半峰宽近似21nm,样品发出绿色荧光。通过该设备测试的荧光量子产率为55%。综上分析,较低的荧光量子效率表明价带和导带上的电子与空穴复合速度较慢,电子和空穴的有效分离能够提高其对污染物的氧化效率,最终达到去除污染物的目的。Take the CsPbCl perovskite material prepared in the above-mentioned embodiment 1 and utilize time-resolved fluorescence spectrometer. The test excitation wavelength is 365 nm, the incident light slit width is 1 nm, and the exit light slit width is 0.5 nm. The abscissa represents the wavelength and the ordinate is the fluorescence. strength. As can be seen from Figure 1, the fluorescence peak is located at 528 nm, the half-peak width is approximately 21 nm, and the sample emits green fluorescence. The fluorescence quantum yield tested by this device was 55%. In summary, the lower fluorescence quantum efficiency indicates that the recombination speed of electrons and holes in the valence band and conduction band is slow, and the effective separation of electrons and holes can improve the oxidation efficiency of pollutants, and finally achieve the removal of pollutants. Purpose.
实施例2Example 2
一种钙钛矿材料的制备方法,该钙钛矿材料的化学式为CsPbBr3;CsPbBr3钙钛矿材料的制备方法,依次包括如下具体步骤:A preparation method of a perovskite material, the chemical formula of the perovskite material is CsPbBr 3 ; the preparation method of the CsPbBr 3 perovskite material comprises the following specific steps in sequence:
S1、分别称量1.0mol的碳酸铯(Cs2CO3)前驱体和4.5mol的溴化铅(PbBr2)前驱体,并在常温下将两者混合于微波瓶中,然后向微波瓶中加入8.0mL的十八烯(ODE)、5.0mL的二乙二醇丁醚(DGBE)、0.5mL的油酸(OA)以及0.5mL的油胺(OAm),得到混合溶剂;其中:碳酸铯和溴化铅原料均为分析纯,纯度在99.90%以上;S1. Weigh 1.0 mol of cesium carbonate (Cs 2 CO 3 ) precursor and 4.5 mol of lead bromide (PbBr 2 ) precursor, respectively, and mix them in a microwave bottle at room temperature, and then put them into the microwave bottle Add 8.0 mL of octadecene (ODE), 5.0 mL of diethylene glycol butyl ether (DGBE), 0.5 mL of oleic acid (OA) and 0.5 mL of oleylamine (OAm) to obtain a mixed solvent; wherein: cesium carbonate The raw materials of lead bromide and lead bromide are all analytically pure, and the purity is above 99.90%;
S2、将上述的混合溶剂在常温条件下超声溶解,然后置于微波加热装置中搅拌并加热至180℃,保温反应6分钟,反应结束后停止微波加热并将反应液冷却至75℃,接着再将反应液置于冰水浴中快速冷却至室温;S2, the above-mentioned mixed solvent is ultrasonically dissolved under normal temperature conditions, then placed in a microwave heating device and stirred and heated to 180 ° C, the reaction is incubated for 6 minutes, the microwave heating is stopped after the reaction and the reaction solution is cooled to 75 ° C, then again The reaction solution was placed in an ice-water bath and rapidly cooled to room temperature;
S3、向步骤S2速冷后的反应液中加入乙酸乙酯,离心洗涤2次,得到固体CsPbBr3钙钛矿材料。S3, adding ethyl acetate to the quick-cooled reaction solution in step S2, and centrifuging and washing twice to obtain a solid CsPbBr 3 perovskite material.
取上述实施例2制备的CsPbBr3钙钛矿材料通过X射线衍射仪进行衍射,如图2所示,图中横坐标代表入射光线和反射光线的夹角、纵坐标为相对强度;从图中可以看出,制备的样品与CsPbBr3的标准卡片相吻合(JCPDS Card No.54–0751),同时没有检测到其它杂项,这表明成功合成了CsPbBr3。Get the CsPbBr perovskite material prepared in above-mentioned embodiment 2 and carry out diffraction by X-ray diffractometer, as shown in Figure 2, the abscissa in the figure represents the angle between the incident light and the reflected light, and the ordinate is the relative intensity; from the figure As can be seen, the prepared sample matched the standard card for CsPbBr 3 (JCPDS Card No. 54-0751), while no other miscellaneous items were detected, indicating that CsPbBr 3 was successfully synthesized.
实施例3Example 3
一种钙钛矿材料的制备方法,所述钙钛矿材料的化学式为CsPbI3;该CsPbI3钙钛矿材料的制备方法,依次包括如下具体步骤:A preparation method of a perovskite material, wherein the chemical formula of the perovskite material is CsPbI 3 ; the preparation method of the CsPbI 3 perovskite material sequentially includes the following specific steps:
S1、分别称量1.0mol的碳酸铯(Cs2CO3)前驱体和3.0mol的碘化铅(PbI2)前驱体,并在常温下将两者混合于微波瓶中,然后向微波瓶中加入10.0mL的十八烯(ODE)、5.0mL的二乙二醇丁醚(DGBE)、0.5mL的油酸(OA)以及0.5mL的油胺(OAm),得到混合溶剂;其中:碳酸铯和碘化铅原料均为分析纯,纯度在99.90%以上;S1. Weigh 1.0 mol of cesium carbonate (Cs 2 CO 3 ) precursor and 3.0 mol of lead iodide (PbI 2 ) precursor respectively, and mix the two in a microwave bottle at room temperature, and then put them into the microwave bottle Add 10.0 mL of octadecene (ODE), 5.0 mL of diethylene glycol butyl ether (DGBE), 0.5 mL of oleic acid (OA) and 0.5 mL of oleylamine (OAm) to obtain a mixed solvent; wherein: cesium carbonate The raw materials of lead iodide and lead iodide are all analytically pure, and the purity is above 99.90%;
S2、将上述的混合溶剂在常温条件下超声溶解,然后置于微波加热装置中搅拌并加热至130℃,保温反应9分钟,反应结束后停止微波加热并将反应液冷却至65℃,接着再将反应液置于冰水浴中快速降温至室温;S2, the above-mentioned mixed solvent is ultrasonically dissolved under normal temperature conditions, then placed in a microwave heating device and stirred and heated to 130 ° C, the reaction is incubated for 9 minutes, the microwave heating is stopped after the reaction is completed and the reaction solution is cooled to 65 ° C, then again The reaction solution was placed in an ice-water bath and rapidly cooled to room temperature;
S3、向步骤S2速冷后的反应液中加入乙酸乙酯,离心洗涤3次,得到固体CsPbI3钙钛矿材料。S3, adding ethyl acetate to the quick-cooled reaction solution in step S2, and centrifuging and washing 3 times to obtain a solid CsPbI 3 perovskite material.
应用:application:
将上述实施例1-3制备的CsPbCl3、CsPbBr3以及CsPbI3钙钛矿材料分别装入石英管中作为催化剂,然后以氮气为载气,氧气为氧化剂进行CO氧化催化反应;该反应在常压条件下进行,可通过改变不同光源,不同氧含量,不同气体组分影响,不同空速以及长期稳定性能测试,从而选择最佳的CO光催化氧化条件。通过研究该钙钛矿材料应用于光催化氧化CO反应体系中的最佳条件,为进一步探究其反应机理提供了基础。The CsPbCl 3 , CsPbBr 3 and CsPbI 3 perovskite materials prepared in the above-mentioned examples 1-3 were respectively loaded into the quartz tube as catalysts, and then nitrogen was used as the carrier gas and oxygen was used as the oxidant to carry out the CO oxidation catalytic reaction; Under pressure conditions, the optimal CO photocatalytic oxidation conditions can be selected by changing different light sources, different oxygen contents, different gas components, different space velocities and long-term stability performance tests. By studying the optimal conditions for the application of this perovskite material in the photocatalytic oxidation of CO reaction system, it provides a basis for further exploring its reaction mechanism.
应用1:一种钙钛矿材料的应用,所述的CsPbX3钙钛矿材料在光催化氧化一氧化碳中的应用:以所述CsPbX3钙钛矿材料为光催化剂,以氮气为载气,以氧气为氧化剂,以氙灯为光源,将一氧化碳氧化为二氧化碳,其具体光催化氧化一氧化碳的过程如下:Application 1: The application of a perovskite material, the application of the CsPbX 3 perovskite material in the photocatalytic oxidation of carbon monoxide: the CsPbX 3 perovskite material is used as a photocatalyst, and nitrogen is used as a carrier gas. Oxygen is used as an oxidant, and a xenon lamp is used as a light source to oxidize carbon monoxide to carbon dioxide. The specific photocatalytic oxidation process of carbon monoxide is as follows:
(1)准确称量30.0mg上述实施例1制备的CsPbCl3钙钛矿材料并将其装入内径7mm的石英管中,然后通入N2、O2和CO的混合气体(总流量为500mL/min),以氙灯为灯源,采用红外分析仪进行在线分析,以CO的消耗量来考察反应的转化率,研究发现CO在氙灯下可以实现CO转化为CO2;其CO的催化氧化结果如图3(b)所示。(1) Accurately weigh 30.0 mg of the CsPbCl 3 perovskite material prepared in Example 1 above and put it into a quartz tube with an inner diameter of 7 mm, and then introduce a mixed gas of N 2 , O 2 and CO (total flow is 500 mL) /min), using a xenon lamp as the lamp source, using an infrared analyzer for online analysis, and examining the conversion rate of the reaction with the consumption of CO, it is found that CO can be converted into CO 2 under a xenon lamp; the catalytic oxidation results of CO As shown in Figure 3(b).
(2)准确称量30.0mg上述实施例2制备的CsPbBr3钙钛矿材料并将其装入内径7mm的石英管中,然后通入N2、O2和CO的混合气体(总流量为500mL/min),以氙灯为灯源,采用红外分析仪进行在线分析,以CO的消耗量来考察反应的转化率,研究发现CO在氙灯下可以实现CO转化为CO2;其CO的催化氧化结果如图3(a)所示。(2) Accurately weigh 30.0 mg of the CsPbBr 3 perovskite material prepared in Example 2 above and put it into a quartz tube with an inner diameter of 7 mm, and then introduce a mixed gas of N 2 , O 2 and CO (total flow is 500 mL) /min), using a xenon lamp as the lamp source, using an infrared analyzer for online analysis, and examining the conversion rate of the reaction with the consumption of CO, it is found that CO can be converted into CO 2 under a xenon lamp; the catalytic oxidation results of CO As shown in Figure 3(a).
(3)准确称量30.0mg上述实施例3制备的CsPbI3钙钛矿材料并将其装入内径7mm的石英管中,然后通入N2、O2和CO的混合气体(总流量为500mL/min),以氙灯为灯源,采用红外分析仪进行在线分析,以CO的消耗量来考察反应的转化率,研究发现CO在氙灯下可以实现CO转化为CO2;其CO的催化氧化结果如图3(c)所示。(3) Accurately weigh 30.0 mg of the CsPbI 3 perovskite material prepared in Example 3 above and put it into a quartz tube with an inner diameter of 7 mm, and then introduce a mixed gas of N 2 , O 2 and CO (total flow is 500 mL) /min), using a xenon lamp as the lamp source, using an infrared analyzer for online analysis, and examining the conversion rate of the reaction with the consumption of CO, it is found that CO can be converted into CO 2 under a xenon lamp; the catalytic oxidation results of CO As shown in Figure 3(c).
图3(a)-(c)分别为CsPbBr3、CsPbCl3、CsPbI3钙钛矿材料在构建一氧化碳催化氧化体系中光照后的活性对比图,其中横坐标代表时间,纵坐标代表浓度。当加入实施例2的CsPbBr3钙钛矿材料时,30分钟后CO完全被氧化;当加入实施例1的CsPbCl3钙钛矿材料时,60分钟后CO完全被氧化;当加入实施例3的CsPbI3钙钛矿时,110分钟后CO完全被氧化。上述的结果说明了本发明制备的CsPbX3钙钛矿材料能够促进体系的光生电子转移,并且有效的抑制光生电子和空穴的再复合,进而有利于吸附在其表面的CO接受电子发生氧化反应。Figure 3(a)-(c) are the activity comparison diagrams of CsPbBr 3 , CsPbCl 3 , and CsPbI 3 perovskite materials after light irradiation in the construction of carbon monoxide catalytic oxidation system, where the abscissa represents time and the ordinate represents concentration. When the CsPbBr 3 perovskite material of Example 2 was added, the CO was completely oxidized after 30 minutes; when the CsPbCl 3 perovskite material of Example 1 was added, the CO was completely oxidized after 60 minutes; In the case of CsPbI3 perovskite , CO was completely oxidized after 110 min. The above results show that the CsPbX 3 perovskite material prepared by the present invention can promote the photo-generated electron transfer of the system, and effectively inhibit the recombination of photo-generated electrons and holes, which is conducive to the oxidation reaction of CO adsorbed on its surface to accept electrons. .
图3(d)为CsPbBr3钙钛矿材料在氙灯光照和自然光照的反应对比图,其中横坐标代表时间,纵坐标代表浓度,如图所示,氙灯光照后更有利于促进电子的迁移与吸附在材料表面CO发生反应。Figure 3(d) is a comparison diagram of the reaction of CsPbBr 3 perovskite materials under xenon lamp illumination and natural illumination, where the abscissa represents time and the ordinate represents concentration. As shown in the figure, xenon lamp illumination is more conducive to promoting electron migration and The CO adsorbed on the surface of the material reacts.
应用2:考察不同气体组分对光催化材料的影响:准确称量30.0mg上述实施例1制备的CsPbCl3钙钛矿材料并将其装入内径7mm的石英管中,然后通入N2、O2和CO的混合气体(总流量为500mL/min),以氙灯为灯源,采用红外分析仪进行在线分析;然后,再通入不同浓度的O2(0%、2%、5%、10%和15%)、SO2(250ppm、500ppm、1000ppm和1500ppm)、NO(250ppm、500ppm、1000ppm和1500ppm)和H2O(2%、5%和10%),考察其对CsPbX3钙钛矿材料光催化氧化CO的影响(这里通入不同浓度的O2、SO2、NO和H2O是为了模拟实际气体情况下对CsPbX3钙钛矿材料光催化氧化CO的影响)。研究发现,O2和NO更有利于光催化氧化CO,使CO的转化速度加快。在NO浓度500ppm的情况下:CsPbBr3钙钛矿材料光催化氧化CO,10分钟就能完全将CO转化为CO2;CsPbCl3钙钛矿材料光催化氧化CO,20分钟就能完全将CO转化为CO2;CsPbI3钙钛矿材料光催化氧化CO,35分钟就能完全将CO转化为CO2,有效提高了转换速度。然而,SO2和H2O对CsPbX3钙钛矿光催化氧化CO有一定的抑制作用,催化氧化性能越来越差,这可能是催化剂的中毒所造成的。Application 2: Investigate the influence of different gas components on photocatalytic materials: accurately weigh 30.0 mg of the CsPbCl 3 perovskite material prepared in Example 1 above and put it into a quartz tube with an inner diameter of 7 mm, and then pass N 2 , The mixed gas of O 2 and CO (total flow is 500mL/min), using a xenon lamp as the lamp source, is used for online analysis by an infrared analyzer; then, different concentrations of O 2 (0%, 2%, 5%, 10% and 15%), SO2 ( 250ppm, 500ppm, 1000ppm and 1500ppm), NO (250ppm, 500ppm, 1000ppm and 1500ppm) and H2O ( 2 %, 5% and 10%), their effect on CsPbX3 calcium was investigated The effect of the photocatalytic oxidation of CO by the titanium material (here, the introduction of different concentrations of O 2 , SO 2 , NO and H 2 O is to simulate the effect of the CsPbX 3 perovskite material on the photocatalytic oxidation of CO under the actual gas condition). It was found that O2 and NO were more favorable for photocatalytic oxidation of CO, which accelerated the conversion of CO. In the case of NO concentration of 500ppm: CsPbBr 3 perovskite material photocatalytically oxidizes CO, which can completely convert CO to CO 2 in 10 minutes; CsPbCl 3 perovskite material photocatalytically oxidizes CO, which can completely convert CO in 20 minutes It is CO 2 ; CsPbI 3 perovskite material photocatalytically oxidizes CO, and CO can be completely converted into CO 2 in 35 minutes, which effectively improves the conversion speed. However, SO 2 and H 2 O have a certain inhibitory effect on the photocatalytic oxidation of CO by CsPbX 3 perovskite, and the catalytic oxidation performance is getting worse and worse, which may be caused by the poisoning of the catalyst.
应用3:考察不同空速对光催化材料的影响:分别准确称量30.0mg、60.0mg和90.0mg实施例1制备的CsPbCl3钙钛矿材料,并将其分别装入内径7mm的石英管中,通入N2、O2和CO的混合气体(总流量为500mL/min),氙灯为灯源,采用红外分析仪进行在线分析,以CO的消耗量来考察反应的转化率。结果表明,催化剂的含量越多,气体与催化剂的接触时间约长,转化CO速度越快;90mg的CsPbX3钙钛矿约10分钟就能达到CO完全转化。Application 3: Investigate the effect of different space velocities on photocatalytic materials: Accurately weigh 30.0 mg, 60.0 mg and 90.0 mg of the CsPbCl perovskite materials prepared in Example 1, respectively, and put them into quartz tubes with an inner diameter of 7 mm. , pass the mixed gas of N 2 , O 2 and CO (total flow is 500mL/min), use xenon lamp as lamp source, use infrared analyzer for online analysis, and examine the conversion rate of reaction with CO consumption. The results show that the more the catalyst content, the longer the contact time between the gas and the catalyst, and the faster the CO conversion rate; 90 mg of CsPbX 3 perovskite can achieve complete CO conversion in about 10 minutes.
综上,CsPbX3钙钛矿材料光催化氧化CO反应体系的最佳条件是:在构建的一氧化碳光催化氧化体系中通入一定量的NO,以氙灯为光源,同时保证CO气体与CsPbX3钙钛矿催化剂的接触时间较长。In summary, the optimal conditions for the photocatalytic oxidation of CO reaction system of CsPbX 3 perovskite materials are as follows: a certain amount of NO is introduced into the constructed carbon monoxide photocatalytic oxidation system, and a xenon lamp is used as the light source, and the CO gas and CsPbX 3 calcium are ensured at the same time. The contact time of the titanium ore catalyst is longer.
本发明提供了一种用于光催化氧化一氧化碳的钙钛矿材料的制备方法及其在光催化氧化一氧化碳中的应用,该钙钛矿材料的化学式为CsPbX3,其中X为Cl、Br或I。将制备的CsPbX3钙钛矿材料作为光催化氧化CO的催化剂,该催化剂能够显著提高光催化氧化一氧化碳的效率。同时,该钙钛矿材料的制备过程采用了简单的微波加热合成工艺,合成过程中无需惰性气体保护,克服了重现性差、操作繁琐、反应速率慢及实际应用差等问题,是一种绿色的制备方法。此外,本发明方法制备的CsPbX3钙钛矿材料还具有很强的荧光特性。The invention provides a preparation method of a perovskite material for photocatalytic oxidation of carbon monoxide and its application in photocatalytic oxidation of carbon monoxide. The chemical formula of the perovskite material is CsPbX 3 , wherein X is Cl, Br or I . The prepared CsPbX3 perovskite material is used as a catalyst for photocatalytic oxidation of CO, which can significantly improve the efficiency of photocatalytic oxidation of carbon monoxide. At the same time, the preparation process of the perovskite material adopts a simple microwave heating synthesis process, and no inert gas protection is required during the synthesis process, which overcomes the problems of poor reproducibility, cumbersome operation, slow reaction rate and poor practical application. It is a green preparation method. In addition, the CsPbX 3 perovskite material prepared by the method of the present invention also has strong fluorescence properties.
上述为本发明的较佳实施例仅用于解释本发明,并不用于限定本发明。凡由本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。The above-mentioned preferred embodiments of the present invention are only used to explain the present invention, and are not intended to limit the present invention. Any obvious changes or changes derived from the technical solutions of the present invention are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210278843.2A CN114671458B (en) | 2022-03-18 | 2022-03-18 | A kind of preparation method and application of perovskite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210278843.2A CN114671458B (en) | 2022-03-18 | 2022-03-18 | A kind of preparation method and application of perovskite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114671458A true CN114671458A (en) | 2022-06-28 |
CN114671458B CN114671458B (en) | 2023-06-23 |
Family
ID=82073641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210278843.2A Active CN114671458B (en) | 2022-03-18 | 2022-03-18 | A kind of preparation method and application of perovskite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114671458B (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107128967A (en) * | 2017-05-08 | 2017-09-05 | 厦门大学 | A kind of nanocrystalline synthetic method of full-inorganic CsPbX3 perovskites |
CN107201227A (en) * | 2017-06-21 | 2017-09-26 | 北京科技大学 | A kind of method that Microwave-assisted firing synthesizes CsSnX3 perovskite quantum dots |
US20180105543A1 (en) * | 2016-10-14 | 2018-04-19 | Alliance For Sustainable Energy, Llc | Oriented perovskite crystals and methods of making the same |
CN108359457A (en) * | 2018-01-19 | 2018-08-03 | 南京理工大学 | A kind of room temperature synthetic method of ultrapure inorganic halogen perovskite blue light nanometer sheet |
CN108753286A (en) * | 2018-05-25 | 2018-11-06 | 宁波工程学院 | A kind of Mn doping CsPbCl3Perovskite is nanocrystalline and preparation method thereof |
CN110526214A (en) * | 2019-08-16 | 2019-12-03 | 中国地质大学(北京) | The preparation method of nano material and nanometer-material-modified glass-carbon electrode |
CN110743592A (en) * | 2019-10-25 | 2020-02-04 | 天津理工大学 | Perovskite photocatalyst and preparation method and application thereof |
CN111117614A (en) * | 2019-12-30 | 2020-05-08 | 江苏理工学院 | Microwave-driven post-doping synthesis CsPbCl3:Mn2+Method for producing nanocrystals |
CN112121837A (en) * | 2020-09-24 | 2020-12-25 | 江苏大学 | A kind of P-CN/CsPbBr3 heterojunction material and its preparation method and use |
CN112680215A (en) * | 2020-12-28 | 2021-04-20 | 江苏理工学院 | Halide-coated halogen perovskite quantum dot and preparation method thereof |
CN112724971A (en) * | 2021-01-12 | 2021-04-30 | 深圳市华星光电半导体显示技术有限公司 | Perovskite quantum dot, preparation method thereof and display device |
CN113198496A (en) * | 2021-04-22 | 2021-08-03 | 电子科技大学长三角研究院(湖州) | Metallic indium-doped lead cesium bromide perovskite quantum dot photocatalyst, preparation method and application thereof in reduction of carbon dioxide |
CN113244935A (en) * | 2021-05-17 | 2021-08-13 | 电子科技大学长三角研究院(湖州) | In-situ generated perovskite heterojunction photocatalyst and preparation method thereof |
US20210402380A1 (en) * | 2020-06-23 | 2021-12-30 | San Diego State University Foundation | Perovskites for photocatalytic organic synthesis |
WO2022050438A1 (en) * | 2020-09-02 | 2022-03-10 | 동국대학교 산학협력단 | Method for producing cesium lead halide perovskite particles |
-
2022
- 2022-03-18 CN CN202210278843.2A patent/CN114671458B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180105543A1 (en) * | 2016-10-14 | 2018-04-19 | Alliance For Sustainable Energy, Llc | Oriented perovskite crystals and methods of making the same |
CN107128967A (en) * | 2017-05-08 | 2017-09-05 | 厦门大学 | A kind of nanocrystalline synthetic method of full-inorganic CsPbX3 perovskites |
CN107201227A (en) * | 2017-06-21 | 2017-09-26 | 北京科技大学 | A kind of method that Microwave-assisted firing synthesizes CsSnX3 perovskite quantum dots |
CN108359457A (en) * | 2018-01-19 | 2018-08-03 | 南京理工大学 | A kind of room temperature synthetic method of ultrapure inorganic halogen perovskite blue light nanometer sheet |
CN108753286A (en) * | 2018-05-25 | 2018-11-06 | 宁波工程学院 | A kind of Mn doping CsPbCl3Perovskite is nanocrystalline and preparation method thereof |
CN110526214A (en) * | 2019-08-16 | 2019-12-03 | 中国地质大学(北京) | The preparation method of nano material and nanometer-material-modified glass-carbon electrode |
CN110743592A (en) * | 2019-10-25 | 2020-02-04 | 天津理工大学 | Perovskite photocatalyst and preparation method and application thereof |
CN111117614A (en) * | 2019-12-30 | 2020-05-08 | 江苏理工学院 | Microwave-driven post-doping synthesis CsPbCl3:Mn2+Method for producing nanocrystals |
US20210402380A1 (en) * | 2020-06-23 | 2021-12-30 | San Diego State University Foundation | Perovskites for photocatalytic organic synthesis |
WO2022050438A1 (en) * | 2020-09-02 | 2022-03-10 | 동국대학교 산학협력단 | Method for producing cesium lead halide perovskite particles |
CN112121837A (en) * | 2020-09-24 | 2020-12-25 | 江苏大学 | A kind of P-CN/CsPbBr3 heterojunction material and its preparation method and use |
CN112680215A (en) * | 2020-12-28 | 2021-04-20 | 江苏理工学院 | Halide-coated halogen perovskite quantum dot and preparation method thereof |
CN112724971A (en) * | 2021-01-12 | 2021-04-30 | 深圳市华星光电半导体显示技术有限公司 | Perovskite quantum dot, preparation method thereof and display device |
CN113198496A (en) * | 2021-04-22 | 2021-08-03 | 电子科技大学长三角研究院(湖州) | Metallic indium-doped lead cesium bromide perovskite quantum dot photocatalyst, preparation method and application thereof in reduction of carbon dioxide |
CN113244935A (en) * | 2021-05-17 | 2021-08-13 | 电子科技大学长三角研究院(湖州) | In-situ generated perovskite heterojunction photocatalyst and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
ZHU, JR ET AL: ""Synthesis of monodisperse water-stable surface Pb-rich CsPbCl(3)nanocrystals for efficient photocatalytic CO(2)reduction"" * |
管文浩: ""铅卤钙钛矿基复合物的构建及其光催化性能研究"" * |
Also Published As
Publication number | Publication date |
---|---|
CN114671458B (en) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | Research progress on the photocatalytic activation of methane to methanol | |
CN113786842B (en) | Catalyst for synthesizing ammonia from NO oxide, preparation method and application thereof | |
WO2024146222A1 (en) | Method for preparing highly-dispersed pt/ceo2 by using atomically dispersed platinum as precursor and use | |
CN115259131B (en) | Green method for preparing multifunctional biochar by utilizing sludge and application of biochar | |
CN111068715A (en) | Preparation method of Ag/Bi2O3/CuBi2O4 nanofiber composite photocatalyst | |
CN112410037A (en) | Composite functional material for soil pollution treatment and preparation method thereof | |
CN115770567A (en) | Manganese oxide catalyst and its preparation method and application | |
CN114956187B (en) | Preparation method of manganese sesquioxide catalytic material exposing high catalytic activity crystal face, product and application thereof | |
CN114671458B (en) | A kind of preparation method and application of perovskite material | |
An et al. | Design of Au@ Ag/BiOCl–OV photocatalyst and its application in selective alcohol oxidation driven by plasmonic carriers using O 2 as the oxidant | |
CN113769731B (en) | Preparation and application method of VOx-MoOx/TiO2 catalyst for low-temperature degradation of dioxin | |
CN112844371A (en) | Catalyst for photolysis of water to produce oxygen and preparation method thereof | |
CN110721676B (en) | A kind of low temperature SCR denitration catalyst and its preparation method and application | |
CN112516998A (en) | Volatile organic pollution gas purification catalyst and preparation method and application thereof | |
CN112569952A (en) | Samarium-doped iron oxide SCR denitration catalyst and preparation method and application thereof | |
CN115400772B (en) | Improved perovskite nanocrystalline heterojunction composite material photocatalyst and preparation method thereof | |
CN114392759B (en) | Z-type photocatalyst and preparation method and application thereof | |
CN112973670A (en) | Preparation method of bismuth molybdate material for removing NO through photocatalysis and product | |
CN111747845A (en) | Method for selectively oxidizing glucose by visible light catalysis | |
CN115148389B (en) | Photocatalysis uranium removal method without catalyst | |
CN113797910A (en) | Defect-containing nano-microspherical perovskite catalyst, preparation method and application thereof | |
CN113509930B (en) | A kind of photo-assisted thermal catalyst and its preparation method and application | |
CN113492011B (en) | A photocatalytic removal method of nitric oxide (NO) by defect-containing perovskite materials | |
CN118079981A (en) | Method for preparing amphiphilic photocatalyst by carbon nitride-supported metal oxide and application of amphiphilic photocatalyst in aqueous phase benzene hydroxylation reaction | |
CN117772195A (en) | AuAg-CeO 2 Preparation method of bimetal supported photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |