CN114662268A - An Improved GNSS Network Sequential Adjustment Calculation Method - Google Patents
An Improved GNSS Network Sequential Adjustment Calculation Method Download PDFInfo
- Publication number
- CN114662268A CN114662268A CN202111290536.8A CN202111290536A CN114662268A CN 114662268 A CN114662268 A CN 114662268A CN 202111290536 A CN202111290536 A CN 202111290536A CN 114662268 A CN114662268 A CN 114662268A
- Authority
- CN
- China
- Prior art keywords
- adjustment
- parameter
- value
- fuzzy
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 36
- 238000012937 correction Methods 0.000 claims abstract description 81
- 239000011159 matrix material Substances 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 6
- 238000009825 accumulation Methods 0.000 abstract description 4
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Operations Research (AREA)
- Evolutionary Computation (AREA)
- Algebra (AREA)
- Geometry (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及卫星定位技术领域,尤其涉及一种改进的GNSS网序贯平差计算 方法、装置、存储介质及终端设备。The present invention relates to the technical field of satellite positioning, and in particular, to an improved GNSS network sequential adjustment calculation method, device, storage medium and terminal device.
背景技术Background technique
随着全球导航卫星系统(GNSS)飞速发展,利用GNSS建立各等级控制网 在各行各业得到了广泛应用,多个国家、地区、行业纷纷建立了满足自身要求的 GNSS基准站网。利用GNSS建立各等级基准站网均采用相对定位技术,即确定 测量点间的相对位置关系,将这种点间的相对位置量称为基线向量坐标,由基线 向量组成的观测网称为基线向量网,GNSS网平差就是以GNSS基线向量为观测 值进行平差计算获得各GNSS网点的坐标并进行精度评定的过程。With the rapid development of the Global Navigation Satellite System (GNSS), the use of GNSS to establish control networks at various levels has been widely used in all walks of life. Many countries, regions and industries have established GNSS reference station networks that meet their own requirements. The relative positioning technology is used to establish the base station network of each level by using GNSS, that is, the relative position relationship between the measurement points is determined. GNSS network adjustment is the process of using the GNSS baseline vector as the observed value to carry out adjustment calculation to obtain the coordinates of each GNSS network point and to evaluate the accuracy.
在进行大规模GNSS网整体解算时,现有技术一般采用序贯平差估计完成 GNSS网点的坐标解算及其精度评定。将整个GNSS网分为若干个子网,将各个 子网独立解算,得到松约束下的参数估值及其协方差阵,然后将各子网联合处理。 序贯平差估计利用前期平差结果与当期观测样本获得与整体平差结果相同的最 优解。When performing the overall calculation of a large-scale GNSS network, the prior art generally adopts sequential adjustment estimation to complete the coordinate calculation and accuracy evaluation of the GNSS network points. The entire GNSS network is divided into several sub-networks, and each sub-network is solved independently to obtain the parameter estimation and its covariance matrix under the loose constraints, and then the sub-networks are jointly processed. Sequential adjustment estimation uses previous adjustment results and current observation samples to obtain the same optimal solution as the overall adjustment results.
在GNSS观测值中,由于受到观测信号、传播路径和接收机等部分的影响, 观测值中不可避免地带有粗差,但是由于现有技术是通过法方程叠加来完成各子 网间的联合处理,其本质是最小二乘,对粗差不具有抵抗力,当观测样本含有粗 差时,无法求出准确得平差值。In the GNSS observation value, due to the influence of the observation signal, propagation path and receiver, etc., the observation value inevitably contains gross errors, but because the existing technology is to complete the joint processing between the sub-networks through the superposition of normal equations. , whose essence is least squares, is not resistant to gross errors. When the observed sample contains gross errors, it is impossible to obtain an accurate adjustment value.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种改进的GNSS网序贯平差计算方法,能够减少观测样 本粗差对于后续平差估值的影响,减小误差积累效应,输出准确的平差值。The embodiment of the present invention provides an improved GNSS network sequential adjustment calculation method, which can reduce the influence of gross errors of observed samples on subsequent adjustment estimates, reduce the effect of error accumulation, and output accurate adjustment values.
本发明实施例提供一种改进的GNSS网序贯平差计算方法,所述方法包括:The embodiment of the present invention provides an improved GNSS network sequential adjustment calculation method, and the method includes:
通过定义GNSS网中前期子网独立测站坐标参数,子网间公共测站坐标参数, 后期子网独立测站坐标参数,根据各测站间基线向量的几何关系建立前后期平差 模型的第一组误差方程和第二组误差方程;By defining the coordinate parameters of the independent stations of the early sub-network in the GNSS network, the coordinate parameters of the public stations between the sub-networks, and the coordinate parameters of the independent stations of the sub-network in the later period, the first step of the adjustment model before and after the adjustment model is established according to the geometric relationship of the baseline vectors between the stations. a set of error equations and a second set of error equations;
对所述第一组平差误差方程单独进行平差,得到参数改正值矩阵和参数协方 差矩阵;Adjusting the first group of adjustment error equations independently to obtain a parameter correction value matrix and a parameter covariance matrix;
根据所述参数改正值矩阵计算得到未知参数的第一次平差值;Calculate the first adjustment value of the unknown parameter according to the parameter correction value matrix;
对所述参数方差-协方差矩阵取对角值计算得到未知参数的中误差;Taking the diagonal value of the parameter variance-covariance matrix to calculate the median error of the unknown parameter;
将所述公共参数的第一次平差值作为第二组平差的近似值,代入所述第二组 平差误差方程中,计算新的常数项,定义新的观测信息改正数为V′2,得到新的误 差方程;Take the first adjustment value of the common parameter as the approximate value of the second group of adjustment, and substitute it into the second group of adjustment error equations, calculate a new constant term, and define the new observation information correction number as V' 2 , get a new error equation;
根据模糊理论,以所述第一次平差值和所述中误差确定公共参数改正值的模 糊中心和模糊幅度,根据所述常数项、所述模糊中心和所述模糊幅度构建平差函 数约束模型;According to fuzzy theory, the first adjustment value and the intermediate error are used to determine the fuzzy center and the fuzzy amplitude of the correction value of the common parameter, and the adjustment function constraint is constructed according to the constant term, the fuzzy center and the fuzzy amplitude Model;
对所述构建约束平差函数模型求解得到参数的第二改正值;The second correction value of the parameter is obtained by solving the construction constraint adjustment function model;
根据所述第二改正值和所述第一次平差值计算得到未知参数的第二次平差 值;Calculate the second adjustment value of the unknown parameter according to the second correction value and the first adjustment value;
根据所述第二次平差值计算获得各GNSS网点的坐标。The coordinates of each GNSS network point are obtained by calculating according to the second adjustment value.
优选地,所述第一组误差方程为V1=A11Xa+A12Xb-f1;Preferably, the first set of error equations is V 1 =A 11 X a +A 12 X b -f 1 ;
所述第二组误差方程为V2=B22Xb+B23Y-f2;The second set of error equations is V 2 =B 22 X b +B 23 Yf 2 ;
其中,V1为第一次观测值改正数,A11和A12为第一次平差模型系数矩阵,V2为第二次观测值改正数,B22和B23为第二次平差模型系数矩阵,Xa为所述前期子 网独立站点坐标参数,Xb为所述子网间公共站点坐标参数,Y为所述后期子网新 增站点坐标参数,f1为第一次平差误差方程的常数项, f2为第二次平差误差方程的常数项,L1和L2分别为第一 次平差观测值和第二次平差观测值,和Y0为未知参数第一次平差解算时 所取的近似值。Among them, V 1 is the correction number of the first observation, A 11 and A 12 are the coefficient matrix of the first adjustment model, V 2 is the correction number of the second observation, and B 22 and B 23 are the second adjustment. Model coefficient matrix, X a is the coordinate parameter of the independent site of the sub-network in the early stage, X b is the coordinate parameter of the public site between the sub-networks, Y is the coordinate parameter of the newly added site of the sub-network in the later stage, and f 1 is the first flattening parameter. the constant term of the difference error equation, f 2 is the constant term of the second adjustment error equation, L 1 and L 2 are the first adjustment observations and the second adjustment observations, respectively, and Y 0 are the approximations taken during the first adjustment of the unknown parameters.
作为一种优选方式,所述参数改正值矩阵为 As a preferred way, the parameter correction value matrix is
所述参数协方差矩阵为 The parameter covariance matrix is
其中,和为未知参数的改正数,P1为观测值权矩阵,为单位 权方差,r为第一次平差时多余观测数。。in, and is the correction number of the unknown parameter, P 1 is the observation weight matrix, is the unit weight variance, and r is the number of excess observations in the first adjustment. .
优选地,所述第一次平差值为 Preferably, the first adjustment value is
优选地,所述公共参数协方差为为验后单位权方差。Preferably, the common parameter covariance is is the posterior unit weight variance.
作为一种优选方式,所述将所述公共参数第一次平差值作为第二次平差时的 近似值,代入所述第二组平差误差方程中,计算新的常数项,定义新的观测信息 改正数为V′2,得到新的误差方程,具体包括:As a preferred way, the first adjustment value of the common parameter is used as an approximate value during the second adjustment, and is substituted into the second set of adjustment error equations, a new constant term is calculated, and a new The correction number of the observation information is V′ 2 , and a new error equation is obtained, which includes:
将所述第一次平差值作为第二次平差时的近似值,代入所述第二组平差 误差方程中,计算得到新的常数项l2,定义新的观测信息改正数为V′2,得到新的 误差方程;the first adjustment value As the approximate value of the second adjustment, it is substituted into the second set of adjustment error equations, and a new constant term l 2 is obtained by calculation, and the new observation information correction number is defined as V′ 2 , and a new error equation is obtained;
其中, in,
优选地,所述根据模糊理论,以所述公共参数第一次平差值和所述中误差确 定参数改正值的模糊中心和模糊幅度,根据所述常数项、所述模糊中心和所述模 糊幅度构建平差函数约束模型,具体包括:Preferably, according to the fuzzy theory, the first adjustment value of the common parameter and the intermediate error are used to determine the fuzzy center and the fuzzy amplitude of the parameter correction value, and the fuzzy center and the fuzzy amplitude are determined according to the constant term, the fuzzy center and the fuzzy Amplitude builds an adjustment function constraint model, including:
以公共参数的第一次平差值作为参数的模糊中心,则参数改正值的模糊中 心为第二次平差时参数所取近似值。以所述中误差的3倍值为 模糊幅度Δ前;Take the first adjustment value of the common parameter As the fuzzy center of the parameter, the fuzzy center of the parameter correction value Approximate values for the parameters in the second adjustment. Taking 3 times of the middle error as the blur amplitude Δbefore ;
根据隶属函数、所述模糊中心和所述模糊幅度构建所述平差函数模型:The adjustment function model is constructed according to the membership function, the fuzzy center and the fuzzy magnitude:
其中,x″b和y′为第二次平差时参数的改正数,μA(x″b)为x″b的隶属函数, Among them, x″ b and y′ are the correction numbers of the parameters during the second adjustment, μ A (x″ b ) is the membership function of x″ b ,
进一步地,所述对所述构建平差约束函数模型求解得到参数的第二改正值, 具体包括:Further, the second correction value of the parameter obtained by solving the construction adjustment constraint function model specifically includes:
对观测残差平方和取最小值的同时,x″b的隶属函数μA(x″b)取最大值,,得 到准则函数 While taking the minimum value of the sum of squares of the observed residuals, the membership function μ A (x″ b ) of x″ b takes the maximum value, and the criterion function is obtained
根据所述模糊幅度建立算子 Build an operator based on the blurring magnitude
根据所述算子将所述准则函数转化为准则函数矩阵 Transform the criterion function into a criterion function matrix according to the operator
对所述准则函数矩阵求偏导并令其等于0,计算得到参数的第二改正值 Calculate the partial derivative of the criterion function matrix and make it equal to 0, and calculate the second corrected value of the parameter
其中,τ为任一数值,0<τ<1,W=diag[w1 w2 … wt],Pi为观测值权阵,为观测值残差,n=1,2,3…,t=1,2,3…,j=1,2,...,t,Vxb=x″b-xb前,表 示参数改正值与其先验模糊中心的偏差。Among them, τ is any value, 0<τ<1, W=diag[w 1 w 2 … w t ], P i is the observation weight matrix, is the residual error of the observation value, n=1, 2, 3..., t=1, 2, 3..., j=1, 2,..., t, V xb = x″ b -x b before , it means the parameter correction The deviation of the value from its prior fuzzy center.
优选地,所述根据所述第二改正值和所述第一次平差值计算得到未知参数的 第二次平差值,具体为:Preferably, calculating the second adjustment value of the unknown parameter according to the second correction value and the first adjustment value, specifically:
将所述第二改正值和所述第 一次平差值代入平差值计算公式计算第二次平差值;the second correction value and the first adjustment value Substitute into the adjustment value calculation formula to calculate the second adjustment value;
所述平差值计算公式为 The calculation formula of the adjustment value is:
本发明提供一种改进的GNSS网序贯平差计算方法,通过建立前后期平差模 型的第一组误差方程和第二组误差方程;对所述第一组误差方程单独进行平差, 得到参数改正值矩阵和参数协方差矩阵;根据所述参数改正值矩阵计算得到未知 参数的第一次平差值;对参数协方差矩阵取对角值计算得到公共参数的中误差; 根据模糊理论,以所述第一次平差值和所述中误差确定参数的模糊中心和模糊幅 度,根据所述常数项、所述模糊中心和所述模糊幅度构建平差函数约束模型;对 所述构建约束平差函数模型求解得到参数的第二改正值;根据所述第二改正值和 所述第一次平差值计算得到未知参数的第二次平差值;根据所述第二次平差值计 算获得各GNSS网点的坐标。当后期观测信息含有粗差时,可以有效削弱粗差带 来的参数估值扭曲,减少误差积累,提高解算精度。The present invention provides an improved GNSS network sequential adjustment calculation method. By establishing the first group of error equations and the second group of error equations of the adjustment models before and after the adjustment, and adjusting the first group of error equations separately, the result is obtained: The parameter correction value matrix and the parameter covariance matrix; the first adjustment value of the unknown parameter is calculated according to the parameter correction value matrix; the diagonal value of the parameter covariance matrix is calculated to obtain the intermediate error of the public parameter; according to the fuzzy theory, Determine the fuzzy center and fuzzy amplitude of the parameter with the first adjustment value and the intermediate error, and construct an adjustment function constraint model according to the constant term, the fuzzy center and the fuzzy amplitude; for the construction constraint The adjustment function model is solved to obtain the second correction value of the parameter; the second adjustment value of the unknown parameter is calculated according to the second correction value and the first adjustment value; according to the second adjustment value Calculate the coordinates of each GNSS network point. When the later observation information contains gross errors, it can effectively weaken the distortion of parameter estimation caused by gross errors, reduce the accumulation of errors, and improve the calculation accuracy.
附图说明Description of drawings
图1是本发明实施例提供的一种改进的GNSS网序贯平差计算方法的流程示 意图;Fig. 1 is the schematic flow sheet of a kind of improved GNSS network sequential adjustment calculation method that the embodiment of the present invention provides;
图2所示是本发明实施例提供的GNSS网的网型图;2 is a network diagram of a GNSS network provided by an embodiment of the present invention;
图3是本发明实施例提供的序贯最小二乘及约束序贯算法的数据示意图。FIG. 3 is a schematic data diagram of sequential least squares and constrained sequential algorithms provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的 实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前 提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
本发明实施例提供一种改进的GNSS网序贯平差计算方法,参见图1所示, 是本发明实施例提供的一种改进的GNSS网序贯平差计算方法的流程示意图,包 括步骤S1~S9:An embodiment of the present invention provides an improved GNSS network sequential adjustment calculation method, as shown in FIG. 1 , which is a schematic flowchart of an improved GNSS network sequential adjustment calculation method provided by an embodiment of the present invention, including step S1 ~S9:
S1,S1,
通过定义GNSS网中前期子网独立测站坐标参数,子网间公共测站坐标参数, 后期子网独立测站坐标参数,根据各测站间基线向量的几何关系建立前后期平差 模型的第一组误差方程和第二组误差方程;By defining the coordinate parameters of the independent stations of the early sub-network in the GNSS network, the coordinate parameters of the public stations between the sub-networks, and the coordinate parameters of the independent stations of the sub-network in the later period, the first step of the adjustment model before and after the adjustment model is established according to the geometric relationship of the baseline vectors between the stations. a set of error equations and a second set of error equations;
S2,对所述第一组平差误差方程进行单独平差,得到参数改正值矩阵和参数 协方差矩阵;S2, carry out a separate adjustment to the first group of adjustment error equations to obtain a parameter correction value matrix and a parameter covariance matrix;
S3,根据所述参数改正值矩阵计算得到未知参数的第一次平差值;S3, calculating the first adjustment value of the unknown parameter according to the parameter correction value matrix;
S4,对所述参数协方差矩阵取对角值计算得到公共参数的中误差;S4, taking the diagonal value of the parameter covariance matrix to calculate the median error of the public parameter;
S5,将所述第一次平差值作为第二次平差的近似值,代入所述第二组误差方 程中,计算新的常数项,定义新的观测信息改正数为V′2,得到新的误差方程;S5, taking the first adjustment value as the approximate value of the second adjustment, and substituting it into the second set of error equations, calculating a new constant term, defining a new observation information correction number as V′ 2 , and obtaining a new the error equation;
S6,根据模糊理论,以所述公共参数第一次平差值和所述中误差确定参数的 模糊中心和模糊幅度,根据所述常数项、所述模糊中心和所述模糊幅度构建平差 函数约束模型;S6, according to the fuzzy theory, determine the fuzzy center and the fuzzy amplitude of the parameter with the first adjustment value of the common parameter and the intermediate error, and construct an adjustment function according to the constant term, the fuzzy center and the fuzzy amplitude Constraint model;
S7,对所述构建平差约束函数模型求解得到参数的第二改正值;S7, the second correction value of the parameter is obtained by solving the construction adjustment constraint function model;
S8,根据所述第二改正值和所述第一次平差值计算得到未知参数的第二次平 差值;S8, calculates the second adjustment value of unknown parameter according to the second correction value and the first adjustment value;
S9,根据所述第二次平差值计算获得各GNSS网点的坐标。S9, calculate and obtain the coordinates of each GNSS network point according to the second adjustment value.
在本实施例具体实施时,获取GNSS网序贯平差算法中,前后期平差模型的 共同的参数和独立的参数,包括:前期子网独立站点坐标参数、子网间公共站点 坐标参数以及后期子网新增站点坐标参数;构建前后期平差模型的第一组误差方 程和第二组误差方程;In the specific implementation of this embodiment, in the sequential adjustment algorithm of the GNSS network, the common parameters and independent parameters of the previous and later adjustment models are obtained, including: the coordinate parameters of the independent sites of the sub-networks in the early stage, the coordinate parameters of the public sites between the sub-networks, and Added site coordinate parameters for later sub-networks; builds the first set of error equations and the second set of error equations for the adjustment model before and after;
对所述第一组误差方程进行单独平差,获取得到参数改正值矩阵和参数协方 差矩阵;Perform a separate adjustment on the first group of error equations to obtain a parameter correction value matrix and a parameter covariance matrix;
根据所述参数改正值矩阵计算得到未知参数的第一次平差值;Calculate the first adjustment value of the unknown parameter according to the parameter correction value matrix;
对参数协方差阵取对角值计算得到公共参数的中误差;Take the diagonal value of the parameter covariance matrix to calculate the median error of the common parameter;
将所述第一次平差值作为第二次平差时的近似值,代入所述第二组误差方程 中,计算新的常数项,定义新的观测信息改正数为V′2,得到新的误差方程;Taking the first adjustment value as the approximate value of the second adjustment, and substituting it into the second set of error equations, calculating a new constant term, defining the new observation information correction number as V′ 2 , and obtaining a new error equation;
根据模糊理论,以所述公共参数第一次平差值和所述中误差确定参数的模糊 中心和模糊幅度,根据所述常数项、所述模糊中心和所述模糊幅度构建平差函数 约束模型;According to fuzzy theory, the first adjustment value of the common parameter and the intermediate error determine the fuzzy center and the fuzzy amplitude of the parameter, and the adjustment function constraint model is constructed according to the constant term, the fuzzy center and the fuzzy amplitude ;
对所述构建平差约束函数模型求解得到参数的第二改正值;The second correction value of the parameter is obtained by solving the built adjustment constraint function model;
根据所述第二改正值和所述第一次平差值计算得到未知参数的第二次平差 值;Calculate the second adjustment value of the unknown parameter according to the second correction value and the first adjustment value;
根据所述第二次平差值计算获得各GNSS网点的坐标。The coordinates of each GNSS network point are obtained by calculating according to the second adjustment value.
通过对序贯平差加以改进,将前期平差得到的参数信息以约束条件的形式纳 入后期平差模型中解算,利用前期得到的先验信息对参数加以约束,提高模型的 抗误差干扰性。By improving the sequential adjustment, the parameter information obtained from the previous adjustment is incorporated into the later adjustment model in the form of constraints for calculation, and the prior information obtained in the early stage is used to constrain the parameters to improve the anti-error interference of the model. .
在本发明提供的又一实施例中,所述第一组误差方程为V1=A11Xa+A12Xb-f1;In another embodiment provided by the present invention, the first set of error equations is V 1 =A 11 X a +A 12 X b -f 1 ;
所述第二组误差方程为V2=B22Xb+B23Y-f2;The second set of error equations is V 2 =B 22 X b +B 23 Yf 2 ;
其中,V1为第一次观测值改正数,A11和A12为第一次平差模型系数矩阵,V2为第二次观测值改正数,B22和B23为第二次平差模型系数矩阵,Xa为所述前期子 网独立站点坐标参数,Xb为所述子网间公共站点坐标参数,Y为所述后期子网新 增站点坐标参数,f1为第一次平差误差方程的常数项, f2为第二次平差误差方程的常数项,L1和L2分别为第一 次平差观测值和第二次平差观测值,和Y0为未知参数第一次平差解算时 所取的近似值。Among them, V 1 is the correction number of the first observation, A 11 and A 12 are the coefficient matrix of the first adjustment model, V 2 is the correction number of the second observation, and B 22 and B 23 are the second adjustment. Model coefficient matrix, X a is the coordinate parameter of the independent site of the sub-network in the early stage, X b is the coordinate parameter of the public site between the sub-networks, Y is the coordinate parameter of the newly added site of the sub-network in the later stage, and f 1 is the first flattening parameter. the constant term of the difference error equation, f 2 is the constant term of the second adjustment error equation, L 1 and L 2 are the first adjustment observations and the second adjustment observations, respectively, and Y 0 are the approximations taken during the first adjustment of the unknown parameters.
在本实施例具体实施时,通过GNSS网序贯平差算法中,构建第一组误差方 程V1和第二组误差方程V2;In the specific implementation of this embodiment, the first group of error equations V 1 and the second group of error equations V 2 are constructed through the GNSS network sequential adjustment algorithm;
其中,V1=A11Xa+A12Xb-f1,V2=B22Xb+B23Y-f2,V1为第一次观 测值改正数,A11、A12为第一次平差模型系数阵,f1为其常数项V2为第二次观测值改正数,B22、B23为第二次平差模 型系数阵,f2为其常数项Xa为前期子网独立站点坐标参 数,Xb为子网间公共站点坐标参数,Y为后期子网新增站点坐标参数;L1、L2为 第一次、第二次平差观测值,A11、A12、B22、B23分别为其系数阵,Y0为 参数第一次参与平差解算时所取的近似值。Wherein, V 1 =A 11 X a +A 12 X b -f 1 , V 2 =B 22 X b +B 23 Yf 2 , V 1 is the correction number of the first observation, A 11 and A 12 are the first sub-adjustment model coefficient matrix, f 1 is its constant term V 2 is the correction number of the second observation value, B 22 and B 23 are the coefficient matrix of the second adjustment model, and f 2 is the constant term X a is the coordinate parameter of the independent site of the sub-network in the early stage, X b is the coordinate parameter of the common site between the sub-networks, and Y is the coordinate parameter of the newly-added site of the sub-network in the later stage; L 1 , L 2 are the first and second adjustment observations , A 11 , A 12 , B 22 , and B 23 are their coefficient matrices, respectively, Y 0 is the approximate value taken by the parameter when it participates in the adjustment solution for the first time.
在本发明提供的又一实施例中,所述参数改正值矩阵为 In another embodiment provided by the present invention, the parameter correction value matrix is
所述参数协方差矩阵为 The parameter covariance matrix is
其中,和为未知参数的改正数,P1为观测值权矩阵,为单位 权方差,r为第一次平差时多余观测数。。in, and is the correction number of the unknown parameter, P 1 is the observation weight matrix, is the unit weight variance, and r is the number of excess observations in the first adjustment. .
在本实施例具体实施时,对第一组误差方程V1单独平差,获得参数改正值 矩阵 In the specific implementation of this embodiment, the first group of error equations V 1 are adjusted individually to obtain a parameter correction value matrix
并获得参数协方差矩阵为 and obtain the parameter covariance matrix as
式中,为参数改正数,P1为观测值权阵,为单位权方差,r为 第一次平差时多余观测数。In the formula, is the parameter correction number, P 1 is the observation weight matrix, is the unit weight variance, and r is the number of excess observations in the first adjustment.
在本发明提供的又一实施例中,所述第一次平差值为 In another embodiment provided by the present invention, the first adjustment value is
在本实施例具体实施时,根据所述参数改正值矩阵计算得到未知参数的第一 次平差值 During the specific implementation of this embodiment, the first adjustment value of the unknown parameter is calculated according to the parameter correction value matrix.
其中,为第二次平差未知参数平差值,为第一次平差未知参数的平差值,x″b,y′为第二次平差时参数的改正数,为公共参数的权阵, 由第一次平差结果得到。B22、B23为第二次平差模型系数阵,P2为第二次观测值权 阵,l2为其常数项。in, is the adjustment value of the unknown parameter for the second adjustment, is the adjustment value of the unknown parameter in the first adjustment, x″ b , y′ is the correction number of the parameter in the second adjustment, is the weight matrix of common parameters, obtained from the first adjustment result. B 22 and B 23 are the coefficient matrix of the second adjustment model, P 2 is the weight matrix of the second observation, and l 2 is the constant term.
在本发明提供的又一实施例中,所述协方差为 In yet another embodiment provided by the present invention, the covariance is
由协方差可知,传统序贯平差根据前期平差后的参数估值及其协方差阵结合当期观测数据进行整体平差,虽不需要前期观测值即可实现与整体平差一致 的解算效果。但若前期先验参数或当期观测信息含有粗差,则势必造成后及参数 及其协方差阵的扭曲。为削弱先验参数异常、观测粗差对参数估值的影响,本发 明结合GNSS网对序贯平差加以改进,将前期平差得到的参数信息以约束条件的 形式纳入后期平差模型中解算,利用前期得到的先验信息对参数加以约束,提高 模型的抗误差干扰性。It can be seen from the covariance that the traditional sequential adjustment is estimated based on the parameters after the previous adjustment. and its covariance matrix Combined with the current observation data to carry out the overall adjustment, although the previous observation value is not required, the solution effect consistent with the overall adjustment can be achieved. However, if the prior prior parameters or current observation information contains gross errors, it will inevitably lead to distortion of the posterior parameters and their covariance matrix. In order to weaken the influence of abnormal a priori parameters and gross observation errors on parameter estimation, the present invention improves the sequential adjustment in combination with the GNSS network, and incorporates the parameter information obtained from the previous adjustment into the later adjustment model in the form of constraints to solve the problem. It uses the prior information obtained in the early stage to constrain the parameters to improve the anti-error interference of the model.
在本发明提供的又一实施例中,所述将所述第一次平差值作为第二次平差时 的近似值,代入所述第二组误差方程中,计算新的常数项,得到新的误差方程, 具体包括:In another embodiment provided by the present invention, the first adjustment value is used as an approximate value during the second adjustment, and is substituted into the second set of error equations to calculate a new constant term to obtain a new The error equation of , specifically includes:
将所述第一次平差值作为第二次平差时的近似值,代入所述第二组平差 误差方程中计算得到新的常数项l2,定义新的观测信息改正数为V′2,得到新的误 差方程;the first adjustment value As an approximate value during the second adjustment, a new constant term l 2 is calculated by substituting it into the second set of adjustment error equations, and a new correction number of observation information is defined as V′ 2 to obtain a new error equation;
其中, in,
在本实施例具体实施时,In the specific implementation of this embodiment,
根据前期平差结果,我们可以认为测站坐标(即未知参数)处于一定的空间 范围内,可以形象的表示为以前期的参数估值为中心,以Δ为半径的范围内,本 结合模糊理论,将前期参数平差得到的信息构造为一个模糊数:X∈[X0 Δ], X~μ(X);According to the previous adjustment results, we can think that the coordinates of the station (that is, the unknown parameters) are within a certain spatial range, which can be visually expressed as the center of the previous parameter estimates and the range with Δ as the radius. This combination of fuzzy theory , construct the information obtained from the previous parameter adjustment as a fuzzy number: X∈[X 0 Δ], X~μ(X);
X0为模糊中心,可取为参数的前期平差估值,Δ为模糊范围,参数可取 Δ=n*σ,σ为参数中误差,可由前期平差结果中得到。在测量误差理论中,偶 然误差服从正态分布,且P{-3σ<Δ<3σ}=99.7%,即误差超过3倍中误差的概率 为0.3%,是小概率事件,因此可取n=3。μ(X)为隶属函数,表示元素隶属于模糊 集合的程度,常见的隶属函数有正态模糊数、正弦模糊数等。X 0 is the fuzzy center, which can be taken as the estimation of the previous adjustment of the parameter, Δ is the fuzzy range, the parameter can be taken as Δ=n*σ, and σ is the error in the parameter, which can be obtained from the previous adjustment result. In the measurement error theory, the accidental error obeys a normal distribution, and P{-3σ<Δ<3σ}=99.7%, that is, the probability of the error exceeding 3 times is 0.3%, which is a small probability event, so n=3 . μ(X) is a membership function, which indicates the degree to which an element belongs to a fuzzy set. Common membership functions include normal fuzzy numbers, sinusoidal fuzzy numbers, and so on.
在本发明提供的又一实施例中,所述根据模糊理论,以所述第一次平差值和 所述中误差确定参数的模糊中心和模糊幅度,根据所述常数项、所述模糊中心和 所述模糊幅度构建平差函数约束模型,具体包括:In another embodiment provided by the present invention, according to the fuzzy theory, the fuzzy center and the fuzzy magnitude of the parameters are determined by the first adjustment value and the intermediate error, and the fuzzy center and the fuzzy center are determined according to the constant term, the fuzzy center and the fuzzy magnitude to construct an adjustment function constraint model, which specifically includes:
以公共参数的第一次平差值作为参数的模糊中心,则参数改正值的模糊中 心为第二次平差时参数所取近似值。以所述中误差的3倍值为 模糊幅度Δ前;Take the first adjustment value of the common parameter As the fuzzy center of the parameter, the fuzzy center of the parameter correction value Approximate values for the parameters in the second adjustment. Take 3 times of the middle error as the blur amplitude Δ before ;
根据隶属函数、所述模糊中心和所述模糊幅度构建所述平差函数模型: The adjustment function model is constructed according to the membership function, the fuzzy center and the fuzzy magnitude:
其中,x″b和y′为第二次平差时参数的改正数,μA(x″b)为x″b的隶属函数,,V′2为第二次平差观测信息改正数,B22、B23为第二次 平差模型系数阵,l2为其常数项。Among them, x″ b and y′ are the correction numbers of the parameters during the second adjustment, μ A (x″ b ) is the membership function of x″ b , , V′ 2 is the correction number of the second adjustment observation information, B 22 and B 23 are the second adjustment model coefficient matrix, and l 2 is the constant term.
平差函数模型可理解为部分参数带有约束条件的平差模型,μ(x″b)为隶属函 数,表示元素隶属于模糊数的程度,以正态模糊数为例,参数的可能性分布可表 示为 The adjustment function model can be understood as an adjustment model with some parameters with constraints, μ(x″ b ) is the membership function, which indicates the degree of membership of the element to the fuzzy number. Taking the normal fuzzy number as an example, the probability distribution of the parameter can be expressed as
在本发明提供的又一实施例中,所述对所述构建平差约束函数模型求解得到 参数的第二改正值,具体包括:In another embodiment provided by the present invention, the second correction value of the parameter obtained by solving the described construction adjustment constraint function model specifically includes:
对观测残差平方和取最小值的同时,x″b的隶属函数μA(x″b)取最大值,得到 准则函数 While taking the minimum value of the sum of squares of the observed residuals, the membership function μ A (x″ b ) of x″ b takes the maximum value to obtain the criterion function
根据所述模糊幅度建立算子 Build an operator based on the blurring magnitude
根据所述算子将所述准则函数转化为准则函数矩阵 Transform the criterion function into a criterion function matrix according to the operator
对所述准则函数矩阵求偏导并其等于0,计算得到参数的第二改正值 Calculate the partial derivative of the criterion function matrix and make it equal to 0, and calculate the second corrected value of the parameter
其中,τ为任一数值,0<τ<1,W=diag[w1 w2 … wt],Pi为观测值权阵,为观测值残差,n=1,2,3…,t=1,2,3…,j=1,2,...,t,Vxb=x″b-xb前,表 示参数改正值与其先验模糊中心的偏差。Among them, τ is any value, 0<τ<1, W=diag[w 1 w 2 … w t ], P i is the observation weight matrix, is the residual error of the observation value, n=1, 2, 3..., t=1, 2, 3..., j=1, 2,..., t, V xb = x″ b -x b before , it means the parameter correction The deviation of the value from its prior fuzzy center.
在本实施例具体实施时,构建算子为避免出现Δ前=0导致wj无限大 的情况,可将算子设定为0<τ<1,为一适当小的数。During the specific implementation of this embodiment, the operator is constructed In order to avoid the situation where w j is infinitely large due to Δbefore = 0, the operator can be set as 0<τ<1, is an appropriately small number.
取W=diag[w1 w2 … wt];Take W=diag[w 1 w 2 ... w t ];
则准则函数可写为准则函数矩阵 Then the criterion function can be written as the criterion function matrix
对准则函数矩阵求偏导并令其等于零可求出参数解;The parametric solution can be obtained by taking the partial derivative of the criterion function matrix and making it equal to zero;
参数解 parametric solution
其中,x″b,y′为第二次平差时参数的改正数,P2为第二次平差观测值权阵, B22、B23为系数阵,l2为常数项,xb前为参数改正数模糊中心。Among them, x″ b , y′ are the correction numbers of the parameters during the second adjustment, P 2 is the weight matrix of the second adjustment observations, B 22 and B 23 are the coefficient matrices, l 2 is the constant term, x b The former is the parameter correction number fuzzy center.
在本发明提供的又一实施例中,所述根据所述第二改正值和所述第一次平差 值计算得到未知参数的第二次平差值,具体为:In another embodiment provided by the present invention, the second adjustment value of the unknown parameter is calculated according to the second correction value and the first adjustment value, specifically:
将所述第二改正值所述第一 次平差值代入平差值计算公式计算第二次平差值;the second correction value the first adjustment value Substitute into the adjustment value calculation formula to calculate the second adjustment value;
所述平差值计算公式为 The calculation formula of the adjustment value is:
在本实施例具体实施时,将所述第一次平差值和参数解代入平差值计算公式 计算第二次平差值并根据计算的第二次平差值用于GNSS 基准站网解算,获得各GNSS网点的坐标。During the specific implementation of this embodiment, the first adjustment value is and parametric solution Substitute into the calculation formula of the adjustment value Calculate the second adjustment value According to the calculated second adjustment value, it is used for the calculation of the GNSS reference station network, and the coordinates of each GNSS network point are obtained.
在本发明提供的又一实施例中,将所述改进的GNSS网序贯平差计算方法应 用于GNSS网,参见图2所示,是本发明实施例提供的GNSS网的网型图;In another embodiment provided by the present invention, the described improved GNSS network sequential adjustment calculation method is applied to the GNSS network, referring to shown in Figure 2, it is the network diagram of the GNSS network provided by the embodiment of the present invention;
采用两台GNSS接收机进行同步观测,LC01、LC03为已知点的接收机,LC02、 LC04视为未知点进行平差计算;Two GNSS receivers are used for synchronous observation, LC01 and LC03 are receivers with known points, and LC02 and LC04 are regarded as unknown points for adjustment calculation;
LC01、LC03、LC02、LC04四个测站的坐标理论值如表1:The theoretical coordinate values of the four stations LC01, LC03, LC02 and LC04 are shown in Table 1:
表1四个测站坐标理论值Table 1 Theoretical values of the coordinates of the four stations
第一期选择1、2、3三个基线向量,第二期选择4、5两个基线向量。通过 MATLAB仿真系统对各基线坐标差理论值附加偶然误差并对基线4、5附加粗差, 形成观测基线信息如表2所示。解算过程中基线方差阵取单位矩阵。Three
表2观测基线信息Table 2 Observation baseline information
分别利用序贯最小二乘及约束序贯算法进行解算,坐标解算结果及坐标残差 分别如表3、表4所示;Sequential least squares and constrained sequential algorithms are used to solve respectively, and the coordinate solution results and coordinate residuals are shown in Table 3 and Table 4 respectively;
表3未知点坐标解算结果/mTable 3 Unknown point coordinate solution results/m
表4坐标残差/mTable 4 Coordinate residuals/m
并将序贯最小二乘及约束序贯算法的坐标误差和坐标残差分别进行对比,如 表5和图3所示;The coordinate errors and coordinate residuals of the sequential least squares and constrained sequential algorithms are compared respectively, as shown in Table 5 and Figure 3;
表5未知点坐标误差Table 5 Coordinate error of unknown point
通过分析以上结果,可以得到:约束序贯解法的坐标残差分别为0.0215m及0.0229m,均小于序贯最小二乘的解算结果;并且约束序贯解法得到的的坐标估 值与理论值的残差均小于序贯最小二乘。说明约束序贯解法充分利用了前期平差 得到的参数先验信息,较于传统最小二乘,具有较好的抗粗差干扰性。By analyzing the above results, it can be obtained that the coordinate residuals of the constrained sequential solution method are 0.0215m and 0.0229m respectively, which are both smaller than the solution results of the sequential least squares; The residuals are smaller than sequential least squares. It shows that the constrained sequential solution method makes full use of the prior information of the parameters obtained by the previous adjustment, and has better resistance to gross error interference than the traditional least squares method.
本发明提出的约束序贯平差模型在保证解算效率的同时提高GNSS网的抗误 差干扰性,提升GNSS网点坐标的解算精度。可应用于以下领域:大规模GNSS 基准站网解算;GNSS技术进行控制网分期布设数据处理。The constrained sequential adjustment model proposed by the present invention improves the anti-error interference of the GNSS network while ensuring the calculation efficiency, and improves the calculation accuracy of the coordinates of the GNSS network point. It can be applied to the following fields: large-scale GNSS reference station network solution; GNSS technology for control network staged data processing.
本发明提供一种改进的GNSS网序贯平差计算方法,通过建立前后期平差模 型的第一组误差方程和第二组误差方程;对所述第一组误差方程单独进行平差, 得到参数改正值矩阵和参数协方差矩阵;根据所述参数改正值矩阵计算得到未知 参数的第一次平差值;对参数协方差阵取对角值计算得到公共参数的中误差;根 据模糊理论,以所述公共参数第一次平差值和所述中误差确定参数的模糊中心和 模糊幅度,根据所述常数项、所述模糊中心和所述模糊幅度构建平差函数约束模 型;对所述构建平差约束函数模型求解得到参数的第二改正值;根据所述第二改 正值和所述第一次平差值计算得到未知参数的第二次平差值;根据所述第二次平 差值计算获得各GNSS网点的坐标。当后期观测信息含有粗差时,可以有效削弱 粗差带来的参数估值扭曲,减少误差积累,提高解算精度。The present invention provides an improved GNSS network sequential adjustment calculation method. By establishing the first group of error equations and the second group of error equations of the adjustment models before and after the adjustment, and adjusting the first group of error equations separately, the result is obtained: The parameter correction value matrix and the parameter covariance matrix; the first adjustment value of the unknown parameter is calculated according to the parameter correction value matrix; the diagonal value of the parameter covariance matrix is calculated to obtain the intermediate error of the public parameter; according to the fuzzy theory, Determine the fuzzy center and fuzzy amplitude of the parameter with the first adjustment value of the common parameter and the intermediate error, and construct an adjustment function constraint model according to the constant term, the fuzzy center and the fuzzy amplitude; Building an adjustment constraint function model and solving to obtain the second correction value of the parameter; calculating the second adjustment value of the unknown parameter according to the second correction value and the first adjustment value; according to the second adjustment value The difference calculation obtains the coordinates of each GNSS network point. When the later observation information contains gross errors, the distortion of parameter estimation caused by gross errors can be effectively weakened, the accumulation of errors can be reduced, and the calculation accuracy can be improved.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术 人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改 进和润饰也视为本发明的保护范围。The above are the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can also be made, and these improvements and modifications may also be regarded as It is the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111290536.8A CN114662268B (en) | 2021-11-02 | 2021-11-02 | Improved GNSS network sequential adjustment calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111290536.8A CN114662268B (en) | 2021-11-02 | 2021-11-02 | Improved GNSS network sequential adjustment calculation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114662268A true CN114662268A (en) | 2022-06-24 |
CN114662268B CN114662268B (en) | 2023-04-07 |
Family
ID=82026227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111290536.8A Active CN114662268B (en) | 2021-11-02 | 2021-11-02 | Improved GNSS network sequential adjustment calculation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114662268B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130342393A1 (en) * | 2012-06-20 | 2013-12-26 | Topcon Positioning Systems, Inc. | Selection of a Subset of Global Navigation Satellite System Measurements Based on Relation between Shifts in Target Parameters and Sum of Residuals |
CN108802781A (en) * | 2018-05-03 | 2018-11-13 | 广州市中海达测绘仪器有限公司 | The acquisition methods of integer ambiguity |
CN109061641A (en) * | 2018-07-06 | 2018-12-21 | 中南大学 | A kind of InSAR timing earth's surface deformation monitoring method based on sequential adjustment |
CN109085629A (en) * | 2018-08-29 | 2018-12-25 | 广州市中海达测绘仪器有限公司 | GNSS baseline vector procession localization method, device and navigation equipment |
CN109633723A (en) * | 2018-12-26 | 2019-04-16 | 东南大学 | A kind of single epoch GNSS calculation method of attached horizontal restraint |
CN110673182A (en) * | 2019-09-29 | 2020-01-10 | 清华大学 | A kind of GNSS high-precision and fast positioning method and device |
CN113295149A (en) * | 2021-05-17 | 2021-08-24 | 中铁第四勘察设计院集团有限公司 | CP III coordinate calculation method and device based on joint observation quantity |
CN113325453A (en) * | 2021-06-22 | 2021-08-31 | 中国科学院精密测量科学与技术创新研究院 | GNSS non-differential ambiguity determination method based on parameter constraint and rapid positioning method |
CN113343163A (en) * | 2021-04-19 | 2021-09-03 | 华南农业大学 | Large-scale corner mesh adjustment and precision evaluation method, system and storage medium |
CN113358017A (en) * | 2021-06-02 | 2021-09-07 | 同济大学 | Multi-station cooperative processing GNSS high-precision deformation monitoring method |
-
2021
- 2021-11-02 CN CN202111290536.8A patent/CN114662268B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130342393A1 (en) * | 2012-06-20 | 2013-12-26 | Topcon Positioning Systems, Inc. | Selection of a Subset of Global Navigation Satellite System Measurements Based on Relation between Shifts in Target Parameters and Sum of Residuals |
CN108802781A (en) * | 2018-05-03 | 2018-11-13 | 广州市中海达测绘仪器有限公司 | The acquisition methods of integer ambiguity |
CN109061641A (en) * | 2018-07-06 | 2018-12-21 | 中南大学 | A kind of InSAR timing earth's surface deformation monitoring method based on sequential adjustment |
CN109085629A (en) * | 2018-08-29 | 2018-12-25 | 广州市中海达测绘仪器有限公司 | GNSS baseline vector procession localization method, device and navigation equipment |
CN109633723A (en) * | 2018-12-26 | 2019-04-16 | 东南大学 | A kind of single epoch GNSS calculation method of attached horizontal restraint |
CN110673182A (en) * | 2019-09-29 | 2020-01-10 | 清华大学 | A kind of GNSS high-precision and fast positioning method and device |
CN113343163A (en) * | 2021-04-19 | 2021-09-03 | 华南农业大学 | Large-scale corner mesh adjustment and precision evaluation method, system and storage medium |
CN113295149A (en) * | 2021-05-17 | 2021-08-24 | 中铁第四勘察设计院集团有限公司 | CP III coordinate calculation method and device based on joint observation quantity |
CN113358017A (en) * | 2021-06-02 | 2021-09-07 | 同济大学 | Multi-station cooperative processing GNSS high-precision deformation monitoring method |
CN113325453A (en) * | 2021-06-22 | 2021-08-31 | 中国科学院精密测量科学与技术创新研究院 | GNSS non-differential ambiguity determination method based on parameter constraint and rapid positioning method |
Non-Patent Citations (3)
Title |
---|
刘洋 等: "组合GNSS系统定位数据质量与精度比较分析", 《北京测绘》 * |
张明 等: "基于序贯平差的长距离基准站间模糊度快速固定", 《武汉大学学报(信息科学版)》 * |
褚成凤 等: "基于方差-协方差阵的宝林隧洞控制点稳定性分析", 《人民长江》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114662268B (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021203871A1 (en) | Cooperative positioning method and apparatus, device, and storage medium | |
CN105629263B (en) | A kind of troposphere atmosphere delay estimation error correcting method and correction system | |
EP4459327A1 (en) | Terminal positioning method and apparatus, and device and medium | |
CN108985373B (en) | Multi-sensor data weighting fusion method | |
CN111556454B (en) | A Weighted DV_Hop Node Location Method Based on Minimum Mean Square Error Criterion | |
CN110618438B (en) | Atmospheric error calculation method and device, computer equipment and storage medium | |
CN108960334B (en) | Multi-sensor data weighting fusion method | |
CN109782269B (en) | Distributed multi-platform cooperative active target tracking method | |
WO2019024895A1 (en) | Real-time estimation and quality control method for gnss satellite clock difference | |
CN109754013B (en) | Electric power system hybrid measurement fusion method based on unscented Kalman filtering | |
CN110426717B (en) | A cooperative positioning method and system, positioning device, and storage medium | |
CN112597428A (en) | Flutter detection correction method based on beam adjustment and image resampling of RFM model | |
CN110493869B (en) | RSSI-based K-nearest neighbor differential correction centroid positioning method | |
CN106353722A (en) | RSSI (received signal strength indicator) distance measuring method based on cost-reference particle filter | |
CN112153564B (en) | Efficient multi-hop positioning method based on combination of centralized and distributed computing | |
CN113295149A (en) | CP III coordinate calculation method and device based on joint observation quantity | |
CN112865096A (en) | Power distribution network state estimation method and system considering PMU (phasor measurement Unit) measurement phase angle deviation | |
CN108684074A (en) | Distance measuring method based on RSSI and device | |
CN114662268A (en) | An Improved GNSS Network Sequential Adjustment Calculation Method | |
CN111354040A (en) | An adjustment method for optical satellite image block network based on Partial EIV model | |
CN112020005B (en) | Method, device and system for solving Long Term Evolution (LTE) network mode three-interference | |
CN108848447B (en) | A Differential DV_Distance Node Localization Method Using Unknown Node Correction | |
CN107909606A (en) | A kind of SAR image registration communication center elimination of rough difference method | |
CN112835079A (en) | GNSS self-adaptive weighting positioning method based on edge sampling consistency | |
CN110673088A (en) | Time-of-arrival-based object localization in mixed line-of-sight and non-line-of-sight environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |