CN114657702B - 一种苦瓜籽油抗菌纤维膜及其制备方法 - Google Patents

一种苦瓜籽油抗菌纤维膜及其制备方法 Download PDF

Info

Publication number
CN114657702B
CN114657702B CN202210127204.6A CN202210127204A CN114657702B CN 114657702 B CN114657702 B CN 114657702B CN 202210127204 A CN202210127204 A CN 202210127204A CN 114657702 B CN114657702 B CN 114657702B
Authority
CN
China
Prior art keywords
balsam pear
seed oil
pear seed
antibacterial
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210127204.6A
Other languages
English (en)
Other versions
CN114657702A (zh
Inventor
陈运娇
刘永发
陈韵
王浩楠
胡冰洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202210127204.6A priority Critical patent/CN114657702B/zh
Publication of CN114657702A publication Critical patent/CN114657702A/zh
Application granted granted Critical
Publication of CN114657702B publication Critical patent/CN114657702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本发明属于抗菌纳米纤维膜制备的技术领域,具体涉及一种苦瓜籽油抗菌纤维膜及其制备方法。本发明公开了以低温连续相变萃取苦瓜籽得到的苦瓜籽油为研究对象,利用苦瓜籽油有效成分的抑菌功能,结合现代静电纺丝技术,将苦瓜籽油包埋于纳米纤维膜中,形成具有纳米结构特点和含天然抗菌剂的抗菌材料。本发明在低温、密闭环境下用正丁烷对苦瓜籽进行萃取,在此基础上结合天然抗菌剂和高生物相容性高聚物的优点,通过静电纺丝制备了以聚乙烯醇为壁材,负载苦瓜籽油的抗菌膜,抗菌性能优良。

Description

一种苦瓜籽油抗菌纤维膜及其制备方法
技术领域
本发明属于抗菌纳米纤维膜制备的技术领域,具体涉及一种苦瓜籽油抗菌纤维膜及其制备方法。
背景技术
苦瓜是葫芦科苦瓜属植物苦瓜的果实,有“药用蔬菜”之称,有很强的药理活性。目前从苦瓜新鲜果实中已经分离出黄酮类、蛋白质类、有机酸类、皂苷类和生物碱类成分,并发现苦瓜具有降血糖、降血脂、抗病毒、抗癌等功能。苦瓜已被开发出多种功能性食品,如苦瓜饮料、凉茶、冰淇淋、罐头等,还被作为辅助降糖的保健食品,但对苦瓜种子的研究甚少,目前还未能引起人们足够的重视。
苦瓜籽,即苦瓜种子,在《本草纲目》中其中含有多种生物活性成分,包括油脂、蛋白质、多肽、番茄红素、苦瓜凝集素等。苦瓜籽油中含有多种脂肪酸,主要包括棕榈酸、硬脂酸、亚油酸和共轭三烯酸(包括α-桐酸、石榴酸和β-桐酸。研究表明,共轭亚麻酸(CLN)具有和共轭亚油酸CLN一样的降脂、抗癌、调节脂质代谢等功能,并且CLN的活性更强。苦瓜籽油是为数不多的富含α-桐酸的天然来源,其保健和药用价值受到越来越多关注。但苦瓜籽油具有强烈的不良风味,以及容易被氧化的特性极大地限制了它的应用和发展,对苦瓜籽油的开发利用却寥寥无几。
目前应用于提取苦瓜籽油的方法有熬制法、溶剂提取法、CO2超临界法等。但苦瓜籽油提取方法目前还存在许多需要解决的问题,如熬制法操作简单,但高温容易使油脂中不饱和脂肪酸被氧化;溶剂提取法不可避免地存在溶剂残留和生产安全性差的问题;CO2超临界萃取技术安全无毒,但提取效率不高。因此应当选择安全无毒且能高效提取的方法是必要的。公开号为CN103349849A的中国专利公开了一种“多功能连续相变萃取装置”,这项技术的应用范围广,能够实现安全、连续的动态萃取,且设备成本和运行成本都较超临界萃取装置低,适用于产业化生产。该技术的原理是利用萃取剂在不同压力和温度下的气、液态的两相变化,和高压下萃取剂的强穿透性,对天然活性物实现动态、高效的油脂萃取。低温连续体现在萃取剂在低于其临界压力和临界温度条件下压缩成液体,流经萃取釜对物料进行萃取后,在解析釜中相变为气体,其中萃取到的物质落入解析釜,解析后的气体再经过压缩成液体,再次流经萃取釜,对物料进行反复萃取的过程,此过程温度比常规炼油温度低很多,时间也大大缩短,并且可使用食品级安全无毒无害萃取剂,无有毒溶剂残留。目前低温连续相变技术应用在植物挥发油、色素等提取研究方面,提取苦瓜籽油成分的研究未见报道。
纳米纤维具有较小的直径和很大的比表面积,而纳米纤维膜具有高透气的特性,利用静电纺丝技术已经成功制备包括聚乙烯醇在内的多个高分子纳米纤维膜。苦瓜籽除含有油脂、蛋白质等,还含有倍半萜、苯丙素和单帖类物质,如反式橙花醇、香芹酮等,对金黄色葡萄球菌、大肠杆菌和白色念珠菌都具有抑制效果。在现有的文献中,未见苦瓜籽油-聚乙烯醇复合抑菌膜的研究。
发明内容
针对现有技术中的上述不足,本发明提供了一种利用低温连续相变萃取苦瓜籽中脂溶性物质的方法以及利用静电纺丝技术制备含苦瓜籽油的纳米纤维膜。本发明提供的苦瓜籽油,品质更好,且提取工艺简单稳定。本发明提供的纳米纤维膜,制备工艺创新且简单,具有优异的抑菌效果。
为实现上述目的,本发明提供如下技术方案:
一种苦瓜籽油抗菌纤维膜的制备方法,包括以下步骤:
S1.原料处理:将苦瓜籽粉碎过筛,得到苦瓜籽粉原料;
S2.低温连续相变萃取:将步骤S1所得苦瓜籽粉原料装入萃取釜,采用低温连续相变萃取,获得苦瓜籽中的脂溶性物质;
S3.苦瓜籽油乳液纺丝溶液制备:将步骤S2萃取的苦瓜籽油和表面活性剂加入水溶液中,进行剪切和微射流处理,得到苦瓜籽油纳米乳液,加入聚乙烯醇溶解,得到纺丝溶液;
S4.将步骤S3制备的纺丝溶液进行静电纺丝,得到苦瓜籽油-聚乙烯醇抗菌纳米纤维膜。
本发明整个萃取过程中,萃取剂有液态到气态再到液态的相变过程是即时、连续的,循环使用的。萃取得到的苦瓜籽油经过解析保存在解析釜中,萃取完毕后进行收集,获得了理想的萃取效果,并在低温和密闭的环境下很好地保存了苦瓜籽中的热敏性、不稳定物质,从而获得品质良好的苦瓜籽油。
作为本发明优选的技术方案,步骤S2中所述低温连续相变萃取工艺条件为:萃取温度为50-70℃,压力为0.5-0.7MPa,萃取剂为正丁烷,以120mL/h的流速流经萃取釜,连续萃取40-50min。
优选地,步骤S2中所述苦瓜籽粉原料的颗粒度为40目,所述低温连续相变萃取过程中,萃取温度为50℃,压力为0.7MPa,萃取时间为45min,解析温度为60℃。
本发明利用苦瓜籽油有效成分的抑菌功能,在此基础上结合高生物相容性高聚物的优点,通过静电纺丝技术,制备了以聚乙烯醇为壁材,负载苦瓜籽油的抗菌膜,形成具有纳米结构特点和含天然抗菌剂的抗菌材料。
优选地,步骤S3中所述苦瓜籽油乳液纺丝溶液中苦瓜籽油的质量分数为8%-12%,表面活性剂质量分数为3%-5%,聚乙烯醇质量分数为8%-12%。
优选地,步骤S3中所述水溶液温度为40℃。
优选地,步骤S3中所述表面活性剂为吐温-80。
优选地,步骤S3中所述剪切的转速为14000rpm-20000rpm,所述微射流的压力为800bar-1400bar,流速为70mL/min-120mL/min。
优选地,步骤S4中所述静电纺丝工艺中,纺丝电压为16KV-20KV,接收距离为12cm-16cm,推进速度为0.4mL/h-0.8mL/h。
本发明还同时保护采用上述方法制备得到的苦瓜籽油抗菌纤维膜。
与现有技术相比,本发明的有益效果是:
(1)本发明采用低温连续相变萃取技术萃取苦瓜籽油,萃取过程在密闭绝氧、避光和低温低压的条件下进行,与常规方法相比,苦瓜籽油的酸价和过氧化值均大大降低,提高了苦瓜籽油的品质、保存活性物质、适应规模化生产,也适用于热敏性、光敏性以及易氧化酸败的油脂工业化生产。
(2)本发明在苦瓜籽油-聚乙烯醇抗菌膜的制备方法中,采用乳液静电纺丝的方式制备纳米纤维膜,由于苦瓜籽油在常温下呈现半固体状的限制,所以,本发明在制备苦瓜籽油纳米乳液和纺丝溶液的同时,通过加热溶液和高压微射流通道的方式维持整体溶液的温度,从而使苦瓜籽油的乳液颗粒均匀地分布于纺丝溶液中,制备成苦瓜籽油抗菌纳米纤维。
(3)本发明将从苦瓜籽提取的油状液体应用于静电纺丝制备纳米纤维膜中,不仅增加了苦瓜籽油的氧化稳定性,也开发了苦瓜籽油的抑菌功能和用途,减少因苦瓜籽油的不良风味带来的应用限制。
附图说明
图1为本发明经低温连续相变萃取技术萃取的苦瓜籽油在凝固和熔融状态下的图片。
图2为本发明实施例2、对比例4和对比例5制成的苦瓜籽油抗菌纤维膜的扫描电镜图。
图3为本发明实施例2和对比例2进行抑菌实验的实验结果图。
图4为本发明实施例2制成的苦瓜籽油纤维膜的氧化稳定性的效果对比图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行制备。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
一种苦瓜籽油抗菌纤维膜的制备方法,包括以下步骤:
S1.将挑选除杂后的苦瓜籽粉碎至40目,过筛去除大部分苦瓜籽外壳,得到苦瓜籽粉原料;
S2.称取处理后的苦瓜籽粉原料300g,装入低温连续相变装置的萃取釜中,然后接入高纯度正丁烷,以流量120L/h的流速流经萃取釜进行萃取,萃取苦瓜籽油后,流入解析釜,萃取剂经过减压和加热,相变为气体并于苦瓜籽油分离。萃取的苦瓜籽油保存在解析釜底部,萃取完毕后放出解析釜,回收正丁烷,其中,萃取温度为50℃、萃取压力为0.7MPa,萃取时间为45min,解析温度为60℃。
得到苦瓜籽油110.4g,得率为36.8%,产品为橙黄色、粘稠性的液体,具备特有的苦瓜的气味,冷却后呈白色半固体状。
S3.提供苦瓜籽油乳液纺丝溶液:称取100重量份的水,加热并保持水溶液温度为40℃,加入8重量份的苦瓜籽油和3重量份的吐温-80并在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理,最后加入8重量份的聚乙烯醇,得到苦瓜籽油纳米乳液纺丝溶液。
S4.在纺丝电压为20KV,接收距离为15cm,推进速度为0.4mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
实施例2
一种苦瓜籽油抗菌纤维膜的制备方法,包括以下步骤:
S1.将挑选除杂后的苦瓜籽粉碎至40目,过筛去除大部分苦瓜籽外壳,得到苦瓜籽粉原料;
S2.称取处理后的苦瓜籽粉原料300g,装入低温连续相变装置的萃取釜中,然后接入高纯度正丁烷,以流量120L/h的流速流经萃取釜进行萃取,萃取苦瓜籽油后,流入解析釜,萃取剂经过减压和加热,相变为气体并于苦瓜籽油分离。萃取的苦瓜籽油保存在解析釜底部,萃取完毕后放出解析釜,回收正丁烷,其中,萃取温度为50℃、萃取压力为0.7MPa,萃取时间为45min,解析温度为60℃。
S3.称取100重量份的水加热保持温度为40℃,加入10重量份的苦瓜籽油和3重量份的吐温-80并在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理,最后加入10重量份的聚乙烯醇,得到苦瓜籽油纳米乳液纺丝溶液。
S4.在纺丝电压为18KV,接收距离为14cm,推进速度为0.6mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
实施例3
一种苦瓜籽油抗菌纤维膜的制备方法,包括以下步骤:
S1.将挑选除杂后的苦瓜籽粉碎至40目,过筛去除大部分苦瓜籽外壳,得到苦瓜籽粉原料;
S2.称取处理后的苦瓜籽粉原料300g,装入低温连续相变装置的萃取釜中,然后接入高纯度正丁烷,以流量120L/h的流速流经萃取釜进行萃取,萃取苦瓜籽油后,流入解析釜,萃取剂经过减压和加热,相变为气体并于苦瓜籽油分离。萃取的苦瓜籽油保存在解析釜底部,萃取完毕后放出解析釜,回收正丁烷,其中,萃取温度为50℃、萃取压力为0.7MPa,萃取时间为45min,解析温度为60℃。
S3.称取100重量份的水加热保持温度为40℃,加入10重量份的苦瓜籽油和3重量份的吐温-80并在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理,最后加入12重量份的聚乙烯醇,得到苦瓜籽油纳米乳液纺丝溶液。
S4.在纺丝电压为18KV,接收距离为16cm,推进速度为0.8mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
对比例1
称取100重量份的水,在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理,最后加入8重量份的聚乙烯醇,得到纺丝溶液。
在纺丝电压为20KV,接收距离为15cm,推进速度为0.4mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
对比例2
称取100重量份的水,在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理,最后加入10重量份的聚乙烯醇,得到纺丝溶液。
在纺丝电压为18KV,接收距离为14cm,推进速度为0.6mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
对比例3
称取100重量份的水,在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理,最后加入12重量份的聚乙烯醇,得到纺丝溶液。
在纺丝电压为18KV,接收距离为16cm,推进速度为0.8mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
对比例4
S1.将挑选除杂后的苦瓜籽粉碎至40目,过筛去除大部分苦瓜籽外壳,得到苦瓜籽粉原料;
S2.称取处理后的苦瓜籽粉原料300g,装入低温连续相变装置的萃取釜中,然后接入高纯度正丁烷,以流量120L/h的流速流经萃取釜进行萃取,萃取苦瓜籽油后,流入解析釜,萃取剂经过减压和加热,相变为气体并于苦瓜籽油分离。萃取的苦瓜籽油保存在解析釜底部,萃取完毕后放出解析釜,回收正丁烷,其中,萃取温度为50℃、萃取压力为0.7MPa,萃取时间为45min,解析温度为60℃。
S3.称取100重量份的水加热并保温40℃,加入10重量份的苦瓜籽油和3重量份的吐温-80并在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理得到苦瓜籽油乳液。称取30重量份的苦瓜籽油乳液,加入70重量份的乙醇和25重量份的玉米醇溶蛋白,得到纺丝溶液。
S4.在纺丝电压为18KV,接收距离为16cm,推进速度为0.4mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
对比例5
S1.将挑选除杂后的苦瓜籽粉碎至40目,过筛去除大部分苦瓜籽外壳,得到苦瓜籽粉原料;
S2.称取处理后的苦瓜籽粉原料300g,装入低温连续相变装置的萃取釜中,然后接入高纯度正丁烷,以流量120L/h的流速流经萃取釜进行萃取,萃取苦瓜籽油后,流入解析釜,萃取剂经过减压和加热,相变为气体并于苦瓜籽油分离。萃取的苦瓜籽油保存在解析釜底部,萃取完毕后放出解析釜,回收正丁烷,其中,萃取温度为50℃、萃取压力为0.7MPa,萃取时间为45min,解析温度为60℃。
S3.称取100重量份的水,加热保温40℃,加入10重量份的苦瓜籽油和3重量份的吐温-80并在18000rpm的转速下进行高速剪切4min,然后在压力为1000bar-1200bar,流速为90mL/min条件下进行高压微射流处理得到苦瓜籽油乳液。称取50重量份的乙醇、45重量份的乙酸和5重量份的水,分别加入2重量份的壳聚糖和9重量份的明胶,搅拌30分钟。将得到的两种溶液按壳聚糖与明胶的比例为1:8混合,然后将苦瓜籽油乳液加入到生物聚合物溶液中
S4.在纺丝电压为18KV,接收距离为14cm,推进速度为0.4mL/h的参数条件下对纺丝溶液进行静电纺丝,纺丝针头接入正极,接收板接入负极,以锡箔纸作为接受基底,纳米纤维膜制成后,在常温下自然晾干,得到纳米纤维膜。
为了进一步说明本发明的技术效果,分别对实施例及对比例的制备的样品形貌及性能进行表征和测试。
实验例1形貌表征
扫描电镜的测试方法:使用真空镀膜仪(EM ACE600,Germany)在真空条件下对纳米纤维膜进行Au涂层,然后使用SEM(EVO MA15,ZEISS,Germany)对本发明实施例2和对比例4、对比例5制备的苦瓜籽油抗菌纤维膜的形貌进行扫描表征,结果见图2所示。
从图2的微观形貌可以看出,相较于对比例4和对比例5,本发明实施例2制备的苦瓜籽油抗菌纤维膜效果更好,抗菌纤维无规则交织在一起,层次错落有致,没有液滴或纺锤体结构出现,粗细分布更均匀。
实验例2酸价和过氧化值测定
根据中国食品安全国家标准中酸价《GB 5009.229-2016》和过氧化值《GB5009.227-2016》中的方法,测定实施例1和采用常规索氏提取法提取的苦瓜籽油的酸值、过氧化值,测定结果如表1所示。
表1不同方法提取的苦瓜籽油的基本理化性质
a , b标注字母表示差异显著(p<0.05)
由表1测试数据可知,本发明采用低温连续相变技术萃取的苦瓜籽油酸价和过氧化值都优于索氏提取法,能够很好地维持苦瓜籽油原本的理化性质,保护苦瓜籽油不受高温和氧气的影响。
实验例3抑菌性能测定
抑菌圈的测试方法:采用的细菌为标准菌株大肠埃希氏菌(ATCC25922)和金黄色葡萄球菌(ATCC6538),阳性对照组为硫酸新霉素,阴性对照组为PVA纳米纤维膜。
实验方法:将一环菌种接种到100mL营养液中,并在37℃和170epm/min条件下孵育12h。然后取10mL菌液接种到新的100mL营养液中并再次孵育12h。用10倍稀释法将1mL的二次孵育的菌液稀释成107-108CFU/mL的浓度。然后将稀释后的菌液倒在平板上均匀扩散。将样品和阴性对照组将样品剪切成6mm的圆形并在紫外射线下照射4h,然后放置在接种后的平板上。阳性对照组则是将样品替换成添加了0.5mg硫酸新霉素并消毒的滤纸。将处理好的平板在37℃下孵育24h,然后测定各个平板的抑菌圈。实验结果见图3,测定数据见表2。
表2
a,b—,无数值
c硫酸新霉素,0.5mg/板
d硫酸新霉素,0.5mg/mL
结合图3和表2的结果显示,本发明提供的苦瓜籽油抗菌膜对大肠杆菌和金黄葡萄球菌有明显的抑制效果,对大肠杆菌的抑菌圈大小为22.3±0.4mm,最低抑菌浓度为25mg/mL,对金黄葡萄球菌的抑菌圈大小为20.7±0.3mm,最低抑菌浓度为30mg/mL,具有优良的抑菌性能。
实验例4储存稳定性
过氧化值的测定方法:采用二甲酚橙法,用紫外分光光度计(UV-1750,SHIMADZUCO.,Japan)测定溶液的吸光度,建立了过氧化值与吸光度的线性回归方程。H2O2溶液的最大吸收波长为560nm。根据浓度配制一系列H2O2标准甲醇溶液(10-70mmol/Kg),分别加入一定量的FOX试剂。测定了一系列H2O2溶液在560nm处的吸光度,建立了与吸光度对应的过氧化值的线性回归方程。采用相同的方法测定不同时期(0、5、10、15、20、25天)、不同样品(包埋和未包埋)和不同保存条件(有氧和无氧)的吸光度,得到苦瓜籽油的氧化情况。测定结果见图4,本发明制备的苦瓜籽油包埋于纳米纤维膜中储存稳定性更好。
本发明的上述实施例仅仅是为了清楚地说明本发明技术方案的所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (3)

1.一种苦瓜籽油抗菌纤维膜的制备方法,其特征在于,包括以下步骤:
S1.原料处理:将苦瓜籽粉碎过筛,得到苦瓜籽粉原料;
S2.低温连续相变萃取:将步骤S1所得苦瓜籽粉原料装入萃取釜,采用低温连续相变萃取,获得苦瓜籽中的脂溶性物质;
S3.苦瓜籽油乳液纺丝溶液制备:将步骤S2萃取的苦瓜籽油和表面活性剂加入水溶液中,并进行剪切和微射流处理,得到苦瓜籽油纳米乳液,并加入聚乙烯醇溶解得到纺丝溶液;
S4.将步骤S3制备的纺丝溶液进行静电纺丝,得到苦瓜籽油-聚乙烯醇抗菌纳米纤维膜;
其中,步骤S2中所述苦瓜籽粉原料的颗粒度为40目,所述低温连续相变萃取过程中,萃取温度为50℃,压力为0.7MPa,萃取时间为45min,解析温度为60℃,萃取剂为正丁烷,以120mL/h的流速流经萃取釜,连续萃取40-50min;
步骤S2萃取的苦瓜籽油根据中国食品安全国家标准中酸价《GB5009.229-2016》和过氧化值《GB5009.227-2016》中的方法测定酸值为2.22±0.03a mg/g,过氧化值为0.128±0.001b g/100g,a,b标注字母表示差异显著,p<0.05;
步骤S3中所述水溶液温度为40℃,步骤S3中所述苦瓜籽油乳液纺丝溶液中苦瓜籽油的质量分数为8%-12%,表面活性剂为吐温-80质量分数为3%-5%,聚乙烯醇质量分数为8%-12%;
步骤S4所述抗菌纳米纤维膜在针对标准菌株大肠埃希氏菌ATCC25922和金黄色葡萄球菌ATCC6538的抑菌试验中,抑菌圈大小分别为22.3±0.4 mm和20.7±0.3 mm,最低抑菌浓度分别为25 mg/mL和30 mg/mL,所述抑菌试验过程为:将一环ATCC25922或ATCC25922菌种接种到100mL营养液中,并在37℃和170 epm/min条件下孵育12h,然后取10mL菌液接种到新的100mL营养液中并再次孵育12h,用10倍稀释法将1mL的二次孵育的菌液稀释成107~108 CFU/mL的浓度,然后将稀释后的菌液倒在平板上均匀扩散,将抗菌纳米纤维膜剪切成6mm的圆形并在紫外射线下照射4h,然后放置在接种后的平板上,将处理好的平板在37℃下孵育24h,测定抑菌圈。
2.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述剪切的转速为14000rpm-20000 rpm,所述微射流的压力为800 bar-1400 bar,流速为70 mL/min-120 mL/min。
3.根据权利要求1所述的制备方法,其特征在于,步骤S4中所述静电纺丝工艺中,纺丝电压为16 KV-20 KV,接收距离为12cm-16cm,推进速度为0.4 mL/h-0.8 mL/h。
CN202210127204.6A 2022-02-11 2022-02-11 一种苦瓜籽油抗菌纤维膜及其制备方法 Active CN114657702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210127204.6A CN114657702B (zh) 2022-02-11 2022-02-11 一种苦瓜籽油抗菌纤维膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210127204.6A CN114657702B (zh) 2022-02-11 2022-02-11 一种苦瓜籽油抗菌纤维膜及其制备方法

Publications (2)

Publication Number Publication Date
CN114657702A CN114657702A (zh) 2022-06-24
CN114657702B true CN114657702B (zh) 2023-11-24

Family

ID=82027664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210127204.6A Active CN114657702B (zh) 2022-02-11 2022-02-11 一种苦瓜籽油抗菌纤维膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114657702B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096831A1 (en) * 2022-10-31 2024-05-10 Sampiyon Filtre Pazarlama Ticaret Ve Sanayi Anonim Sirketi Production method of a filtering surface for antibacterial cabin filters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040289A (ja) * 2011-08-17 2013-02-28 Central Research Institute Of Electric Power Industry 油糧植物からの油脂抽出方法及び油糧植物の脱脂物の製造方法
CN103173279A (zh) * 2013-03-06 2013-06-26 曹庸 一种连续相变萃取茶油的方法
CN105360169A (zh) * 2015-11-24 2016-03-02 仲恺农业工程学院 一种连续相变萃取油茶中抑菌物质的方法及应用
CN109082774A (zh) * 2018-09-05 2018-12-25 华南理工大学 一种含青天葵提取物的抗氧化纳米纤维复合膜及制备方法和应用
CN111535028A (zh) * 2020-04-23 2020-08-14 罗莱生活科技股份有限公司 一种持久性护肤面料及其制备方法和其应用
WO2021035087A1 (en) * 2019-08-20 2021-02-25 Evolved By Nature, Inc. Silk personal care compositions
CN113817539A (zh) * 2021-09-03 2021-12-21 华南农业大学 一种利用低温连续相变萃取花生粕油的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190201298A1 (en) * 2018-01-03 2019-07-04 Rocketfuelabs, LLC Product and method for local cleansing, beautifying, promoting attractiveness or altering appearance of a subject

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040289A (ja) * 2011-08-17 2013-02-28 Central Research Institute Of Electric Power Industry 油糧植物からの油脂抽出方法及び油糧植物の脱脂物の製造方法
CN103173279A (zh) * 2013-03-06 2013-06-26 曹庸 一种连续相变萃取茶油的方法
CN105360169A (zh) * 2015-11-24 2016-03-02 仲恺农业工程学院 一种连续相变萃取油茶中抑菌物质的方法及应用
CN109082774A (zh) * 2018-09-05 2018-12-25 华南理工大学 一种含青天葵提取物的抗氧化纳米纤维复合膜及制备方法和应用
WO2021035087A1 (en) * 2019-08-20 2021-02-25 Evolved By Nature, Inc. Silk personal care compositions
CN111535028A (zh) * 2020-04-23 2020-08-14 罗莱生活科技股份有限公司 一种持久性护肤面料及其制备方法和其应用
CN113817539A (zh) * 2021-09-03 2021-12-21 华南农业大学 一种利用低温连续相变萃取花生粕油的方法

Also Published As

Publication number Publication date
CN114657702A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
Yuan et al. Shellac: A promising natural polymer in the food industry
Nambiar et al. Microencapsulation of tender coconut water by spray drying: effect of Moringa oleifera gum, maltodextrin concentrations, and inlet temperature on powder qualities
Rodríguez-Félix et al. Trends in Sustainable Green Synthesis of Silver Nanoparticles Using Agri‐Food Waste Extracts and Their Applications in Health
CN108477455B (zh) 柑橘全果超微粉的制备方法及柑橘全果超微粉
CN109157454B (zh) 一种红山茶组合提取物及其制备和在化妆品中的应用
CN114657702B (zh) 一种苦瓜籽油抗菌纤维膜及其制备方法
Patel Reviewing the prospects of Opuntia pears as low cost functional foods
CN105050413A (zh) 微藻粉颗粒及其制备方法
CN107405296B (zh) 通过用助溶溶液挤出来制备植物性来源的基质的提取物的方法
Tramontin et al. Biological activity and chemical profile of Brazilian jackfruit seed extracts obtained by supercritical CO2 and low pressure techniques
CN108403808A (zh) 一种刺梨提取物的制备方法
CN110999988A (zh) 一种白茶茶叶籽油微胶囊的制备方法
CN107412065A (zh) 一种含火龙果色素的口红及其制备方法
US20190281872A1 (en) Method of Plant Resin Separation and Extraction
Saleh et al. Exploitation of cantaloupe peels for bacterial cellulose production and functionalization with green synthesized Copper oxide nanoparticles for diverse biological applications
CN107404926A (zh) 用于在水介质中用非离子两亲性化合物作为提取佐剂制备植物来源的基质的提取物的方法
CN106721849A (zh) 一种黑果枸杞花青素冲饮颗粒剂的制备方法
Madhumeena et al. Effective utilization of pineapple waste
KR101423116B1 (ko) 저온 미분쇄기를 이용한 삼 배양근 초미세 분말의 제조 방법 및 그에 따른 삼 배양근 초미세 분말
Tin et al. Effect of preparation and extraction parameters of banana (Musa balbisiana cv. Saba) inflorescence on their antibacterial activities
Oussou et al. Valorization of cocoa, tea and coffee processing by-products-wastes
Kurniasih et al. Effect of different coating materials on the characteristics of chlorophyll microcapsules from caulerpa racemosa
CN114668129B (zh) 一种亚麻籽仁速溶粉及其制备方法
Septiani et al. The effect of solvent volume ratio and extraction time on the yield of red dye from sappanwood
EP1603581A2 (en) System and method for treating biological tissue using direct current electrical field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant