CN114657642A - 一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法 - Google Patents

一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法 Download PDF

Info

Publication number
CN114657642A
CN114657642A CN202210294266.6A CN202210294266A CN114657642A CN 114657642 A CN114657642 A CN 114657642A CN 202210294266 A CN202210294266 A CN 202210294266A CN 114657642 A CN114657642 A CN 114657642A
Authority
CN
China
Prior art keywords
bismuth
oxygen
selenium
pulse laser
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210294266.6A
Other languages
English (en)
Other versions
CN114657642B (zh
Inventor
乔梁
陈培
高云冲
周祥寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210294266.6A priority Critical patent/CN114657642B/zh
Publication of CN114657642A publication Critical patent/CN114657642A/zh
Application granted granted Critical
Publication of CN114657642B publication Critical patent/CN114657642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于薄膜沉积技术领域,具体提供一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,用以解决铋氧硒薄膜制备过程中出现的结晶度不高、杂质浓度过高等问题。本发明采用铋氧硒靶材,基于脉冲激光沉积技术于钙钛矿氧化物单晶衬底上外延生成铋氧硒薄膜,对脉冲激光沉积参数进行精准设计:设置背底真空小于9×10‑3Pa、靶材与衬底之间的距离为50mm~60mm、生长温度范围为400℃~510℃、生长时间大于2min~20min,设置脉冲激光的重复频率为1Hz~9Hz、脉冲激光聚焦在靶材上的能量密度范围为0.5J/cm2~4J/cm2、脉冲激光聚焦在靶材上的光斑面积为1~2.5mm2,最终制备得高结晶度、无杂质的铋氧硒外延薄膜,为研究和设计基于铋氧硒的功能器件提供了基础条件。

Description

一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法
技术领域
本发明属于薄膜沉积技术领域,具体提供一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法。
背景技术
二维材料的兴起为探索纳米尺度的低维物理和设计革命性的功能器件提供了全新的平台,自2017年成功合成单分子层高质量铋氧硒以来,铋氧硒因其独特的物理化学特性吸引了半导体业界和学界的广泛关注;随着研究的深入,铋氧硒优异的性质被认为是后硅时代突破硅基半导体行业技术壁垒和设计下一代高性能低功耗电子产品的潜在候选者。脉冲激光沉积可以实现大规模的薄膜制备,是薄膜的工业应用中优选的外延生长技术;但是,目前基于脉冲激光沉积实现铋氧硒外延薄膜的方法还有诸多瑕疵,例如:生长的铋氧硒薄膜结晶度不高、薄膜中存在大量的杂质。
发明内容
本发明的目的在于提供一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,用以解决铋氧硒薄膜制备过程中出现的结晶度不高、杂质浓度过高等问题。
为实现上述目的,本发明采用的技术方案为:
一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,包括以下步骤:采用铋氧硒靶材,基于脉冲激光沉积技术于钙钛矿氧化物单晶衬底上外延生成铋氧硒薄膜;所述脉冲激光沉积过程中,设置背底真空小于9×10-3Pa、生长温度范围为400℃~510℃、生长时间大于2min~20min,设置脉冲激光的重复频率为1Hz~9Hz、脉冲激光聚焦在靶材上的能量密度范围为0.5J/cm2~4J/cm2,脉冲激光持续轰击铋氧硒靶材产生等离子体,等离子体沉积到钙钛矿氧化物单晶衬底上形成铋氧硒外延薄膜。
进一步的,所述铋氧硒靶材中,铋、氧、硒原子的化学计量比为2:2:1.x,其中,x的取值范围为1~9。
进一步的,所述脉冲激光聚焦在靶材上的光斑面积为1~2.5mm2,通过调节聚焦镜与靶材之间的相对位置实现控制。
进一步的,所述铋氧硒靶材与钙钛矿氧化物单晶衬底之间的距离为50mm~60mm。
进一步的,所述制备方法还包括预溅射:在薄膜生长之前,开启衬底与靶材之间的挡板,在真空环境下利用脉冲激光持续轰击靶材。
进一步的,所述制备方法中,薄膜开始生长时,靶材绕其靶面法线方向自转,并且靶材在平行于衬底的平面内做小角度往复运动。
本发明的有益效果在于:
本发明提供一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,通过脉冲激光沉积参数的精准设计,能够实现高结晶度、无杂质的铋氧硒外延薄膜的大规模制备,为研究和设计基于铋氧硒的功能器件提供了基础条件;更为具体的讲,本发明具有如下优点:1)在薄膜生长之前做预溅射能够有效地去掉靶材的表面薄层并清理附着在靶材表面的杂质,以达到控制薄膜内杂质浓度的功效;2)背底真空小于9×10-3Pa能够最大限度的降低脉冲激光沉积系统的真空腔内的空气成分参与到薄膜生长的物理化学过程中,以避免化学计量比的失衡;3)在1Hz~9Hz的激光重复频率内生长铋氧硒外延薄膜,能够实现铋氧硒在钙钛矿氧化物单晶衬底上的晶格外延;4)生长时间大于2min,便于生长的薄膜能够被X射线衍射仪表征;5)0.5J/cm2~4J/cm2的能量密度范围能够实现等离子体中粒子密度在合适的范围内;6)生长温度设定为400℃~510℃,能够为到达衬底表面的粒子提供能量以便于在衬底上的迁移和排列;7)靶材和衬底之间的距离设定为50mm~60mm,若距离太小,则粒子在衬底表面的迁移受到后续粒子的阻碍;若距离太远,则到达衬底表面的粒子密度过低,不利于结晶;8)铋、氧、硒原子的化学计量比设定为2:2:1.x,并且x可以在1到9之间调整,便于调控薄膜的导电性;9)在薄膜生长过程,靶材在做自转和公转运动可以有利于靶材表面的平整,防止激光在靶材表面轰击出坑洞、环形凹槽;10)较小的光斑面积能够有效的控制等离子体中粒子的密度;最终,制备得到在钙钛矿氧化物单晶衬底上外延生长的高质量铋氧硒薄膜。
附图说明
图1为实施例1中基于脉冲激光沉积技术生长的铋氧硒薄膜的高分辨Phi扫描图。
图2为实施例1中基于脉冲激光沉积技术在不同生长温度下制备的铋氧硒外延薄膜的X射线衍射图谱。
图3为实施例1中基于脉冲激光沉积技术生长的铋氧硒薄膜的原子力显微镜表征图像。
图4为图3中白色划线部分的高度信息图像。
图5为实施例2中基于脉冲激光沉积技术在不同的频率下制备的铋氧硒外延薄膜的X射线衍射图谱。
具体实施方式
以下结合实施例对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围;实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行,所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,具体为:预溅射的时间为5min,背底真空为4×10-4Pa,激光重复频率为9Hz,生长时间为10min,能量密度为1J/cm2,靶材和衬底之间的距离为55mm,靶材中铋、氧、硒原子的化学计量比为2:2:1.3,靶材绕其法线自转并在平行于衬底的平面内做往复运动,激光辐照在靶材上的光斑面积为1.6mm2,生长温度依次为400、430、450、470、510℃,钙钛矿氧化物衬底优选为SrTiO3<001>。
对本实施例制得的铋氧硒外延薄膜进行Phi扫描、X射线衍射测试和原子力显微镜测试,测试结果分别如图1、图2、图3和图4所示;其中,Phi扫描所使用的样品为在510℃下生长的铋氧硒薄膜,原子力显微镜测试所使用样品为510℃下生长的铋氧硒薄膜;Phi扫描的扫描角度范围为-10°~350°,X射线衍射的测试角度范围为10°~80°,原子力显微镜测试区域为2μm×2μm、扫描频率为0.5Hz。如图1所示,对于510℃生长的铋氧硒薄膜而言,Phi扫描结果显示铋氧硒非常尖锐和强的<011>衍射峰具有90°的间隔,与SrTiO3<011>的四个衍射峰完全对应,表明铋氧硒的四重对称性,并证实了铋氧硒在SrTiO3上的面内外延生长。如图2所示,所有生长温度下都能形成沿衬底的(00l)方向的面外铋氧硒相,通过XRD可以清楚的观测到,在整个薄膜生长过程没有任何的第二相出现,表明铋氧硒薄膜不具备任何杂质;X射线衍射结果表明在400℃~510℃范围生长的铋氧硒具有较高的结晶度并且没有观测到任何杂质的存在。如图3所示,510℃下生长铋氧硒薄膜具有光滑的表面形貌,其表面粗糙度为0.433nm,并且表面可以清晰地看到层与层之间的台阶;表明单晶铋氧硒薄膜不仅与SrTiO3衬底之间具有良好的外延关系,而且具有平整的表面形貌。图4揭示了图3中白色划线部分的高度信息,如图4所示,经过测量,图3中台阶之间的高度约为0.6nm,与铋氧硒的面外晶格常数(c=0.608nm)一致。综上,本实施例制备得到的铋氧硒外延薄膜具有结晶度高、无杂质的优点,并且薄膜具有光滑的表面形貌。
实施例2
本实施例提供一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,具体为:预溅射的时间为5min,背底真空为4×10-4Pa,激光重复频率分别为1Hz、2Hz、5Hz、9Hz,生长时间为5min,能量密度为1J/cm2,靶材和衬底之间的距离为55mm,靶材中铋、氧、硒原子的化学计量比为2:2:1.3,靶材绕其法线自转并在平行于衬底的平面内做往复运动,激光辐照在靶材上的光斑面积为1.6mm2,生长温度为450℃,钙钛矿氧化物衬底优选为SrTiO3<001>。
对本实施例制得的铋氧硒外延薄膜进行X射线衍射测试,结果如图5所示,由图可见,本实施例分别以1Hz、2Hz、5Hz、9Hz在衬底上生长的铋氧硒薄膜均表现为单晶相,表明1Hz-9Hz的频率范围内以上述生长条件均可以制备出高质量的单晶铋氧硒外延薄膜。
同时,本发明采用文献“Epitaxial growth and characterization of highquality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition”作为对比例,该文献中,通过脉冲激光沉积在SrTiO3单晶衬底上制备了不同厚度的铋氧硒外延薄膜,所得薄膜表现为单晶相并具有Bi8Se7杂质,12nm、18nm、36nm、60nm厚的铋氧硒薄膜表面粗糙度分别为2.38nm、3.73nm、0.93nm、5.12nm。与之相比,本发明制得了具有光滑表面形貌的无杂质高质量单晶铋氧硒外延薄膜,在所选参数范围内,铋氧硒薄膜表现为单晶相并不具备任何杂质,薄膜厚度为147nm时其表面粗糙度低至0.466nm,通过Phi扫描证明铋氧硒和SrTiO3之间良好的晶格外延关系。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (6)

1.一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,包括以下步骤:采用铋氧硒靶材,基于脉冲激光沉积技术于钙钛矿氧化物单晶衬底上外延生成铋氧硒薄膜;所述脉冲激光沉积过程中,设置背底真空小于9×10-3Pa、生长温度范围为400℃~510℃、生长时间为2min~20min,设置脉冲激光的重复频率为1Hz~9Hz、脉冲激光聚焦在靶材上的能量密度范围为0.5J/cm2~4J/cm2,脉冲激光持续轰击铋氧硒靶材产生等离子体,等离子体沉积到钙钛矿氧化物单晶衬底上形成铋氧硒外延薄膜。
2.按权利要求1所述基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,其特征在于,所述铋氧硒靶材中,铋、氧、硒原子的化学计量比为2:2:1.x,其中,x的取值范围为1~9。
3.按权利要求1所述基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,其特征在于,所述脉冲激光聚焦在靶材上的光斑面积为1~2.5mm2,通过调节聚焦镜与靶材之间的相对位置实现控制。
4.按权利要求1所述基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,其特征在于,所述铋氧硒靶材与钙钛矿氧化物单晶衬底之间的距离为50mm~60mm。
5.按权利要求1所述基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,其特征在于,所述制备方法还包括预溅射:在薄膜生长之前,开启衬底与靶材之间的挡板,在真空环境下利用脉冲激光持续轰击靶材。
6.按权利要求1所述基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法,其特征在于,所述制备方法中,薄膜开始生长时,靶材绕其靶面法线方向自转,并且靶材在平行于衬底的平面内做小角度往复运动。
CN202210294266.6A 2022-03-23 2022-03-23 一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法 Active CN114657642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210294266.6A CN114657642B (zh) 2022-03-23 2022-03-23 一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210294266.6A CN114657642B (zh) 2022-03-23 2022-03-23 一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法

Publications (2)

Publication Number Publication Date
CN114657642A true CN114657642A (zh) 2022-06-24
CN114657642B CN114657642B (zh) 2023-11-07

Family

ID=82031856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210294266.6A Active CN114657642B (zh) 2022-03-23 2022-03-23 一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法

Country Status (1)

Country Link
CN (1) CN114657642B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096206A (zh) * 2023-10-17 2023-11-21 北京大学 一种基于铋氧硒-钙钛矿异质结的光感算一体器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN110184654A (zh) * 2019-06-06 2019-08-30 江苏科技大学 一种Bi2O2Se晶体及其制备方法
CN110438567A (zh) * 2019-07-22 2019-11-12 中国科学院上海微系统与信息技术研究所 一种半导体硒氧化铋单晶薄膜材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN110184654A (zh) * 2019-06-06 2019-08-30 江苏科技大学 一种Bi2O2Se晶体及其制备方法
CN110438567A (zh) * 2019-07-22 2019-11-12 中国科学院上海微系统与信息技术研究所 一种半导体硒氧化铋单晶薄膜材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, JUNTING: "High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber", NATURE COMMUNICATIONS, vol. 13, no. 1, pages 3855 *
YEKAI SONG: "Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition", vol. 31, no. 16, pages 1 - 18 *
陈培: "高对称相硒氧化物薄膜的外延生长与性能研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 1, pages 020 - 1653 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096206A (zh) * 2023-10-17 2023-11-21 北京大学 一种基于铋氧硒-钙钛矿异质结的光感算一体器件及其制备方法

Also Published As

Publication number Publication date
CN114657642B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
Sagalowicz et al. Planar defects in ZnO thin films deposited on optical fibers and flat substrates
Journot et al. Remote epitaxy using graphene enables growth of stress-free GaN
Fakhri et al. Physical investigations of nano and micro lithium-niobate deposited by spray pyrolysis technique
CN114657642A (zh) 一种基于脉冲激光沉积技术的铋氧硒外延薄膜制备方法
Kiselev et al. Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films
Bagmut Layer, island and dendrite crystallizations of amorphous films as analogs of Frank-van der Merwe, Volmer-Weber and Stranski-Krastanov growth modes
Diaz-Fernandez et al. Multi-stage pulsed laser deposition of high quality epitaxial ultra-thin SrTiO3 on Si substrates
Zheng et al. Domain formation in anatase TiO2 thin films on LaAlO3 substrates
Krupski et al. Optimisation of anatase TiO2 thin film growth on LaAlO3 (0 0 1) using pulsed laser deposition
Takada et al. Fabrication and piezoelectric properties of Pb (Zr, Ti) O3 cubes synthesized by hydrothermal method
Shao et al. Investigation of microstructure in ferroelectric lead-free La 2 Ti 2 O 7 thin film grown on (001)-SrTiO 3 substrate
Bayliss et al. Templating Effects in the Growth of Metal‐Free Phthalocyanine Polymorphic Double Layers
Bayart et al. Microstructural investigations and nanoscale ferroelectric properties in lead-free Nd 2 Ti 2 O 7 thin films grown on SrTiO 3 substrates by pulsed laser deposition
Choi et al. Microstructural and electrical properties of lead-free 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3 (BZT–BCT) epitaxial films grown on Si (0 0 1) substrates
EP0390139A2 (en) Ferroelectric thin film and method for producing the same
Shiraishi et al. Crystal structure and compositional analysis of epitaxial (K0. 56Na0. 44) NbO3 films prepared by hydrothermal method
Nguyen et al. C-axis tilted AlN films for vibration energy harvesters
Cui et al. Unraveling evolution of microstructural domains in the heteroepitaxy of β-Ga2O3 on sapphire
Barlaz et al. Solid phase epitaxial regrowth of (001) anatase titanium dioxide
Zhu et al. Growth and characterization of (001)-oriented Pb (Zr 0.52 Ti 0.48) O 3/LaNiO 3/LaAlO 3 heterostructures prepared by pulsed laser deposition
Baranova et al. Research of surface morphology of aluminum nitride films obtained by magnetron sputtering method
Muslimov et al. Epitaxy of gold films on the structured (0001) sapphire surface
Muslimov et al. Real structure of the ZnO epitaxial films on (0001) leucosapphire substrates coated by ultrathin gold layers
Muslimov et al. Study of the structure of crystalline tellurium on different substrates
Miu et al. Pulsed laser deposition of SrZrO~ 3 as a buffer layer for ferroelectric thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant