CN114648633A - 确定车辆环境的语义分割的方法 - Google Patents
确定车辆环境的语义分割的方法 Download PDFInfo
- Publication number
- CN114648633A CN114648633A CN202111439975.0A CN202111439975A CN114648633A CN 114648633 A CN114648633 A CN 114648633A CN 202111439975 A CN202111439975 A CN 202111439975A CN 114648633 A CN114648633 A CN 114648633A
- Authority
- CN
- China
- Prior art keywords
- neural network
- uncertainty
- radar
- grid
- weights
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000011218 segmentation Effects 0.000 title claims abstract description 30
- 238000013528 artificial neural network Methods 0.000 claims abstract description 50
- 238000013531 bayesian neural network Methods 0.000 claims abstract description 47
- 238000012545 processing Methods 0.000 claims abstract description 19
- 238000009826 distribution Methods 0.000 claims description 57
- 238000000605 extraction Methods 0.000 claims description 34
- 230000001149 cognitive effect Effects 0.000 claims description 23
- 238000012805 post-processing Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 9
- 238000012549 training Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000008447 perception Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012614 Monte-Carlo sampling Methods 0.000 description 1
- 235000013290 Sagittaria latifolia Nutrition 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000015246 common arrowhead Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
- G06F18/24155—Bayesian classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/70—Labelling scene content, e.g. deriving syntactic or semantic representations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/40—High definition maps
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Electromagnetism (AREA)
- Computational Mathematics (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Medical Informatics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20211270.2A EP4009236A1 (en) | 2020-12-02 | 2020-12-02 | Method for determining a semantic segmentation of an environment of a vehicle |
EP20211270.2 | 2020-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114648633A true CN114648633A (zh) | 2022-06-21 |
Family
ID=73694863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111439975.0A Pending CN114648633A (zh) | 2020-12-02 | 2021-11-30 | 确定车辆环境的语义分割的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12118797B2 (zh) |
EP (1) | EP4009236A1 (zh) |
CN (1) | CN114648633A (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4012603B1 (en) * | 2020-12-10 | 2023-12-06 | Aptiv Technologies Limited | Method for classifying a tracked object |
US20220254042A1 (en) * | 2021-02-11 | 2022-08-11 | GM Global Technology Operations LLC | Methods and systems for sensor uncertainty computations |
DE102022212480A1 (de) | 2022-11-23 | 2024-05-23 | Stellantis Auto Sas | Matrixlichtlenkung zur Objekterkennung für automatisiertes Fahren |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107451620A (zh) * | 2017-08-11 | 2017-12-08 | 深圳市唯特视科技有限公司 | 一种基于多任务学习的场景理解方法 |
CN110738242A (zh) * | 2019-09-25 | 2020-01-31 | 清华大学 | 一种深度神经网络的贝叶斯结构学习方法及装置 |
CN110751199A (zh) * | 2019-10-15 | 2020-02-04 | 南京航空航天大学 | 一种基于贝叶斯神经网络的卫星异常检测方法 |
WO2020053611A1 (en) * | 2018-09-12 | 2020-03-19 | Toyota Motor Europe | Electronic device, system and method for determining a semantic grid of an environment of a vehicle |
CN111489358A (zh) * | 2020-03-18 | 2020-08-04 | 华中科技大学 | 一种基于深度学习的三维点云语义分割方法 |
US20200326718A1 (en) * | 2019-04-09 | 2020-10-15 | Robert Bosch Gmbh | Control and monitoring of physical system based on trained bayesian neural network |
US20200326667A1 (en) * | 2020-06-24 | 2020-10-15 | Intel Corporation | Robust multimodal sensor fusion for autonomous driving vehicles |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11816185B1 (en) * | 2018-09-04 | 2023-11-14 | Nvidia Corporation | Multi-view image analysis using neural networks |
EP3942527A1 (en) * | 2019-03-21 | 2022-01-26 | Five AI Limited | Depth extraction |
US11691650B2 (en) * | 2019-07-08 | 2023-07-04 | Uatc, Llc | Systems and methods for generating motion forecast data for a plurality of actors with respect to an autonomous vehicle |
US11885907B2 (en) * | 2019-11-21 | 2024-01-30 | Nvidia Corporation | Deep neural network for detecting obstacle instances using radar sensors in autonomous machine applications |
US10732261B1 (en) * | 2019-12-31 | 2020-08-04 | Aurora Innovation, Inc. | Generating data using radar observation model based on machine learning |
US11790369B2 (en) * | 2020-09-03 | 2023-10-17 | Capital One Services, Llc | Systems and method for enhanced active machine learning through processing of partitioned uncertainty |
US11623661B2 (en) * | 2020-10-12 | 2023-04-11 | Zoox, Inc. | Estimating ground height based on lidar data |
EP3985552A1 (en) * | 2020-10-14 | 2022-04-20 | Deep Safety GmbH | System for detection and management of uncertainty in perception systems |
-
2020
- 2020-12-02 EP EP20211270.2A patent/EP4009236A1/en active Pending
-
2021
- 2021-11-30 CN CN202111439975.0A patent/CN114648633A/zh active Pending
- 2021-12-02 US US17/457,339 patent/US12118797B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107451620A (zh) * | 2017-08-11 | 2017-12-08 | 深圳市唯特视科技有限公司 | 一种基于多任务学习的场景理解方法 |
WO2020053611A1 (en) * | 2018-09-12 | 2020-03-19 | Toyota Motor Europe | Electronic device, system and method for determining a semantic grid of an environment of a vehicle |
US20200326718A1 (en) * | 2019-04-09 | 2020-10-15 | Robert Bosch Gmbh | Control and monitoring of physical system based on trained bayesian neural network |
CN110738242A (zh) * | 2019-09-25 | 2020-01-31 | 清华大学 | 一种深度神经网络的贝叶斯结构学习方法及装置 |
CN110751199A (zh) * | 2019-10-15 | 2020-02-04 | 南京航空航天大学 | 一种基于贝叶斯神经网络的卫星异常检测方法 |
CN111489358A (zh) * | 2020-03-18 | 2020-08-04 | 华中科技大学 | 一种基于深度学习的三维点云语义分割方法 |
US20200326667A1 (en) * | 2020-06-24 | 2020-10-15 | Intel Corporation | Robust multimodal sensor fusion for autonomous driving vehicles |
Non-Patent Citations (1)
Title |
---|
STEFAN DEPEWEG: "Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning", HTTPS://DOI.ORG/10.48550/ARXIV.1710.07283, 19 October 2017 (2017-10-19), pages 1 * |
Also Published As
Publication number | Publication date |
---|---|
US20220172485A1 (en) | 2022-06-02 |
US12118797B2 (en) | 2024-10-15 |
EP4009236A1 (en) | 2022-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Michelmore et al. | Evaluating uncertainty quantification in end-to-end autonomous driving control | |
Feng et al. | A review and comparative study on probabilistic object detection in autonomous driving | |
CN114269620B (zh) | 机器人系统的性能测试 | |
CN114648633A (zh) | 确定车辆环境的语义分割的方法 | |
US11531899B2 (en) | Method for estimating a global uncertainty of a neural network | |
CN112541520A (zh) | 用于为神经网络生成反事实数据样本的设备和方法 | |
Hu et al. | A framework for probabilistic generic traffic scene prediction | |
CN114207541B (zh) | 轨线预测 | |
EP3985552A1 (en) | System for detection and management of uncertainty in perception systems | |
Chan et al. | Application of decision rules for handling class imbalance in semantic segmentation | |
CN1940591A (zh) | 使用传感器融合进行目标跟踪的系统和方法 | |
US11816914B2 (en) | Modular predictions for complex human behaviors | |
US11392804B2 (en) | Device and method for generating label objects for the surroundings of a vehicle | |
JP2017076289A (ja) | パラメータ決定装置、パラメータ決定方法及びプログラム | |
CN117246358A (zh) | 自动驾驶辅助系统用线路板及其方法 | |
CN112418432A (zh) | 分析多个物理对象之间的相互作用 | |
EP3767534A1 (en) | Device and method for evaluating a saliency map determiner | |
CN111435457A (zh) | 对传感器获取的采集进行分类的方法 | |
CN116611500A (zh) | 用于训练神经网络的方法及装置 | |
CN116324904A (zh) | 用于注释传感器数据的方法和系统 | |
Sicking et al. | Approaching neural network uncertainty realism | |
Cotra et al. | Lidar-based methods for tracking and identification | |
Donadi et al. | Improving Generalization of Synthetically Trained Sonar Image Descriptors for Underwater Place Recognition | |
US20230351741A1 (en) | Method and device for training a neural network | |
CN113963027B (zh) | 不确定性检测模型的训练、不确定性的检测方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: Luxembourg Address after: Luxembourg Applicant after: Aptiv Technology (2) Co. Address before: Babado J San Michael Applicant before: Aptiv Technologies Ltd. Country or region before: Barbados |
|
CB02 | Change of applicant information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240305 Address after: Luxembourg Applicant after: Aptiv Manufacturing Management Services Co. Country or region after: Luxembourg Address before: Luxembourg Applicant before: Aptiv Technology (2) Co. Country or region before: Luxembourg |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240320 Address after: Schaffhausen Applicant after: APTIV Technology Co.,Ltd. Country or region after: Switzerland Address before: Luxembourg Applicant before: Aptiv Manufacturing Management Services Co. Country or region before: Luxembourg |
|
TA01 | Transfer of patent application right |