CN114637097A - Clear on-vehicle optical imaging lens of superelevation - Google Patents

Clear on-vehicle optical imaging lens of superelevation Download PDF

Info

Publication number
CN114637097A
CN114637097A CN202210287122.8A CN202210287122A CN114637097A CN 114637097 A CN114637097 A CN 114637097A CN 202210287122 A CN202210287122 A CN 202210287122A CN 114637097 A CN114637097 A CN 114637097A
Authority
CN
China
Prior art keywords
lens
optical imaging
focal power
ultra
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210287122.8A
Other languages
Chinese (zh)
Other versions
CN114637097B (en
Inventor
张丽芝
崔志英
孙秀云
喻军
段帆琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO YONGXIN OPTICS CO Ltd
Original Assignee
NINGBO YONGXIN OPTICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO YONGXIN OPTICS CO Ltd filed Critical NINGBO YONGXIN OPTICS CO Ltd
Publication of CN114637097A publication Critical patent/CN114637097A/en
Application granted granted Critical
Publication of CN114637097B publication Critical patent/CN114637097B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The invention discloses an ultra-high-definition vehicle-mounted optical imaging lens, which is characterized in that: the lens comprises a front diaphragm group, a rear diaphragm group and a diaphragm, wherein the front diaphragm group, the rear diaphragm group and the diaphragm are arranged between the front diaphragm group and the rear diaphragm group, the front diaphragm group comprises a first lens and a second lens, the rear diaphragm group comprises a third lens and a fourth lens, and the paraxial working F number F # of the whole lens satisfies the following conditions: f # is not less than 1.3 and not more than 1.6, and the focal length F of the whole lens meets the following requirements: f is more than or equal to 13mm and less than or equal to 16 mm; the total optical length TTL satisfies: TTL is more than or equal to 15mm and less than or equal to 36mm, and the relation of 1.2 and less than or equal to | TTL/f | and less than or equal to 2.4 is satisfied.

Description

Clear on-vehicle optical imaging lens of superelevation
Technical Field
The invention relates to an optical imaging lens, in particular to an ultra-high-definition vehicle-mounted optical imaging lens.
Background
With the application and popularization of automobile safe driving systems, the vehicle-mounted optical imaging lens is also widely applied to automatic driving systems. The optical imaging lens needs to give an important consideration to the size of the resolution capability and the resolution ratio, the resolution ratio of the conventional vehicle-mounted optical imaging lens is generally low, and the number of the foresight lenses in the market is more than one million and two million pixels.
Disclosure of Invention
The invention aims to solve the technical problem of providing an ultra-high definition vehicle-mounted optical imaging lens with high resolution and eight million pixels, and a vehicle-mounted imaging lens.
The technical scheme adopted by the invention for solving the technical problems is as follows: an ultra-high-definition vehicle-mounted optical imaging lens comprises a diaphragm front group, a diaphragm rear group and a diaphragm, wherein the diaphragm front group, the diaphragm rear group and the diaphragm are arranged between the diaphragm front group and the diaphragm rear group, the diaphragm front group comprises a first lens and a second lens, the diaphragm rear group comprises a third lens and a fourth lens, and the paraxial working F number F # of the whole lens meets the following requirements: f # is not less than 1.3 and not more than 1.6, and the focal length F of the whole lens meets the following requirements: f is more than or equal to 13mm and less than or equal to 16 mm; the total optical length TTL satisfies: TTL is more than or equal to 15mm and less than or equal to 36mm, and the relation of TTL/f is more than or equal to 1.2 and less than or equal to 2.4 is satisfied.
The diaphragm front group has negative focal power and can also have positive focal power.
The first lens has positive focal power, the second lens has negative focal power, the object plane is a convex surface, the third lens has positive focal power and is a biconvex surface, and the fourth lens has negative focal power.
The first lens has positive focal power, the second lens has negative focal power, the object plane is a concave surface, the third lens has positive focal power and is a biconvex surface, and the fourth lens has negative focal power.
The fourth lens can be formed by gluing a biconvex positive lens with high dispersion coefficient and a biconcave negative lens with low dispersion coefficient.
The fourth lens may be an aspheric lens.
The third lens may be an aspherical lens.
The image side surface of the fourth lens can also be a concave surface.
The abbe number of the first lens is Vd1, the abbe number of the second lens is Vd2, the abbe number of the third lens is Vd3, the abbe number of the fourth lens is Vd4, and the abbe number of the whole lens meets the following requirements: vd2 < 50; vd1 is more than 50, Vd3 is less than 50, Vd4 is less than 50.
The third lens may have an abbe number Vd3 > 50, and the fourth lens may have an abbe number Vd4 > 50.
Compared with the prior art, the invention has the advantages that through the mixed design of five spherical or aspheric lenses and the matching of reasonable focal power and the reasonable ground parameter matching, the whole optical imaging lens has enough large image height and back working distance, the ultrahigh resolution is realized, and the pixel reaches eight million.
Drawings
FIG. 1 is an optical structural view of embodiment 1 of the present invention;
FIG. 2 is a graph of a transfer function of example 1 of the present invention;
FIG. 3 is a vertical axis aberration diagram of example 1 of the present invention;
FIG. 4 is an optical structural view of embodiment 2 of the present invention;
FIG. 5 is a graph of a transfer function of example 2 of the present invention;
FIG. 6 is a vertical axis aberration diagram of example 2 of the present invention.
Detailed Description
The invention is described in further detail below with reference to the accompanying examples.
In the present description, the expressions first, second, third, etc. are used only for distinguishing one feature from another, and do not represent any limitation on the features.
Unless otherwise defined herein, all terms (including scientific and technical terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
In this document, unless otherwise defined, all terms should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and not in an excessively or idealized formal sense.
The features, principles, and other aspects of the present application are described in detail below.
In an exemplary embodiment, the front diaphragm group may have a negative power, and in combination with the rear diaphragm group having a positive power, the rear working distance of the lens may be increased.
In an exemplary embodiment, the diaphragm front group can have positive focal power, and the combination of the diaphragm front group and the diaphragm rear group with the positive focal power can reduce the focal length of the lens and reduce the difficulty in correcting lens aberration.
In an exemplary embodiment, the first lens L1 of the front diaphragm group has positive power, the second lens L2 has negative power, the arrangement is good for light to be transited to the rear diaphragm group, and the second lens L2 can increase the rear working distance of the lens and reduce the emergence angle of the light.
In an exemplary embodiment, the object side surface of the second lens L2 may be convex, which allows light to enter the rear stop group more smoothly.
In an exemplary embodiment, the object side of the second lens L2 can be concave, which can reduce the overall length of the system and the aperture of the lens.
In an exemplary embodiment, the fourth lens L4 may be a cemented doublet that is effective to substantially correct equiaxial aberrations such as primary spherical aberration and primary axial chromatic aberration.
In an exemplary embodiment, the fourth lens L4 may be an aspheric lens with negative power and a concave image-side surface, and the aspheric lens can not only greatly correct the on-axis aberration, but also correct partial off-axis aberrations such as astigmatism and distortion.
The embodiments of the present invention will be described in detail with reference to the accompanying drawings, which are for reference and illustration only and are not to be construed as limiting the scope of the invention.
Example 1:
the structure of this embodiment is, as shown in fig. 1, a diaphragm front group having negative power, a diaphragm STO, and a diaphragm rear group having positive power in this order from the object plane to the image plane. The front diaphragm group comprises a first lens L1 with positive focal power, a second lens L2 with negative focal power, and the object side surface of the second lens L2 is a convex surface. The diaphragm rear group consists of a third lens L3 with positive focal power, a double-cemented fourth lens L4 with negative focal power, an optical filter IR-CUT and chip protection glass CG.
In this embodiment, the first lens L1 and the fourth lens L4 are both spherical lenses. The second lens element L2 and the third lens element L3 are even aspheric lens elements, and the surface types thereof satisfy the following equations:
Figure BDA0003560330120000041
h represents a radial coordinate value of the lens perpendicular to the optical axis, Z represents a distance vector from the aspheric vertex when the spherical lens is at a position having a height h along the optical axis, c is 1/R, R represents a central curvature radius of a surface type of the corresponding aspheric lens, k represents a conic coefficient, and the parameter A, B, C, D, E represents a high-order aspheric coefficient.
The main design parameters of this example are shown in the following table:
serial number Item Numerical value
1 Focal length of system f (mm) 15.46
2 F# 1.4
3 TTL(mm) 32.66
4 Field of view FOV 36°
5 |TTL/f| 2.1
In this embodiment, the optical parameters of the whole optical imaging lens are as follows:
Figure BDA0003560330120000042
Figure BDA0003560330120000051
the high order coefficients of each aspheric surface are shown in the following table:
Figure BDA0003560330120000052
the transfer function curve of this example is shown in fig. 2, and the sag aberration diagram is shown in fig. 3.
The embodiment adopts a five-piece structure, the focal length is about 15.46mm, the maximum field angle can reach 36 degrees, the optical total length is 32.66mm, and the holographic height can reach 9.5 mm.
Example 2:
the structure of this embodiment is, as shown in fig. 4, a diaphragm front group having positive power, a diaphragm STO, and a diaphragm rear group having positive power in this order from the object plane to the image plane. The front diaphragm group comprises a first lens L1 with positive focal power, a second lens L2 with negative focal power, and the object side surface of the second lens L2 is a concave surface. The diaphragm rear group consists of a third lens L3 with positive focal power, a fourth lens L4 with negative focal power and a concave image side surface, an optical filter IR-CUT and chip protection glass CG.
In this embodiment, the first lens L1 and the second lens L2 are spherical lenses, the third lens L3 and the fourth lens L4 are aspherical lenses, and the surface types thereof satisfy the following equations:
Figure BDA0003560330120000053
h represents a radial coordinate value of the lens perpendicular to the optical axis, Z is a distance vector from the aspheric vertex when the spherical lens is at a position having a height h along the optical axis, c is 1/R, R represents a central curvature radius of the corresponding aspheric lens profile, k represents a conic coefficient, and the parameter A, B, C, D, E represents a high-order aspheric coefficient.
The main design parameters of this example are shown in the following table:
serial number Item Numerical value
1 Focal length of system f (mm) 13.46
2 F# 1.6
3 TTL(mm) 17.47
4 FOV 36°
5 |TTL/f| 1.3
In this embodiment, the optical parameters of the whole optical imaging lens are as follows:
Figure BDA0003560330120000061
the aspheric higher order coefficients are shown in the following table:
Figure BDA0003560330120000062
Figure BDA0003560330120000071
the transfer function curve of this example is shown in fig. 5, and the sag aberration diagram is shown in fig. 6.
In the embodiment, a four-piece structure is adopted, the focal length is about 13.46mm, the maximum field angle can reach 36 degrees, the optical total length is 17.47mm in the embodiment, and the holographic height can reach 9.5 mm.
The above description is only intended to illustrate two embodiments of the present invention, and not to limit the scope of the present invention, so that the equivalent changes made in the claims of the present invention are also included in the scope of the present invention.

Claims (10)

1. The utility model provides an on-vehicle optical imaging lens of super high definition which characterized in that: the paraxial working F number F # of the whole lens meets the following requirements that the paraxial working F number F # of the whole lens is as follows: f # is not less than 1.3 and not more than 1.6, and the focal length F of the whole lens meets the following requirements: f is more than or equal to 13mm and less than or equal to 16 mm; the total optical length TTL meets the following requirements: 15mm < TTL < 36mm and satisfies the relation | TTL/f | < 2.4 of 1.2.
2. The ultra-high-definition vehicle-mounted optical imaging lens of claim 1, wherein: the diaphragm front group has negative focal power.
3. The ultra-high-definition vehicle-mounted optical imaging lens of claim 2, wherein: the first lens has positive focal power, the second lens has negative focal power, the object plane is a convex surface, the third lens has positive focal power and is a biconvex surface, and the fourth lens has negative focal power.
4. The ultra-high-definition vehicle-mounted optical imaging lens of claim 2, wherein: the first lens has positive focal power, the second lens has negative focal power, the object plane is a concave surface, the third lens has positive focal power and is a biconvex surface, and the fourth lens has negative focal power.
5. The ultra-high-definition vehicle-mounted optical imaging lens as claimed in claim 3 or 4, wherein: the fourth lens is formed by gluing a biconvex positive lens with high dispersion coefficient and a biconcave negative lens with low dispersion coefficient.
6. The ultra-high-definition vehicle-mounted optical imaging lens as claimed in claim 3 or 4, wherein: the fourth lens is an aspheric lens.
7. The ultra-high-definition vehicle-mounted optical imaging lens as claimed in claim 3 or 4, wherein: the third lens is an aspheric lens.
8. The ultra-high-definition vehicle-mounted optical imaging lens of claim 6, wherein: the image side surface of the fourth lens is a concave surface.
9. The ultra-high-definition vehicle-mounted optical imaging lens as claimed in claim 3 or 4, wherein: the first lens has an abbe number Vd1, the second lens has an abbe number Vd2, the third lens has an abbe number Vd3, the fourth lens has an abbe number Vd4, and the abbe numbers satisfy the following conditions: vd2 < 50, Vd1 > 50, Vd3 < 50, Vd4 < 50.
10. The ultra-high-definition vehicle-mounted optical imaging lens as claimed in claim 3 or 4, wherein: the first lens has an abbe number Vd1, the second lens has an abbe number Vd2, the third lens has an abbe number Vd3, the fourth lens has an abbe number Vd4, and the abbe numbers satisfy the following conditions: vd2 is less than 50, Vd1 is more than 50, Vd3 is more than 50, Vd4 is more than 50.
CN202210287122.8A 2021-09-15 2022-03-23 Ultra-high-definition vehicle-mounted optical imaging lens Active CN114637097B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021110797119 2021-09-15
CN202111079711.9A CN113534419A (en) 2021-09-15 2021-09-15 Clear on-vehicle optical imaging lens of superelevation

Publications (2)

Publication Number Publication Date
CN114637097A true CN114637097A (en) 2022-06-17
CN114637097B CN114637097B (en) 2024-01-12

Family

ID=78123111

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111079711.9A Withdrawn CN113534419A (en) 2021-09-15 2021-09-15 Clear on-vehicle optical imaging lens of superelevation
CN202210287122.8A Active CN114637097B (en) 2021-09-15 2022-03-23 Ultra-high-definition vehicle-mounted optical imaging lens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111079711.9A Withdrawn CN113534419A (en) 2021-09-15 2021-09-15 Clear on-vehicle optical imaging lens of superelevation

Country Status (1)

Country Link
CN (2) CN113534419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115808772A (en) * 2022-09-21 2023-03-17 西安应用光学研究所 Vehicle-mounted lens optical system suitable for 8MP chip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080180813A1 (en) * 2007-01-30 2008-07-31 Minoru Taniyama Imaging lens
US20100172024A1 (en) * 2008-02-13 2010-07-08 Nalux Co., Ltd. Image forming optical system
US20110096413A1 (en) * 2008-02-11 2011-04-28 Chih-Wei Lo Five-lens image lens system
US20120075723A1 (en) * 2010-09-29 2012-03-29 Sony Corporation Imaging lens and imaging device
US20130208178A1 (en) * 2012-02-13 2013-08-15 Samsung Electronics Co., Ltd. Imaging lens system
US20180074288A1 (en) * 2015-03-18 2018-03-15 Guangdong Xuye Optoelectronics Technology Co., Ltd Ultra-wide-angle and large-aperture optical lens assembly with high image quality
CN110456477A (en) * 2019-07-30 2019-11-15 福建福光天瞳光学有限公司 The low distortion backsight optical system of one kind and imaging method
WO2021047304A1 (en) * 2019-09-12 2021-03-18 浙江舜宇光学有限公司 Optical imaging lens
WO2021082223A1 (en) * 2019-10-30 2021-05-06 广东弘景光电科技股份有限公司 High-pixel infrared optical system and applied camera module thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW559292U (en) * 2002-03-13 2003-10-21 Genius Electronic Ptical Xiame Lens for image formation
JP2009047947A (en) * 2007-08-21 2009-03-05 Fujinon Corp Imaging lens and imaging apparatus
DE102010035034B3 (en) * 2010-08-20 2012-02-16 Jos. Schneider Optische Werke Gmbh High open wide angle lens
CN102778746B (en) * 2012-06-20 2014-10-22 利达光电股份有限公司 Low-cost broad-spectrum optical system of day-night confocal trigger lens
CN202975457U (en) * 2012-06-20 2013-06-05 利达光电股份有限公司 Low-cost wide-spectrum day and night confocal trigger lens optical system
CN204009203U (en) * 2014-06-05 2014-12-10 厦门奇亚光电科技有限公司 A kind of wide-angle high definition on-vehicle lens
KR101717208B1 (en) * 2014-12-05 2017-03-17 에이에이씨 어쿠스틱 테크놀로지스(심천)컴퍼니 리미티드 Compact Imaging Lens System
CN205404939U (en) * 2016-03-02 2016-07-27 中山市雄锦光电科技有限公司 On -vehicle camera lens of low distortion of high definition wide angle
CN106443968B (en) * 2016-09-23 2018-10-30 吉林大学 Medium and long distance on-vehicle lens for vehicle target identification
CN108873271A (en) * 2018-07-13 2018-11-23 南昌欧菲精密光学制品有限公司 Telephoto lens, focal length camera mould group and electronic device
CN209821485U (en) * 2019-06-27 2019-12-20 文登成进光学有限公司 Ultra-wide angle optical lens for vehicle
CN112462488A (en) * 2019-09-09 2021-03-09 江西晶超光学有限公司 Optical system, lens module and electronic equipment
CN111999864B (en) * 2020-08-18 2022-07-05 江西联创电子有限公司 Optical imaging lens and imaging apparatus
CN112051660B (en) * 2020-09-28 2024-08-13 辽宁中蓝光电科技有限公司 Periscope type lens
CN212276082U (en) * 2020-09-28 2021-01-01 辽宁中蓝光电科技有限公司 Periscopic lens
CN112180554B (en) * 2020-10-20 2022-09-06 江西晶超光学有限公司 Optical lens, camera module and terminal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080180813A1 (en) * 2007-01-30 2008-07-31 Minoru Taniyama Imaging lens
US20110096413A1 (en) * 2008-02-11 2011-04-28 Chih-Wei Lo Five-lens image lens system
US20100172024A1 (en) * 2008-02-13 2010-07-08 Nalux Co., Ltd. Image forming optical system
US20120075723A1 (en) * 2010-09-29 2012-03-29 Sony Corporation Imaging lens and imaging device
US20130208178A1 (en) * 2012-02-13 2013-08-15 Samsung Electronics Co., Ltd. Imaging lens system
US20180074288A1 (en) * 2015-03-18 2018-03-15 Guangdong Xuye Optoelectronics Technology Co., Ltd Ultra-wide-angle and large-aperture optical lens assembly with high image quality
CN110456477A (en) * 2019-07-30 2019-11-15 福建福光天瞳光学有限公司 The low distortion backsight optical system of one kind and imaging method
WO2021047304A1 (en) * 2019-09-12 2021-03-18 浙江舜宇光学有限公司 Optical imaging lens
WO2021082223A1 (en) * 2019-10-30 2021-05-06 广东弘景光电科技股份有限公司 High-pixel infrared optical system and applied camera module thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115808772A (en) * 2022-09-21 2023-03-17 西安应用光学研究所 Vehicle-mounted lens optical system suitable for 8MP chip

Also Published As

Publication number Publication date
CN113534419A (en) 2021-10-22
CN114637097B (en) 2024-01-12

Similar Documents

Publication Publication Date Title
CN110412727B (en) Optical lens
CN109960004B (en) Optical lens
CN112882200B (en) Optical lens
CN110412721B (en) Optical lens
CN214669834U (en) Optical lens
CN109960006B (en) Optical lens
CN112269246B (en) Ultra-high-definition imaging optical system
CN113433665A (en) Optical imaging lens
CN111722369A (en) Ultra-wide angle lens
CN112014946B (en) Optical lens and imaging apparatus
CN110554475B (en) Optical lens
CN114637097B (en) Ultra-high-definition vehicle-mounted optical imaging lens
CN110412719B (en) Optical lens
CN101320124A (en) Camera-lens system
CN114326049A (en) Fisheye image capturing lens
CN109975952B (en) Optical lens
CN112269252A (en) Ultra-wide angle prime lens
CN110554476B (en) Optical lens
CN110632745B (en) Optical lens
CN110412723B (en) Optical lens
CN110488471B (en) Optical lens
CN111061033A (en) Optical lens
CN212379649U (en) Ultra-wide angle lens
CN111061032B (en) Optical lens
CN111796401A (en) Ultra-wide angle lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant