CN114636557B - 一种发动机尾焰温度测试装置及温度场重构方法 - Google Patents

一种发动机尾焰温度测试装置及温度场重构方法 Download PDF

Info

Publication number
CN114636557B
CN114636557B CN202210019860.4A CN202210019860A CN114636557B CN 114636557 B CN114636557 B CN 114636557B CN 202210019860 A CN202210019860 A CN 202210019860A CN 114636557 B CN114636557 B CN 114636557B
Authority
CN
China
Prior art keywords
temperature
thermocouple
engine
flame
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210019860.4A
Other languages
English (en)
Other versions
CN114636557A (zh
Inventor
史聪灵
王丹
刘国林
车洪磊
穆娜娜
胥旋
任飞
荆琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Safety Science and Technology CASST
Original Assignee
China Academy of Safety Science and Technology CASST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Safety Science and Technology CASST filed Critical China Academy of Safety Science and Technology CASST
Priority to CN202210019860.4A priority Critical patent/CN114636557B/zh
Publication of CN114636557A publication Critical patent/CN114636557A/zh
Application granted granted Critical
Publication of CN114636557B publication Critical patent/CN114636557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Testing Of Engines (AREA)

Abstract

本发明提供一种发动机尾焰温度测试装置及温度场重构方法,测试装置主要由双波温度变送仪、细丝热电偶、适配器、高频数据采集器和计算机组成,通过对各个部件进行具体设置,使得测试装置稳定可靠,重复性强;提供与测试装置对应的温度场重构方法,通过测试曲线小波降噪、转换温度值、多维极值非线性拟合法插值重构温度场,可以准确得到发动机喷管外喷射火及高温燃烧产物的温度分布,为发动机的火焰导流槽结构和热防护设计提供有效数据支持。

Description

一种发动机尾焰温度测试装置及温度场重构方法
技术领域
本发明属于高温高速火焰温度探测技术领域,具体涉及一种发动机尾焰温度测试装置及温度场重构方法。
背景技术
研究发动机工作时喷出的高温、高速燃气射流特性,对火箭红外探测、热防护、发动机燃烧动力性能检测等方面具有重要意义。发动机喷射火焰涉及高温高速流动、复燃化学反应等一系列复杂的物理化学效应,火焰温度范围在800-3000K。目前通过实验研究喷射火特性是喷射火焰研究的重要手段,但是由于高速流场、复杂冲击波和边界层之间的相互作用使得喷射火焰温度测量较为困难。
目前火焰温度测试主要有热电偶接触式测温和红外光学非接触式测温两种方式。热电偶测温技术已经比较成熟,测试方法简单,结果直接稳定。但是目前热电偶测温范围较窄,一般不能承受2300K以上的高温;此外,裸露在测试环境中的热电偶丝在发动机喷射火测试中,极其容易被高速气流冲刷变形导致短路甚至冲断,得不到有效温度数据。目前红外光学非接触测温常用的方法有单色测温法和比色测温法,其中单色测温法受距离和测试环境影响较大,导致测试重复性差、误差大;比色测温法采用双通道探测,精度较高,测温上限高,但在低温下信噪比低,不适用于探测低于1300K的温度测试;此外,光学法测温只能探测光路上的最高温度,无法得到精确位置的温度值。中国专利公开文本CN112539939A公开了一种相变发动机尾焰温度测试装置及控制方法,但是其测量温度的范围有一定的限制。
因此,对于温度上限高,流速高的发动机尾焰温度测试,目前尚无有效的测试装置和温度场重构方法,无法准确得到发动机尾焰的温度分布。
发明内容
有鉴于此,本发明的目的是提供一种发动机尾焰温度测试装置及温度场重构方法,可以较为精确的得到发动机喷管外喷射火及高温燃烧产物的温度分布。
通过如下技术手段实现:
一种发动机尾焰温度测试装置,包括待测发动机、双波温度变送仪、热电偶单点测温传感器、双波温度变送仪适配器,热电偶适配器、高频数据采集仪、测控计算机。
设置5~7枚所述双色温度变送仪(优选6枚)于待测发动机紧靠喷口处的中轴线上,用于探测靠近喷口处中轴线上的测试点温度,设置4~6枚所述热电偶单点测温传感器(优选5枚)于待测发动机远离喷口处的中轴线上,用于测量中轴线远端的测试点温度,再设置4~6枚所述热电偶单点测温传感器(优选5枚)分别弧形布置在待测发动机的火焰区域,用于根据火焰形状呈弧形布置在火焰区域而探测火焰区域的各点温度,布置时双色温度变送仪的镜头瞄准待测点,热电偶单点测温传感器的热电偶探头与待测发动机的尾焰流速方向共线,所述双色温度变送仪通过信号线连接到所述双色温度变送仪适配器,所有的所述热电偶单点测温传感器通过信号线连接到所述热电偶适配器,双色温度变送仪适配器和热电偶适配器得到的信号通过所述高频数据采集仪连接至所述测控计算机。
所述双色温度变送仪采用Si和Ge半导体红外光子探测器,探测中心波长分别为0.95~0.96μm和1.470~1.478μm,测温范围为1300K-3300K,高温物体发射出的辐射光能经凸透镜聚焦后进入所述双色温度变送仪的双色合成传感器,产生电信号,再由放大电路转换放大并被数据采集系统接收,最后以电压响应曲线的形式显示于计算机界面上。
所述热电偶单点测温传感器的测温范围为300K-2000K。
所述高频数据采集器设置为与发动机的点火装置同步触发。
进一步的,所述双色温度变送仪采用Si和Ge半导体红外光子探测器,探测中心波长分别为0.957μm和1.474μm;所述热电偶单点测温传感器采用0.02mm钨-铼热电偶丝。
所述双色温度变送仪(3)采用以下方法获得其电信号-温度响应关系:Si和Ge两探测通道的光电转换系数为k1和k2,标定得到的具体工作波段为(λ1a,λ1b)μm与(λ2a,λ2b)μm,测量温度为T的物体时输出的电流信号为I1和I2,则比值与温度的对应关系满足如下公式:
Figure GDA0003633462050000031
Figure GDA0003633462050000032
Figure GDA0003633462050000033
其中,C1为第一辐射常数,取0.595521×10-16W·m2;C2为第一辐射常数,取1.438775×10-16W·m2;λ为波长;I10和I20分别为实验测定的Si和Ge两探测通道的零点电信号。该部分以λa、λb和k为求解对象,为获得准确的唯一解则需建立三元方程组,需要三组对应的标准温度和输出电信号;以光电转换系数k和波段上下极限波长λa、λb为对象的三点标定法可以实现快速准确的标定求解,以梯度速降法求解非线性方程组,以Gauss积分法计算定积分,得到三个参数的具体数值和电信号-温度响应关系。
进一步的,探测高速火焰流场温度,需要对热电偶采取有效防护措施,防止热电偶丝短路或损坏;所述热电偶单点测温传感器的热电偶探头包括热电偶丝、信号输出线、热塑管、不锈钢保护壳和填充型陶瓷化硅橡胶材料,所述热电偶丝与所述信号输出线连接,且热电偶丝和信号输出线的外部套设有一层所述热塑管,所述不锈钢保护壳套设在最外部,所述热塑管从不锈钢保护壳内部穿出,所述热塑管与不锈钢保护壳的间隙采用所述填充型陶瓷化硅橡胶材料进行密封,所述填充型陶瓷化硅橡胶材料用于固定热电偶丝并保护信号输出线,防止短路或损坏。
作为优选,热电偶探头的不锈钢保护壳端部为缩口结构,使得高温高速流体进入保护壳后膨胀减速,降低对热电偶丝的冲击。
作为优选,热电偶探头的不锈钢保护壳侧面对称开有四个圆孔型出气口,用于气体流出,同时增加气流湍流度,使其与热电偶充分接触,得到精确的动态温度值。
作为优选,热电偶节点四周端面涂覆一层硅橡胶缓冲层,用于缓冲高速气流对热电偶探头的振动和冲击。
一种发动机尾焰温度测试装置的温度场重构方法,其操作步骤如下:
(1)采用上述发动机尾焰温度测试装置测试得到多个测试点的单点温度值,比色测温结果和热电偶测试结果首先经过小波分解去除噪声;
(2)将步骤(1)得到的监测点温度值的单点温度值采用多维极值非线性拟合法进行插值拟合,进行火焰温度场重构,得到火焰温度场分布图和温度等值线图;
(3)根据推进剂燃烧火焰面特征温度,在不同时刻的火焰温度场分布图中得到火焰面位置。
进一步的,步骤(3)所述的多维极值非线性拟合法的估计值Q(x,y)满足下式公式:
Q(x,y)=∑Aidi 2logdi+a+bx+cy
式中,x和y为由插值得到的点的坐标,di为(x,y)和(xi,yi)两点距离,xi、yi分别为控制点i的x、y坐标,Ai、a、b、c为待拟合系数。多维极值非线性拟合法包括两部分:a+bx+cy表示局部趋势函数,它与线性或一阶趋势面具有相同的形状,∑Aidi 2logdi为基函数,可获得最小曲率面。
进一步的,多维极值非线性拟合法包括两部分:a+bx+cy表示局部趋势函数,它与线性或一阶趋势面具有相同的形状,∑Aidi 2logdi为基函数,可获得最小曲率面;系数由以下线性方程组确定:
Figure GDA0003633462050000051
Figure GDA0003633462050000052
Figure GDA0003633462050000053
Figure GDA0003633462050000054
式中,n为控制点数目,fi为已知控制点坐标,系数计算由n+3个方程联立求解。
进一步的,步骤(1)中,对同一型号发动机进行5~15次试验,将每次试验得到的数据整体作为多个测试点的单点温度值。进一步的,测试点增多得到插值拟合结果越接近真实工况,但为了尽可能减小测试仪器对火焰流场的影响,每次测试不宜架设过多传感器,应结合高速摄影图像和火焰形状预测结果进行热电偶传感器布置,对同一型号发动机进行多次试验,将各发实验数据进行统一处理,得到均一化的温度场分布。
温度场重构结果的精确度用由SSE(和方差、误差平方和)和R-square(确定系数)两个指标来评价,较佳的,当SSE小于10-20,R-square大于0.98时,拟合结果可以反映真实工况。
本发明具有如下有益效果:
本发明提供的发动机尾焰温度测试装置,通过对各个部件进行具体设置以及设置测温过程中各部件的位置关系以及测温部件的具体结构设置,使得其测温范围可以涵盖273-3300K,能够实现各类火箭尾焰各点温度的实时准确测试,测试装置稳定可靠,重复性强。
本发明提供的与测试装置对应的温度场重构方法,通过使用本发明特定设置的发动机尾焰温度测试装置,使得温度场重构方法能够更好的实现,通过对各个步骤进行具体控制和设置,使得关键测试点能够重构火箭尾焰温度场分布。同时通过本发明特定的温度场重构方法的各步骤设置,能够为发动机的火焰导流槽结构和热防护设计提供有效数据支持。
附图说明
图1是本发明一种实施方式的发动机尾焰温度测试装置示意图。
图2是本发明的发动机尾焰温度测试装置的热电偶结构示意图。
图3是本发明实施例提供的热电偶安装架设示意图。
图4是本发明实施例提供的温度测点布置图。
图5是本发明实施例提供的热电偶测试数据。
图6是本发明实施例提供的三维极值非线性差值拟合结果。
图7是本发明实施例提供的火焰温度场重构等值线图。
其中:1-发动机,2-热电偶单点测温传感器,3-双波温度变送仪,4-双波温度变送仪适配器,5-热电偶适配器,6-高频数据采集仪,7-测控计算机,8-喷射火焰,9-热电偶丝,10-出气口,11-硅橡胶缓冲层,12-填充型陶瓷化硅橡胶材料,13-不锈钢保护壳,14-信号线。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明主要解决的技术问题是提供一种发动机尾焰温度测试装置及温度场重构方法,可以较为精确的得到发动机喷管外喷射火及高温燃烧产物的温度分布。
本实施例提供的发动机尾焰温度测试装置如图1所示,包括待测发动机1,六枚双波温度变送仪3,用于探测靠近喷口处中轴线上的六个测试点温度,五枚热电偶单点测温传感器2,测量中轴线远端的五个测试点温度,另外五枚热电偶单点测温传感器2,如图1所示的根据火焰形状呈弧形布置在火焰区域,探测各点温度。热电偶安装架设示意图如图3所示,布置时热电偶探头与尾焰流速方向共线。六枚双波温度变送仪3通过信号线连接到双波温度变送仪适配器4,十枚热电偶单点测温传感器2通过信号线连接到热电偶适配器5;双波温度变送仪适配器4和热电偶适配器5得到的信号传输至高频数据采集仪6,再连接至测控计算机7。
本实施例采用的双波温度变送仪3测温范围为1300-3300K,用于探测靠近推进器出口处的高温火焰,双波温度变送仪是利用两个很窄的相近波段测量同一物体,选取短波段信号与较长波段信号的比值,该比值随着温度升高而增大。设热力学温度为T的非黑体物质在同一点的波长为λ1,λ2下的单色辐射出射度分别为M(λ1,T),M(λ2,T),则两波长处辐射功率比值R(T)为:
Figure GDA0003633462050000081
选取的非常接近两个波段,认为被测物体在该波段内发射率无变化,即ε(λ1,T)≈ε(λ2,T)时,则其发射率和气体吸收对两个波段信号的衰减相同,其比值不变:
Figure GDA0003633462050000082
本实施例采用Si和Ge双通道红外光子探测器,对应探测中心波长分别为0.957μm和1.474μm,根据上述关系,读出两通道信号比值就可以计算得到待测物体的真实温度。
本实施例采用的热电偶单点测温传感器2采用0.02mm钨铼热电偶丝,测温范围300K-2000K,用于探测中轴线远端温度和外围火焰温度。
本实施例的热电偶单点测温传感器如图2所示。探测高速火焰流场温度,需要对热电偶采取有效防护措施,防止热电偶丝短路或损坏。热电偶丝9和信号输出线14外部覆盖一层热塑管15,置于不锈钢保护壳13内部,热塑管与不锈钢保护壳连接间隙采用填充型陶瓷化硅橡胶材料12进行密封,用于固定热电偶丝9和保护后面的信号线14;保护壳13端部为缩口结构,使得高温高速流体进入保护壳后膨胀减速,减小对热电偶的冲击力;保护壳13侧面对称开有四个圆孔状出气口10,用于气体流出,同时增加气流湍流度,使其与热电偶充分接触,得到更为精确的动态温度值,热电偶四周端面涂覆一层硅橡胶缓冲层11,用于缓冲高速气流对热电偶探头的振动和冲击。
由于采用高频数据采集器6,而测控计算机7内存及读写速度有限,需设置同步触发装置,与发动机点火装置同步触发。
为了尽可能减小测试仪器对火焰流场的影响,每次测试不宜架设过多传感器,应结合高速摄影图像和火焰形状理论预测结果进行热电偶传感器布置。本实施例对同一型号发动机进行多次试验,将各发实验数据进行统一处理,得到均一化的温度场分布,本实施例的四次实验测点布置情况如图4所示。
测试得到多个测试点的单点温度值,比色测温结果和热电偶测试结果首先经过小波分解去除噪声,再转换为对应温度值,由于火焰存在明显波动,读取数据平稳段的中值作为监测点温度值,实施例中一个热电偶测得原始数据曲线和小波降噪转换后的温度曲线如图5所示。得到的众多单点温度值采用多维极值非线性拟合法进行插值拟合,进行火焰温度场重构。多维极值非线性拟合法是一种差值拟合算法,建立一个通过控制点的面,并使所有点的坡度变化最小,即多维极值非线性拟合法以最小曲率面拟合控制点。多维极值非线性拟合法的估计值由下式计算:
Q(x,y)=∑Aidi 2logdi+a+bx+cy
式中,x和y为由插值得到的点的坐标,di为(x,y)和(xi,yi)两点距离,xi、yi分别为控制点i的x、y坐标。
多维极值非线性拟合法包括两部分:a+bx+cy表示局部趋势函数,它与线性或一阶趋势面具有相同的形状,∑Aidi 2logdi为基函数,可获得最小曲率面。有关系数可以由以下线性方程组确定:
Figure GDA0003633462050000091
Figure GDA0003633462050000092
Figure GDA0003633462050000093
Figure GDA0003633462050000094
式中,n为控制点数目,fi为已知控制点坐标,系数计算需要n+3个方程联立求解。
多维极值非线性拟合法差值拟合的结果由SSE(和方差、误差平方和)和R-square(确定系数)两个指标来评价。SSE为拟合数据与原始数据对应点的误差的平方和,计算公式如下:
Figure GDA0003633462050000101
SSE越接近于0,表征拟合结果更好,数据预测结果越准确。
R-square是通过数据的变化来表征拟合的好坏,由SSR和SST两个参数计算得到,其中SSR为预测数据与原始数据均值之差的平方和,SST为原始数据与其均值之差的平方和,计算公式如下:
R-square=SSR/SST
Figure GDA0003633462050000102
Figure GDA0003633462050000103
由上式可知,R-square取值范围为[0,1],越接近于1,表征方程的变量对y的解释能力越强,数据拟合结果也较好。
本实施例得到的三维极值非线性差值拟合结果和火焰温度场重构等值线图如图6和图7所示,其中图7中横坐标Z表示距离发动机尾部端面的轴向距离,纵坐标r表示距离发动机尾部端面中心的径向距离。拟合结果的SSE值为1.2648e-24,R-square值为0.9999,表明数据拟合结果良好,该方法可以准确进行火焰温度场重构。
综上所述,以上仅为本发明的较佳实施例,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种发动机尾焰温度测试装置,其特征在于,包括待测发动机(1)、双色温度变送仪(3)、热电偶单点测温传感器(2)、双色温度变送仪适配器(4),热电偶适配器(5)、高频数据采集仪(6)及测控计算机(7),其中:
设置5~7枚所述双色温度变送仪(3)于待测发动机(1)紧靠喷口处的中轴线上,用于探测靠近喷口处中轴线上的测试点温度,设置4~6枚所述热电偶单点测温传感器(2)于待测发动机(1)远离喷口处的中轴线上,用于测量中轴线远端的测试点温度,再设置4~6枚所述热电偶单点测温传感器(2)分别弧形布置在待测发动机(1)的火焰区域,用于根据火焰形状呈弧形布置在火焰区域而探测火焰区域的各点温度,布置时双色温度变送仪(3)的镜头瞄准测试点,热电偶单点测温传感器(2)的热电偶探头与待测发动机(1)的尾焰流速方向共线,所述双色温度变送仪(3)通过信号线连接到所述双色温度变送仪适配器(4),所有的所述热电偶单点测温传感器(2)通过信号线连接到所述热电偶适配器(5),双色温度变送仪适配器(4)和热电偶适配器(5)得到的信号通过所述高频数据采集仪(6)连接至所述测控计算机(7);
所述双色温度变送仪(3)采用Si和Ge半导体红外光子探测器,探测中心波长分别为0.95~0.96μm和1.470~1.478μm,测温范围为1300K-3300K,高温物体发射出的辐射光能经凸透镜聚焦后进入所述双色温度变送仪(3)的双色合成传感器,产生电信号,再由放大电路转换放大并被数据采集系统接收,最后以响应曲线的形式进行显示;
所述热电偶单点测温传感器(2)的测温范围为300K-2000K;
所述高频数据采集仪(6)设置为与发动机的点火装置同步触发;
所述热电偶单点测温传感器(2)的热电偶探头包括热电偶丝(9)、信号输出线(14)、热塑管(15)、不锈钢保护壳(13)和填充型陶瓷化硅橡胶材料(12),所述热电偶丝(9)与所述信号输出线(14)连接,且热电偶丝(9)和信号输出线(14)的外部套设有一层所述热塑管(15),所述不锈钢保护壳(13)套设在最外部,所述热塑管(15)从不锈钢保护壳(13)内部穿出,所述热塑管(15)与不锈钢保护壳(13)的间隙采用所述填充型陶瓷化硅橡胶材料(12)进行密封,所述填充型陶瓷化硅橡胶材料(12)用于固定热电偶丝(9)并保护信号输出线(14),防止短路或损坏;
所述不锈钢保护壳(13)的端部为缩口结构,使得高温高速流体进入不锈钢保护壳(13)后膨胀减速,降低对热电偶丝(9)的冲击。
2.根据权利要求1所述的发动机尾焰温度测试装置,其特征在于,所述双色温度变送仪(3)采用Si和Ge半导体红外光子探测器,探测中心波长分别为0.957μm和1.474μm;所述热电偶单点测温传感器(2)采用0.02mm钨-铼热电偶丝。
3.根据权利要求1或2所述的发动机尾焰温度测试装置,其特征在于,所述双色温度变送仪(3)采用以下方法获得其电信号-温度响应关系:Si和Ge两探测通道的光电转换系数为k1和k2,标定得到的具体工作波段为λ1a~λ1bμm与λ2a~λ2bμm,测量温度为T的物体时输出的电流信号为I1和I2,则比值与温度的对应关系满足如下公式:
Figure FDA0004057021590000021
Figure FDA0004057021590000022
Figure FDA0004057021590000023
其中,C1为第一辐射常数,取0.595521×10-16W·m2;C2为第二辐射常数,取1.438775×10-16W·m2;λ为波长;I10和I20分别为实验测定的Si和Ge两探测通道的零点电信号。
4.根据权利要求1所述的发动机尾焰温度测试装置,其特征在于:所述不锈钢保护壳(13)的侧面对称开有四个圆孔型出气口(10),所述圆孔型出气口(10)用于气体流出,同时用于增加气流湍流度,使气体与热电偶丝(9)充分接触,得到精确的动态温度值。
5.如权利要求1所述的发动机尾焰温度测试装置,其特征在于:在所述热电偶丝(9)的四周端面涂覆有一层硅橡胶缓冲层(11),所述硅橡胶缓冲层(11)用于缓冲高速气流对热电偶探头的振动和冲击。
6.一种发动机尾焰温度场重构方法,其特征在于,包括如下步骤:
(1)使用权利要求1-5任一项所述的发动机尾焰温度测试装置得到不同时刻多个测试点的单点温度值,双色温度变送仪测得的比色测温结果和热电偶单点测温传感器测得的热电偶测试结果经过小波分解去除不稳定的数值点;
(2)将步骤(1)得到的各测试点的单点温度值采用多维极值非线性拟合法进行插值拟合,进行火焰温度场重构,得到火焰温度场分布图和温度等值线图;
(3)根据推进剂的理论燃烧特征温度,在不同时刻的火焰温度场分布图中得到火焰面位置。
7.根据权利要求6所述的发动机尾焰温度场重构方法,其特征在于,步骤(2)所述的多维极值非线性拟合法的估计值Q(x,y)满足下式公式:
Q(x,y)=∑Aidi 2logdi+a+bx+cy
式中,x和y为由插值得到的点的坐标,di为(x,y)和(xi,yi)两点距离,xi、yi分别为测试点i的x、y轴坐标,Ai、a、b、c为待拟合系数;
多维极值非线性拟合法包括两部分:a+bx+cy表示局部趋势函数,它与线性或一阶趋势面具有相同的形状,∑Aidi 2logdi为基函数,可获得最小曲率面;系数由以下线性方程组确定:
Figure FDA0004057021590000031
Figure FDA0004057021590000032
Figure FDA0004057021590000033
Figure FDA0004057021590000034
式中,n为测试点数目,fi为已知测试点坐标,系数计算由n+3个方程联立求解。
8.根据权利要求6所述的一种发动机尾焰温度场重构方法,其特征在于:步骤(1)中,使用权利要求1-5任一项所述的发动机尾焰温度测试装置测试得到多个测试点的单点温度值,对同一型号发动机进行5~15试验,将每次试验得到的数据整体作为多个测试点的单点温度值。
CN202210019860.4A 2022-01-10 2022-01-10 一种发动机尾焰温度测试装置及温度场重构方法 Active CN114636557B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210019860.4A CN114636557B (zh) 2022-01-10 2022-01-10 一种发动机尾焰温度测试装置及温度场重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210019860.4A CN114636557B (zh) 2022-01-10 2022-01-10 一种发动机尾焰温度测试装置及温度场重构方法

Publications (2)

Publication Number Publication Date
CN114636557A CN114636557A (zh) 2022-06-17
CN114636557B true CN114636557B (zh) 2023-03-07

Family

ID=81946532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210019860.4A Active CN114636557B (zh) 2022-01-10 2022-01-10 一种发动机尾焰温度测试装置及温度场重构方法

Country Status (1)

Country Link
CN (1) CN114636557B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828797A (en) * 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
CN104501999A (zh) * 2014-12-17 2015-04-08 西北工业大学 爆震火焰温度测量方法
CN106768380A (zh) * 2016-11-16 2017-05-31 西安建筑科技大学 一种对红外测温设备的测试结果进行修正的方法
CN206450334U (zh) * 2016-12-31 2017-08-29 安徽天康(集团)股份有限公司 高温热电偶耐高温缓热性保护管
CN108036871A (zh) * 2018-01-12 2018-05-15 南京航空航天大学 一种压簧固定式热电偶
CN109357770A (zh) * 2018-12-02 2019-02-19 西安航天动力测控技术研究所 一种固体发动机地面试验的尾焰温度场测量系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828797A (en) * 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
CN104501999A (zh) * 2014-12-17 2015-04-08 西北工业大学 爆震火焰温度测量方法
CN106768380A (zh) * 2016-11-16 2017-05-31 西安建筑科技大学 一种对红外测温设备的测试结果进行修正的方法
CN206450334U (zh) * 2016-12-31 2017-08-29 安徽天康(集团)股份有限公司 高温热电偶耐高温缓热性保护管
CN108036871A (zh) * 2018-01-12 2018-05-15 南京航空航天大学 一种压簧固定式热电偶
CN109357770A (zh) * 2018-12-02 2019-02-19 西安航天动力测控技术研究所 一种固体发动机地面试验的尾焰温度场测量系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
固体火箭发动机羽焰温度流场测试研究;李翔等;《航空兵器》;20061230(第06期);第47页 *

Also Published As

Publication number Publication date
CN114636557A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
US6364524B1 (en) High speed infrared radiation thermometer, system, and method
CN107907502B (zh) 叠片电弧加热器高焓气流参数诊断系统
Bao et al. Relative entropy regularized TDLAS tomography for robust temperature imaging
Von Moll et al. A review of exhaust gas temperature sensing techniques for modern turbine engine controls
JPS6118965B2 (zh)
US20050185189A1 (en) Fiber Optic Sensor
US4780832A (en) Radiation probe and method of use
CN110954501A (zh) 一种耐高温可调谐激光吸收光谱探头结构
CN109100044A (zh) 基于单光路多光谱的气体温度概率密度分布拟合重建方法
Estevadeordal et al. Multicolor techniques for identification and filtering of burst signals in jet engine pyrometers
CN111795746B (zh) 基于主被动光学层析融合探测的火焰多参数场协同测量方法
CN111157139B (zh) 一种用于单连通燃烧场温度分布的可视化测量方法
CN114636557B (zh) 一种发动机尾焰温度测试装置及温度场重构方法
CN112414561A (zh) 一种基于比色法的高温高速测温仪
CN103398659B (zh) 光纤位移传感器及基于数据融合的多通道位移测量方法
CN111998990B (zh) 一种用于多方向高速动态压力测量的多孔阵列光纤探针及其测量系统
CN107328478A (zh) 一种基于三波段辐射光测量涡轮叶片温度及发射率的方法
CN106500951B (zh) 测量高超声速气流参数的测量探头、测量系统和方法
CN112964365A (zh) 一种涡轮叶片三波长辐射测温装置及方法
CN114518230B (zh) 一种发动机羽流场速度温度同步测量系统
Shim et al. TDL-based spectroscopy for simultaneous measurement of multiple gas properties using a single absorption line
GB2602887A (en) Thermal measurement system
US5084621A (en) Radiometric standard infrared detector
Estevadeordal et al. Multi-color pyrometry techniques for characterization of spall in heavy duty gas turbine engines
CN107543620B (zh) 一种基于光开关切换的激光光线偏折效应校正装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant