CN114624380A - 一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法 - Google Patents

一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法 Download PDF

Info

Publication number
CN114624380A
CN114624380A CN202210333653.6A CN202210333653A CN114624380A CN 114624380 A CN114624380 A CN 114624380A CN 202210333653 A CN202210333653 A CN 202210333653A CN 114624380 A CN114624380 A CN 114624380A
Authority
CN
China
Prior art keywords
anaerobic
inoculum
biological decomposition
preparing
temperature high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210333653.6A
Other languages
English (en)
Inventor
许玫英
邓桂荣
刘东满
梅承芳
邓通初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbiology of Guangdong Academy of Sciences
Original Assignee
Institute of Microbiology of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microbiology of Guangdong Academy of Sciences filed Critical Institute of Microbiology of Guangdong Academy of Sciences
Priority to CN202210333653.6A priority Critical patent/CN114624380A/zh
Publication of CN114624380A publication Critical patent/CN114624380A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/10Addition or removal of substances other than water or air to or from the material during the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开了一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法。该方法包括以下步骤:1)将生物质废弃物和水混合后进行好氧堆肥;2)将1)中好氧堆肥产物、污泥、牛粪、菌包、营养物质混合,使混合物的碳氮比在15~25之间,加入水并充分混匀;3)将混合物置于50~54℃下密闭培养,监控生物气体产量,当产气量为2~3mL每克干固体时即可用于开展塑料材料最终厌氧生物分解能力的测试。结果显示,本发明制得的接种物对纤维素的生物降解率大于70%,满足试验有效性要求。

Description

一种制备塑料材料最终厌氧生物分解能力测定用的高温高固 体份厌氧接种物的方法
技术领域
本发明属于环保技术领域,具体涉及一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法。
背景技术
随着“禁塑令”的推广执行,我国可降解塑料的产能和产量急剧增大,大量的新材料和新产品不断出现。为了满足市场流通和生产工艺评估,我国陆续发布了相关产品标准和标准分析方法。其中塑料生物降解性能的测试方法共计11个,根据测试环境,大致可分为好氧消化和厌氧消化两大类。《GB/T 33797-2017高固体份堆肥条件下最终厌氧生物分解能力的测定采用分析测定释放生物气体的方法》是目前较常采用的厌氧测试方法,而接种物是决定这项测试结果的科学性和准确性的关键。
目前以经简单处理的城市固废弃物作为接种物,活性不够,无法满足国标里的要求。特别是15天参比材料组降解率达到70%的要求。
因此,针对塑料厌氧生物降解性能测试的重要性和迫切性,亟需建立快速制备符合质量要求的高温高固体份厌氧接种物的方法,具有重要的应用价值。
发明内容
本发明的目的在于提供一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法。
本发明采取的技术方案如下:
一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,包括以下步骤:
(1)将生物质废弃物和水混合后进行好氧堆肥;
(2)将(1)中好氧堆肥产物、污泥、牛粪、菌包、营养物质混合,使混合物的碳氮比在15~25之间,加入水并充分混匀;
(3)将混合物置于50~54℃下密闭培养,监控生物气体产量,当产气量为2~3mL每克干固体时即可用于开展塑料材料最终厌氧生物分解能力的测试。
步骤(1)中,所述的生物质废弃物包括以下质量百分比计的组分:腐熟堆肥29~30%、木屑9~10%、兔子饲料制品16~17%、新鲜蔬果30~32%和土壤13~14%。
兔子饲料制品购自河南省欣广饲料科技有限公司。
步骤(1)中,所述的生物质废弃物和水的混合物的碳氮比在20~30之间,水分和挥发性固体含量超过50%,pH值不低于6。
步骤(2)中,所述的好氧堆肥产物、污泥、牛粪、菌包、营养物质的质量比为3:1:0.5:0.5:0.5。
所述的菌包为种植猴头菇、榆黄蘑等真菌后的废弃菌包;所述的营养物质包含液体硫乙醇酸盐培养基和微量元素。液体硫乙醇酸盐培养基,购自广东环凯微生物科技有限公司,微量元素通过制备微量元素贮备液进行添加。贮备液(g/L)含量如下:
Figure BDA0003573811180000021
Figure BDA0003573811180000031
1000g液体硫乙醇酸盐培养基加入5mL微量元素贮备液。
步骤(2)中,水的加入量为混合物总重量的50%。
本发明的另一个目的是提供一种由上述制备方法制备得到的塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物。
本发明的另一个目的是提供上述的高温高固体份厌氧接种物在塑料材料最终厌氧生物分解能力测定中的应用。
本制备方法具有以下优势:(1)快速制备高温高固体份厌氧接种物;(2)所获得接种物开展标准指定的薄层色谱级、粒度小于20μm的参比物色谱级微晶纤维素(以下简称纤维素)最终厌氧生物分解能力试验,所得生物分解率不低于70%,满足试验有效性要求。
附图说明
图1是实施例1纤维素生物分解率曲线图。
图2是实施例2纤维素生物分解率曲线图。
图3是比较例1纤维素生物分解率曲线图。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1
(1)制备好氧堆肥:新鲜蔬果使用前先切碎,使其颗粒小于10mm。按下述质量百分比制备堆肥原料,腐熟堆肥:木屑:兔子饲料制品:新鲜蔬果:土壤=30:10:16:30:14,制备质量为30kg。加入适量水,使水分含量在50%以上(即用手捏紧混合物有少量游离水产生)。混合均匀后,转入生物堆肥测试箱中培育1个月,堆肥时新鲜混合物碳氮比在20~30之间,培育期间定期对堆体进行翻堆,避免出现结块,并监测温度、pH值(升至7以上)、氧气含量(不低于10%)和水分含量(不低于40%),确保堆肥过程顺利进行。
(2)制备厌氧接种物:剩余污泥取自生活污水处理厂。菌包取自广东省某菌类生产基地的废弃菌包。按照下述质量比制备厌氧接种物原料,1月龄好氧堆肥产物:剩余污泥:牛粪:菌包:营养物质=3:1:0.5:0.5:0.5,营养物质为1000g液体硫乙醇酸盐培养基加入5mL微量元素贮备液;所述的微量元素贮备液每升含Al2(SO4)3·18H2O 0.04g、CoCl2·6H2O0.2g、CuCl2·2H2O 0.02g、FeCl2·4H2O 1g、H3BO3 0.12g、MnCI2·4H2O 1g、Na2MoO4·2H2O0.02g、Na2SeO4 0.02g、Na2WO4·2H2O 0.02g、NiCl2·6H2O 0.02g、ZnCl2 0.02g,溶剂为水。将上述原料混合,使混合物的碳氮比在15~25之间,随后加入自来水至混合物总重的50%,充分混匀,将混合物置于52±2℃温度条件下密闭培养22d,此时生物气体产量为2mL/g干固体,测试此厌氧接种物关键指标(总干固体含量、pH值、氨氮、挥发性脂肪酸),确定所得厌氧接种物是否满足试验要求。总干固体含量测试采用烘干恒重法(105℃),使用pH计测试pH值,氨氮和挥发性脂肪酸均采用蒸馏-中和滴定法。测试结果如下:总干固体含量为20.4%,pH值为8.26,氨氮(NH4 +-N)含量为1.80g/kg湿固体,挥发性脂肪酸(VFA)含量为0.65g/kg湿固体。所有指标均满足GB/T 33797-2017厌氧接种物质量控制要求。
(3)开展试验:取出厌氧接种物,按照塑料在高固体份堆肥条件下最终厌氧生物分解能力的测定采用分析测定释放生物气体的方法(GB/T 33797-2017)开展纤维素最终厌氧生物分解能力试验。试验设计1个空白对照组和1个纤维素对照组,每组设计3个平行。纤维素对照组每个容器将1000g厌氧接种物和20g挥发性固体的纤维素(TLC微晶纤维素)混匀。空白对照组仅加入等量厌氧接种物。试验期间,采用排液法测定生物气体体积。15天后,计算得纤维素生物分解率分别为75.9%、78.9%、76.1%,平均值为77.0%,大于70%(图1),表明接种物生物活性满足试验要求。
实施例2
使用类似配方再次配制高温高固体份厌氧接种物,得到满足要求但数值有稍许差异的厌氧接种物,最后进行纤维素最终厌氧生物分解率试验,具体包括以下步骤:
(1)制备好氧堆肥:原料来源、步骤及堆肥化过程条件控制均同实施例1(1),使用的配比稍有不同,为腐熟堆肥:木屑:兔子饲料制品:新鲜蔬果:土壤质量比=29:10:16:32:13,共制备30kg。
(2)制备厌氧接种物:原料来源、配比及步骤均同实施例1(2),经过25天培育,生物气体产量为2.2mL/g干固体时停止培育,得到接种物。所得接种物的指标测试结果如下:总干固体含量为23.6%,pH值为8.30,氨氮(NH4 +-N)含量为1.46g/kg湿固体,挥发性脂肪酸(VFA)含量为0.97g/kg湿固体。所有指标均满足GB/T 33797-2017厌氧接种物质量控制要求。
(3)开展试验:采用实施例1(3)同样方法验证接种物的活性。纤维素在15天后的生物分解率分别为81.7%、81.6%、83.3%,平均值为82.2%,大于70%(图2),表明接种物生物活性满足试验要求。
比较例1
以不同净水厂的厌氧污泥作为接种物进行试验。
将不同净水厂的厌氧污泥离心后,沉淀在52℃预发酵7天后,使用500g厌氧污泥与10g挥发性固体的纤维素(TLC微晶纤维素)混合进行15d试验,试验期间,采用排液法测定生物气体体积。结果见表1和图3。结果显示,15天后,使用净水厂1厌氧污泥作为接种物对TLC微晶纤维素的生物降解率为13.14%,净水厂2为32.86%,净水厂3为26.62%(图3)。以上接种物的降解率均达不到国标降级率70%的要求。
表1以不同净水厂的厌氧污泥作为接种物的降解率
Figure BDA0003573811180000061
比较例2
以来源某家庭固体垃圾处理厂的厌氧消化垃圾作为接种物进行试验,该厌氧接种物的相关指标见表2。
表2厌氧接种物的理化指标
pH 总干固体(%) 氨氮(g/kg) 脂肪酸(g/kg) TN(g/g) TOC(%) C/N
8.43 32.1 2.11 0.858 0.0293 34.2 11.7
将500g厌氧接种物与10g TLC微晶纤维素混合进行厌氧试验。进行11天试验,结果显示,微晶纤维素的生物降解率均为0。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,包括以下步骤:
(1)将生物质废弃物和水混合后进行好氧堆肥;
(2)将(1)中好氧堆肥产物、污泥、牛粪、菌包、营养物质混合,使混合物的碳氮比在15~25之间,加入水并充分混匀;
(3)将混合物置于50~54℃下密闭培养,监控生物气体产量,当产气量为2~3mL每克干固体时即可用于开展塑料材料最终厌氧生物分解能力的测试。
2.根据权利要求1所述的制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,步骤(1)中,所述的生物质废弃物包括以下质量百分比计的组分:腐熟堆肥29~30%、木屑9~10%、兔子饲料制品16~17%、新鲜蔬果30~32%和土壤13~14%。
3.根据权利要求1所述的制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,步骤(1)中,所述的生物质废弃物和水的混合物的碳氮比在20~30之间,水分和挥发性固体含量超过50%,pH值不低于6。
4.根据权利要求1所述的制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,步骤(2)中,所述的好氧堆肥产物、污泥、牛粪、菌包、营养物质的质量比为3:1:0.5:0.5:0.5。
5.根据权利要求1或4所述的制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,所述的营养物质包含液体硫乙醇酸盐培养基和微量元素;每1000g液体硫乙醇酸盐培养基中加入5mL微量元素贮备液。
6.根据权利要求5所述的制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,所述的微量元素贮备液每升含Al2(SO4)3·18H2O 0.04g、CoCl2·6H2O 0.2g、CuCl2·2H2O 0.02g、FeCl2·4H2O 1g、H3BO3 0.12g、MnCI2·4H2O 1g、Na2MoO4·2H2O 0.02g、Na2SeO4 0.02g、Na2WO4·2H2O 0.02g、NiCl2·6H2O 0.02g、ZnCl20.02g,溶剂为水。
7.根据权利要求1所述的制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法,其特征在于,步骤(2)中,水的加入量为混合物总重量的50%。
8.根据权利要求1-7任一项所述的制备方法制备得到的塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物。
9.权利要求8所述的高温高固体份厌氧接种物在塑料材料最终厌氧生物分解能力测定中的应用。
CN202210333653.6A 2022-03-30 2022-03-30 一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法 Pending CN114624380A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210333653.6A CN114624380A (zh) 2022-03-30 2022-03-30 一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210333653.6A CN114624380A (zh) 2022-03-30 2022-03-30 一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法

Publications (1)

Publication Number Publication Date
CN114624380A true CN114624380A (zh) 2022-06-14

Family

ID=81905224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210333653.6A Pending CN114624380A (zh) 2022-03-30 2022-03-30 一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法

Country Status (1)

Country Link
CN (1) CN114624380A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264349A (en) * 1991-02-01 1993-11-23 Organic Waste Systems, Naamloze Vennootschap Method and device for determining in an accelerated manner the anaerobic biodegradability of a product
US20020090697A1 (en) * 2001-01-06 2002-07-11 Hince Eric Christian Slow-release solid-chemical composition and method for anaerobic bioremediation
CN102408259A (zh) * 2011-07-22 2012-04-11 华北电力大学 一种固体废弃物联合堆肥逐步调节与控制的系统与方法
CN107827509A (zh) * 2017-12-09 2018-03-23 西北农林科技大学 一种固肥‑液肥一体化生产设施及生产方法
CN108675844A (zh) * 2018-08-18 2018-10-19 西北农林科技大学 一种基于好氧-厌氧发酵的固肥-液肥处理装置及方法
CN108706848A (zh) * 2018-05-04 2018-10-26 上海交通大学 一种生物调理改善污泥脱水性能的方法
CN109279934A (zh) * 2017-07-21 2019-01-29 邱立新 一种生物废弃物高腐殖质肥料及其制备方法
CN113376362A (zh) * 2021-07-14 2021-09-10 浙江三工匠仪器有限公司 一种新型的塑料生物降解测试设备及测试方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264349A (en) * 1991-02-01 1993-11-23 Organic Waste Systems, Naamloze Vennootschap Method and device for determining in an accelerated manner the anaerobic biodegradability of a product
US20020090697A1 (en) * 2001-01-06 2002-07-11 Hince Eric Christian Slow-release solid-chemical composition and method for anaerobic bioremediation
CN102408259A (zh) * 2011-07-22 2012-04-11 华北电力大学 一种固体废弃物联合堆肥逐步调节与控制的系统与方法
CN109279934A (zh) * 2017-07-21 2019-01-29 邱立新 一种生物废弃物高腐殖质肥料及其制备方法
CN107827509A (zh) * 2017-12-09 2018-03-23 西北农林科技大学 一种固肥‑液肥一体化生产设施及生产方法
CN108706848A (zh) * 2018-05-04 2018-10-26 上海交通大学 一种生物调理改善污泥脱水性能的方法
CN108675844A (zh) * 2018-08-18 2018-10-19 西北农林科技大学 一种基于好氧-厌氧发酵的固肥-液肥处理装置及方法
CN113376362A (zh) * 2021-07-14 2021-09-10 浙江三工匠仪器有限公司 一种新型的塑料生物降解测试设备及测试方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ASTM INTERNATIONAL: "Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions", 《ASTM D5511-18》 *
HISAAKI YAGI 等: "Anaerobic Biodegradation Tests of Poly(lactic acid) under Mesophilic and Thermophilic Conditions Using a New Evaluation System for Methane Fermentation in Anaerobic Sludge", 《INT. J. MOL. SCI.》 *
SWATI HEGDE 等: "Investigation of process parameters on the anaerobic digestion of a poly(hydroxyalkonate) film", 《EUROPEAN POLYMER JOURNAL》 *
中华人民共和国国家质量监督检验检疫总局 等: "《中华人民共和国国家标准 受控堆肥条件下材料最终需氧生物分解能力的测定采用测定释放的二氧化碳的方法第2部分:用重量分析法测定实验室条件下二氧化碳的释放量GB/T19277.2—2013/ISO14855-2:2007》", 30 November 2013, 中国标准出版社出版发行 *
李冰冰 等: "堆肥预处理对生物质厌氧消化特性的影响", 《安徽农业科学》 *
杨渤京等: "厌氧条件下纤维素降解产气的研究", 《中国环境科学》 *
赵剑豪等: "聚丁二酸丁二醇酯在堆肥条件下的生物降解性能研究", 《功能高分子学报》 *
魏芳 等: "超市生物质废弃物混合原料厌氧消化实验研究", 《中国沼气》 *

Similar Documents

Publication Publication Date Title
García-Sánchez et al. Stabilization of different starting materials through vermicomposting in a continuous-feeding system: Changes in chemical and biological parameters
Hadin et al. Horse manure as feedstock for anaerobic digestion
Li et al. Nutrient transformations during composting of pig manure with bentonite
Wei et al. Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray
Gao et al. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust
Fan et al. Effects of compost characteristics on nutrient retention and simultaneous pollutant immobilization and degradation during co-composting process
CN101195541A (zh) 一种利用肥料下角料生产复合微生物肥料的方法
Elfadil et al. The effect of phosphate flotation wastes and phosphogypsum on cattle manure compost quality and plant growth
Qi et al. Effect of solid–liquid separation on anaerobic digestion of dairy manure in semi‐continuous stirred tank reactors: Process performance and digestate characteristics
Muske et al. Evaluation of biogas production potential by anaerobic co-digestion with substrate mixture of fruit waste, lawn grass, and manures
CN114624380A (zh) 一种制备塑料材料最终厌氧生物分解能力测定用的高温高固体份厌氧接种物的方法
Zambrano et al. Green liquor dregs effect on Kraft mill secondary sludge composting
Jieqiong et al. Distribution of heavy metals in pig farm biogas residues and the safety and feasibility assessment of biogas fertilizer
Yadav et al. Physico-chemical properties of before and after anaerobic digestion of Jatropha seed cake and mixed with pure cow dung
Sidełko et al. Impact of reduced straw content on the sewage sludge composting process
CN109180239A (zh) 一种以牛粪沼泥为原料的堆肥
Wang et al. Effect of reactor temperature and feeding ratio on fed-batch composting of household food waste and green wastes
Campaña et al. Physicochemical and phytotoxic characterisation of residual sludge from the malting of barley
Osman et al. Effect of cow rumen fluid concentration on biogas production from goat manure
Wang et al. Relationships Among Raw Materials, Grinding Ratios, and Moisture Content During the Composting Process.
Pandebesie et al. Changes of nitrogen and organic compound during co-composting of disposable diaper and vegetable wastes on aerobic process
CN101870612B (zh) 一种用印染污泥生产的有机复合肥料及其制造方法
Byakodi et al. Aerobic composting of sugar pressmud with stabilized spentwash and selected microbial consortium
Abdelsalam et al. The effect of buffalo dung treatment with paunch fluid on biogas production
Zhen et al. Humus Transformation and Compost Maturity Indexes in High-Temperature Composting of Livestock and Poultry Manure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220614

RJ01 Rejection of invention patent application after publication