CN114620070A - Driving track planning method, device, equipment and storage medium - Google Patents
Driving track planning method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN114620070A CN114620070A CN202210143460.4A CN202210143460A CN114620070A CN 114620070 A CN114620070 A CN 114620070A CN 202210143460 A CN202210143460 A CN 202210143460A CN 114620070 A CN114620070 A CN 114620070A
- Authority
- CN
- China
- Prior art keywords
- target
- longitudinal
- feasible
- target vehicle
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000003993 interaction Effects 0.000 claims abstract description 113
- 230000002452 interceptive effect Effects 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 44
- 230000006399 behavior Effects 0.000 claims description 31
- 238000005070 sampling Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 12
- 238000010586 diagram Methods 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000036461 convulsion Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0011—Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/50—Barriers
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本申请提供一种行车轨迹规划方法、装置、设备及存储介质,涉及智能驾驶技术领域,该行车轨迹规划方法包括:确定目标车辆在未来预设时间范围内与障碍物的期望交互决策,基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。本申请能够更加准确地获得最优路径,提升行车轨迹规划结果的合理性和可靠性,提升驾驶效率,改善行车体验。
The present application provides a driving trajectory planning method, device, equipment and storage medium, and relates to the technical field of intelligent driving. The driving trajectory planning method includes: determining an expected interaction decision between a target vehicle and an obstacle within a preset time range in the future, and based on the expected interaction decision Interactive decision-making, constructing a longitudinal feasible space map of the target vehicle corresponding to a preset time range in the future, obtaining the reference speed of the target vehicle based on the longitudinal feasible space map and the first preset cost function, and determining the target vehicle at a preset time in the future based on the reference speed target trajectory within the range. The present application can obtain the optimal path more accurately, improve the rationality and reliability of the driving trajectory planning result, improve the driving efficiency, and improve the driving experience.
Description
技术领域technical field
本申请涉及智能驾驶技术领域,尤其涉及一种行车轨迹规划方法、装置、设备及存储介质。The present application relates to the technical field of intelligent driving, and in particular, to a driving trajectory planning method, device, device and storage medium.
背景技术Background technique
随着自动驾驶技术的发展,自动驾驶车辆逐渐得到发展和应用。在自动驾驶车辆行驶的时候,会为自动驾驶车辆提供规划好的行车轨迹,以使自动驾驶车辆可以依据规划好的行车轨迹自动行驶。With the development of autonomous driving technology, autonomous vehicles are gradually developed and applied. When the self-driving vehicle is driving, a planned driving trajectory will be provided for the self-driving vehicle, so that the self-driving vehicle can automatically drive according to the planned driving trajectory.
目前,常采用基于采样的路径优化方法规划自动驾驶车辆的行车轨迹,该方法具体为:对自动驾驶车辆的收敛位置进行采样,获得多条备选路径,以车辆的当前车速作为参考速度,从多条备选路径中确定最优路径。但通过上述方法获得的行车轨迹可能不是最优的。At present, the path optimization method based on sampling is often used to plan the driving trajectory of the autonomous vehicle. Determine the optimal path among multiple alternative paths. However, the driving trajectory obtained by the above method may not be optimal.
发明内容SUMMARY OF THE INVENTION
本申请提供一种行车轨迹规划方法、装置、设备及存储介质,以解决采用基于采样的路径优化方法获得的行车轨迹可能不是最优的问题。The present application provides a driving trajectory planning method, device, device and storage medium to solve the problem that the driving trajectory obtained by the sampling-based path optimization method may not be optimal.
第一方面,本申请提供一种行车轨迹规划方法,包括:In a first aspect, the present application provides a driving trajectory planning method, including:
确定目标车辆在未来预设时间范围内与障碍物的期望交互决策,期望交互决策用于表征目标车辆与障碍物的交互行为以及交互行为对应的交互时间窗口,交互行为包括目标车辆主动超过障碍物、目标车辆主动让行障碍物和目标车辆主动忽略障碍物;Determine the expected interaction decision between the target vehicle and the obstacle within a preset time range in the future. The expected interaction decision is used to characterize the interaction behavior between the target vehicle and the obstacle and the interaction time window corresponding to the interaction behavior. The interaction behavior includes the target vehicle actively passing the obstacle. , the target vehicle actively yields to obstacles and the target vehicle actively ignores obstacles;
基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,纵向可行空间图用于表征目标车辆在未来预设时间范围内离散时刻对应的纵向可行范围以及纵向速度约束信息;Based on the expected interaction decision, construct a longitudinal feasible space map of the target vehicle corresponding to the future preset time range, and the longitudinal feasible space map is used to represent the longitudinal feasible range and longitudinal speed constraint information corresponding to the target vehicle at discrete moments in the future preset time range;
基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,第一预设代价函数是基于目标车辆的行驶效率和舒适度确定的;obtaining a reference speed of the target vehicle based on the longitudinal feasible space map and a first preset cost function, where the first preset cost function is determined based on the driving efficiency and comfort of the target vehicle;
基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。Based on the reference speed, the target trajectory of the target vehicle in the future preset time range is determined.
可选的,基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,包括:基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值;根据目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,构建目标车辆对应未来预设时间范围的纵向可行空间图。Optionally, based on the expected interaction decision, constructing a longitudinal feasible space map of the target vehicle corresponding to the future preset time range, including: determining, based on the expected interaction decision, the target longitudinal minimum feasible distance corresponding to the target vehicle at discrete moments within the future preset time range , the maximum feasible longitudinal distance of the target, the minimum value of the longitudinal speed of the target, and the maximum value of the longitudinal speed of the target; construct the target according to the minimum feasible distance in the longitudinal direction of the target, the maximum feasible distance in the longitudinal direction of the target, the minimum value of the longitudinal speed of the target, and the maximum value of the longitudinal speed of the target The longitudinal feasible space map of the vehicle corresponding to the preset time range in the future.
可选的,基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,包括:确定目标车辆的初始纵向可行最大距离、初始纵向可行最小距离、初始纵向速度的最小值以及初始纵向速度的最大值;针对未来预设时间范围内离散时刻对应的每个障碍物,执行以下操作,直至遍历完每个障碍物:基于期望交互决策,若确定需要目标车辆主动让行目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设让行安全距离以及初始纵向可行最大距离,确定目标车辆的目标纵向可行最大距离,以及根据目标障碍物的速度,确定目标纵向速度的最大值,确定目标纵向可行最大距离为新的初始纵向可行最大距离,确定目标纵向速度的最大值为新的初始纵向速度的最大值;或者,基于期望交互决策,若确定需要目标车辆主动超过目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设超车安全距离以及初始纵向可行最小距离,确定目标车辆的目标纵向可行最小距离,以及根据目标障碍物的速度,确定目标纵向速度的最小值,确定目标纵向可行最小距离为新的初始纵向可行最小距离,确定目标纵向速度的最小值为新的初始纵向速度的最小值。Optionally, based on the expected interaction decision, determine the minimum target longitudinal feasible distance, the target longitudinal maximum feasible distance, the minimum target longitudinal speed, and the maximum target longitudinal speed corresponding to the target vehicle at discrete moments within a preset time range in the future, including : Determine the initial maximum feasible longitudinal distance, the minimum initial feasible longitudinal distance, the minimum initial longitudinal velocity, and the maximum initial longitudinal velocity of the target vehicle; for each obstacle corresponding to discrete moments within a preset time range in the future, perform the following operations , until each obstacle is traversed: Based on the expected interaction decision, if it is determined that the target vehicle needs to actively give way to the target obstacle, then according to the space occupied by the target obstacle in the vertical and horizontal directions, the preset safe distance to give way and the initial vertical feasible maximum Distance, determine the target longitudinal maximum feasible distance of the target vehicle, and according to the speed of the target obstacle, determine the maximum longitudinal speed of the target, determine the maximum longitudinal feasible distance of the target as the new initial maximum feasible longitudinal distance, and determine the maximum longitudinal speed of the target is the maximum value of the new initial longitudinal speed; or, based on the expected interaction decision, if it is determined that the target vehicle needs to actively pass the target obstacle, then according to the space occupied by the target obstacle longitudinally and laterally, the preset overtaking safety distance and the initial longitudinal feasibility Minimum distance, determine the target longitudinal feasible minimum distance of the target vehicle, and determine the minimum target longitudinal speed according to the speed of the target obstacle, determine the target longitudinal feasible minimum distance as the new initial longitudinal feasible minimum distance, and determine the minimum target longitudinal speed. The value is the minimum value of the new initial longitudinal velocity.
可选的,确定目标车辆的初始纵向可行最大距离,包括:基于目标车辆的驾驶场景限速,确定目标车辆在未来预设时间范围内的最大可行距离;根据目标车辆在未来预设时间范围内所行驶路径的最大曲率以及预设曲率和速度约束的对应关系,确定最大曲率对应的最大速度;根据最大速度和最大可行距离,获得目标最大可行距离;确定目标最大可行距离为初始纵向可行最大距离。Optionally, determining the initial longitudinal maximum feasible distance of the target vehicle includes: determining the maximum feasible distance of the target vehicle within a preset time range in the future based on the speed limit of the driving scene of the target vehicle; Determine the maximum speed corresponding to the maximum curvature corresponding to the maximum curvature of the traveled path and the corresponding relationship between the preset curvature and the speed constraint; obtain the maximum feasible distance of the target according to the maximum speed and the maximum feasible distance; determine the maximum feasible distance of the target as the initial longitudinal feasible maximum distance .
可选的,构建目标车辆对应未来预设时间范围的纵向可行空间图之后,该行车轨迹规划方法还包括:针对未来预设时间范围内离散时刻对应的目标纵向可行最小距离和目标纵向可行最大距离,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离;根据更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离,获得更新后的纵向可行空间图。Optionally, after constructing a longitudinal feasible space map of the target vehicle corresponding to a preset time range in the future, the driving trajectory planning method further includes: aiming at the minimum longitudinal feasible distance of the target and the maximum feasible longitudinal distance of the target corresponding to discrete moments in the predetermined time range in the future. , according to the target longitudinal feasible minimum distance corresponding to the previous discrete moment and the target longitudinal feasible minimum distance corresponding to the current discrete moment, obtain the updated target longitudinal feasible minimum distance corresponding to the current discrete moment, and obtain the updated target longitudinal feasible minimum distance corresponding to the current discrete moment, and according to the target maximum feasible distance and the current discrete moment The corresponding maximum vertical feasible distance of the target, and the updated maximum vertical feasible distance of the target corresponding to the current discrete moment is obtained; according to the updated minimum vertical feasible distance of the target and the updated maximum vertical feasible distance of the target, the updated vertical feasible space map is obtained. .
可选的,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离,包括:针对未来预设时间范围内离散时刻,若确定更新后的目标纵向可行最大距离小于更新后的目标纵向可行最小距离,则更新对应的障碍物与目标车辆的交互行为,并重新构建目标车辆对应未来预设时间范围的纵向可行空间图。Optionally, according to the target longitudinal feasible minimum distance corresponding to the previous discrete moment and the target longitudinal feasible minimum distance corresponding to the current discrete moment, the updated target longitudinal feasible minimum distance corresponding to the current discrete moment is obtained, and the target maximum feasible distance and Obtaining the updated maximum longitudinal feasible distance of the target corresponding to the current discrete moment, and obtaining the updated maximum longitudinal feasible distance of the target corresponding to the current discrete moment, including: for discrete moments within a preset time range in the future, if it is determined that the updated maximum longitudinal feasible distance of the target is less than the updated target After the target longitudinal feasible minimum distance, the interaction behavior between the corresponding obstacle and the target vehicle is updated, and the longitudinal feasible space map of the target vehicle corresponding to the future preset time range is reconstructed.
可选的,基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,包括:基于纵向可行空间图,根据目标车辆的最大加速能力、最大减速能力、纵向可行范围内路径的参考线所对应的曲率以及预设曲率和速度约束的对应关系,获得更新后的纵向可行范围和纵向速度约束信息;根据更新后的纵向可行范围和纵向速度约束信息,获得更新后的纵向可行空间图;基于更新后的纵向可行空间图和第一预设代价函数,获取离散时刻对应的目标车辆的第一目标位置;对第一目标位置进行拟合处理,获得目标车辆的参考速度。Optionally, based on the longitudinal feasible space map and the first preset cost function, obtain the reference speed of the target vehicle, including: based on the longitudinal feasible space map, according to the maximum acceleration capability, maximum deceleration capability of the target vehicle, and the path speed within the longitudinal feasible range. The curvature corresponding to the reference line and the corresponding relationship between the preset curvature and the speed constraint, obtain the updated longitudinal feasible range and longitudinal speed constraint information; obtain the updated longitudinal feasible space according to the updated longitudinal feasible range and longitudinal speed constraint information Figure; based on the updated longitudinal feasible space map and the first preset cost function, obtain the first target position of the target vehicle corresponding to the discrete time; perform fitting processing on the first target position to obtain the reference speed of the target vehicle.
可选的,基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹,包括:根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径,预设候选路径是对目标车辆未来行驶路径分别进行纵向和横向采样获得的;根据目标候选路径以及第二预设代价函数,确定目标车辆在未来预设时间范围内的目标轨迹,第二预设代价函数是基于目标车辆的驾驶安全度、舒适度和稳定度确定的。Optionally, based on the reference speed, determining the target trajectory of the target vehicle in the future preset time range includes: obtaining the target candidate path corresponding to the future preset time range according to at least one preset candidate path corresponding to the target vehicle and the reference speed , the preset candidate path is obtained by vertically and horizontally sampling the future travel path of the target vehicle; according to the target candidate path and the second preset cost function, the target trajectory of the target vehicle within the preset time range in the future is determined, and the second preset path is determined. The cost function is assumed to be determined based on the driving safety, comfort and stability of the target vehicle.
可选的,根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径,包括:针对每一条预设候选路径,根据参考速度,获得离散时刻对应的目标车辆对应的纵向前进距离;根据纵向前进距离和预设候选路径,获得离散时刻对应的目标车辆的第二目标位置;对第二目标位置进行坐标变换,获得目标候选路径。Optionally, obtaining a target candidate path corresponding to a preset time range in the future according to at least one preset candidate path corresponding to the target vehicle and the reference speed, including: for each preset candidate path, according to the reference speed, obtaining a discrete time corresponding to the speed. The longitudinal advance distance corresponding to the target vehicle; according to the longitudinal advance distance and the preset candidate path, the second target position of the target vehicle corresponding to the discrete time is obtained; the coordinate transformation of the second target position is performed to obtain the target candidate path.
第二方面,本申请提供一种行车轨迹规划装置,包括:In a second aspect, the present application provides a driving trajectory planning device, comprising:
确定模块,用于确定目标车辆在未来预设时间范围内与障碍物的期望交互决策,期望交互决策用于表征目标车辆与障碍物的交互行为以及交互行为对应的交互时间窗口,交互行为包括目标车辆主动超过障碍物、目标车辆主动让行障碍物和目标车辆主动忽略障碍物;The determination module is used to determine the expected interaction decision between the target vehicle and the obstacle within a preset time range in the future. The expected interaction decision is used to characterize the interaction behavior between the target vehicle and the obstacle and the interaction time window corresponding to the interaction behavior. The interaction behavior includes the target The vehicle actively overtakes the obstacle, the target vehicle actively yields to the obstacle, and the target vehicle actively ignores the obstacle;
构建模块,用于基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,纵向可行空间图用于表征目标车辆在未来预设时间范围内离散时刻对应的纵向可行范围以及纵向速度约束信息;The building module is used to construct a longitudinal feasible space map of the target vehicle corresponding to a preset time range in the future based on the expected interaction decision. speed constraint information;
获取模块,用于基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,第一预设代价函数是基于目标车辆的行驶效率和舒适度确定的;an obtaining module, configured to obtain the reference speed of the target vehicle based on the longitudinal feasible space map and a first preset cost function, where the first preset cost function is determined based on the driving efficiency and comfort of the target vehicle;
处理模块,用于基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。The processing module is used for determining the target trajectory of the target vehicle in the future preset time range based on the reference speed.
可选的,构建模块具体用于:基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值;根据目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,构建目标车辆对应未来预设时间范围的纵向可行空间图。Optionally, the building module is specifically used to: determine, based on the expected interaction decision, the minimum target longitudinal feasible distance, the target longitudinal maximum feasible distance, the target longitudinal speed minimum, and the target longitudinal distance corresponding to the target vehicle at discrete moments within a preset time range in the future. The maximum value of the speed; according to the minimum feasible longitudinal distance of the target, the maximum feasible longitudinal distance of the target, the minimum value of the target longitudinal speed and the maximum value of the target longitudinal speed, the longitudinal feasible space map of the target vehicle corresponding to the preset time range in the future is constructed.
可选的,构建模块在用于基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值时,具体用于:确定目标车辆的初始纵向可行最大距离、初始纵向可行最小距离、初始纵向速度的最小值以及初始纵向速度的最大值;针对未来预设时间范围内离散时刻对应的每个障碍物,执行以下操作,直至遍历完每个障碍物:基于期望交互决策,若确定需要目标车辆主动让行目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设让行安全距离以及初始纵向可行最大距离,确定目标车辆的目标纵向可行最大距离,以及根据目标障碍物的速度,确定目标纵向速度的最大值,确定目标纵向可行最大距离为新的初始纵向可行最大距离,确定目标纵向速度的最大值为新的初始纵向速度的最大值;或者,基于期望交互决策,若确定需要目标车辆主动超过目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设超车安全距离以及初始纵向可行最小距离,确定目标车辆的目标纵向可行最小距离,以及根据目标障碍物的速度,确定目标纵向速度的最小值,确定目标纵向可行最小距离为新的初始纵向可行最小距离,确定目标纵向速度的最小值为新的初始纵向速度的最小值。Optionally, the building module is used to determine, based on the expected interaction decision, the minimum target longitudinal feasible distance, the target longitudinal maximum feasible distance, the minimum target longitudinal velocity, and the target longitudinal velocity corresponding to the target vehicle at discrete moments within a preset time range in the future. When the maximum value of the initial longitudinal speed is determined, it is specifically used to: determine the initial maximum feasible longitudinal distance of the target vehicle, the initial minimum feasible longitudinal distance, the minimum initial longitudinal speed, and the maximum initial longitudinal speed; For each obstacle, perform the following operations until each obstacle is traversed: Based on the expected interaction decision, if it is determined that the target vehicle needs to actively yield to the target obstacle, the space occupied by the target obstacle longitudinally and laterally, and the preset yield The safety distance and the initial maximum feasible longitudinal distance, determine the target maximum longitudinal feasible distance of the target vehicle, and according to the speed of the target obstacle, determine the maximum longitudinal speed of the target, and determine the maximum feasible longitudinal distance of the target as the new initial maximum feasible longitudinal distance , determine the maximum value of the target longitudinal speed as the new maximum value of the initial longitudinal speed; or, based on the expected interaction decision, if it is determined that the target vehicle needs to actively surpass the target obstacle, then the space occupied by the target obstacle longitudinally and laterally, Set the overtaking safety distance and the initial minimum feasible longitudinal distance, determine the target minimum longitudinal feasible distance of the target vehicle, and determine the minimum value of the target longitudinal speed according to the speed of the target obstacle, and determine the target longitudinal feasible minimum distance as the new initial longitudinal feasible minimum distance. distance, and determine the minimum value of the target longitudinal velocity as the minimum value of the new initial longitudinal velocity.
可选的,构建模块在用于确定目标车辆的初始纵向可行最大距离时,具体用于:基于目标车辆的驾驶场景限速,确定目标车辆在未来预设时间范围内的最大可行距离;根据目标车辆在未来预设时间范围内所行驶路径的最大曲率以及预设曲率和速度约束的对应关系,确定最大曲率对应的最大速度;根据最大速度和最大可行距离,获得目标最大可行距离;确定目标最大可行距离为初始纵向可行最大距离。Optionally, when the building module is used to determine the initial longitudinal feasible maximum distance of the target vehicle, it is specifically used to: determine the maximum feasible distance of the target vehicle within a preset time range in the future based on the speed limit of the driving scene of the target vehicle; The maximum curvature of the path traveled by the vehicle within the preset time range in the future and the corresponding relationship between the preset curvature and the speed constraint, determine the maximum speed corresponding to the maximum curvature; obtain the maximum feasible distance of the target according to the maximum speed and the maximum feasible distance; determine the maximum possible distance of the target The feasible distance is the initial longitudinal feasible maximum distance.
可选的,该行车轨迹规划装置还包括更新模块,用于在构建模块构建目标车辆对应未来预设时间范围的纵向可行空间图之后,针对未来预设时间范围内离散时刻对应的目标纵向可行最小距离和目标纵向可行最大距离,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离;根据更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离,获得更新后的纵向可行空间图。Optionally, the driving trajectory planning device further includes an update module for, after the building module constructs the longitudinal feasible space map of the target vehicle corresponding to the future preset time range, for the target longitudinal feasible minimum corresponding to the discrete moments in the future preset time range. distance and the target longitudinal feasible maximum distance, according to the target longitudinal feasible minimum distance corresponding to the previous discrete moment and the target longitudinal feasible minimum distance corresponding to the current discrete moment, obtain the updated target longitudinal feasible minimum distance corresponding to the current discrete moment, and according to the target The maximum feasible distance and the maximum vertical feasible distance of the target corresponding to the current discrete time are obtained, and the updated maximum vertical feasible distance of the target corresponding to the current discrete time is obtained; according to the updated minimum vertical feasible distance and the updated maximum vertical feasible distance of the target, obtain The updated vertical feasible space map.
可选的,更新模块在用于根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离时,具体用于:针对未来预设时间范围内离散时刻,若确定更新后的目标纵向可行最大距离小于更新后的目标纵向可行最小距离,则更新对应的障碍物与目标车辆的交互行为,并重新构建目标车辆对应未来预设时间范围的纵向可行空间图。Optionally, the update module is used to obtain the updated target longitudinal feasible minimum distance corresponding to the current discrete time according to the target longitudinal feasible minimum distance corresponding to the previous discrete time and the target longitudinal feasible minimum distance corresponding to the current discrete time, and according to The maximum feasible distance of the target and the maximum vertical feasible distance of the target corresponding to the current discrete time, and when the updated maximum vertical feasible distance of the target corresponding to the current discrete time is obtained, it is specifically used: for the discrete time within the preset time range in the future, if it is determined that after the update If the target longitudinal feasible maximum distance is less than the updated target longitudinal feasible minimum distance, the interaction behavior between the corresponding obstacle and the target vehicle is updated, and the longitudinal feasible space map of the target vehicle corresponding to the future preset time range is reconstructed.
可选的,获取模块具体用于:基于纵向可行空间图,根据目标车辆的最大加速能力、最大减速能力、纵向可行范围内路径的参考线所对应的曲率以及预设曲率和速度约束的对应关系,获得更新后的纵向可行范围和纵向速度约束信息;根据更新后的纵向可行范围和纵向速度约束信息,获得更新后的纵向可行空间图;基于更新后的纵向可行空间图和第一预设代价函数,获取离散时刻对应的目标车辆的第一目标位置;对第一目标位置进行拟合处理,获得目标车辆的参考速度。Optionally, the acquisition module is specifically used for: based on the longitudinal feasible space map, according to the maximum acceleration capability, the maximum deceleration capability of the target vehicle, the curvature corresponding to the reference line of the path within the longitudinal feasible range, and the corresponding relationship between the preset curvature and the speed constraint. , obtain the updated longitudinal feasible range and longitudinal speed constraint information; obtain the updated longitudinal feasible space map according to the updated longitudinal feasible range and longitudinal speed constraint information; based on the updated longitudinal feasible space map and the first preset cost function to obtain the first target position of the target vehicle corresponding to the discrete moment; perform fitting processing on the first target position to obtain the reference speed of the target vehicle.
可选的,处理模块具体用于:根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径,预设候选路径是对目标车辆未来行驶路径分别进行纵向和横向采样获得的;根据目标候选路径以及第二预设代价函数,确定目标车辆在未来预设时间范围内的目标轨迹,第二预设代价函数是基于目标车辆的驾驶安全度、舒适度和稳定度确定的。Optionally, the processing module is specifically configured to: obtain a target candidate path corresponding to a preset time range in the future according to at least one preset candidate path corresponding to the target vehicle and the reference speed, and the preset candidate path is to perform a separate operation on the future travel path of the target vehicle. Obtained by vertical and horizontal sampling; according to the target candidate path and the second preset cost function, the target trajectory of the target vehicle in the future preset time range is determined, and the second preset cost function is based on the driving safety and comfort of the target vehicle. and stability is determined.
可选的,处理模块在用于根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径时,具体用于:针对每一条预设候选路径,根据参考速度,获得离散时刻对应的目标车辆对应的纵向前进距离;根据纵向前进距离和预设候选路径,获得离散时刻对应的目标车辆的第二目标位置;对第二目标位置进行坐标变换,获得目标候选路径。Optionally, when the processing module is used to obtain the target candidate path corresponding to the future preset time range according to at least one preset candidate path corresponding to the target vehicle and the reference speed, the processing module is specifically used for: for each preset candidate path, according to With reference to the speed, the longitudinal advance distance corresponding to the target vehicle corresponding to the discrete time is obtained; according to the longitudinal advance distance and the preset candidate path, the second target position of the target vehicle corresponding to the discrete time is obtained; the coordinate transformation of the second target position is performed to obtain the target candidate path.
第三方面,本申请提供一种电子设备,包括:处理器,以及与处理器通信连接的存储器;In a third aspect, the present application provides an electronic device, including: a processor, and a memory communicatively connected to the processor;
存储器存储计算机执行指令;memory stores instructions for execution by the computer;
处理器执行存储器存储的计算机执行指令,以实现如本申请第一方面所述的行车轨迹规划方法。The processor executes the computer-executed instructions stored in the memory to implement the driving trajectory planning method according to the first aspect of the present application.
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序指令,计算机程序指令被处理器执行时,实现如本申请第一方面所述的行车轨迹规划方法。In a fourth aspect, the present application provides a computer-readable storage medium, where computer program instructions are stored in the computer-readable storage medium, and when the computer program instructions are executed by a processor, the driving trajectory planning method described in the first aspect of the present application is implemented. .
第五方面,本申请提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现如本申请第一方面所述的行车轨迹规划方法。In a fifth aspect, the present application provides a computer program product, including a computer program, when the computer program is executed by a processor, the driving trajectory planning method according to the first aspect of the present application is implemented.
本申请提供的行车轨迹规划方法、装置、设备及存储介质,通过确定目标车辆在未来预设时间范围内与障碍物的期望交互决策,基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。由于本申请充分考虑驾驶场景中的静态障碍物和动态障碍物的信息,确定期望交互决策,进而构建目标车辆的纵向可行空间图,基于纵向可行空间图获得最接近目标车辆最终执行的参考速度,将该参考速度用于评估最优路径,因此,能够更加准确地获得最优路径,提升行车轨迹规划结果的合理性和可靠性,提升驾驶效率,改善行车体验。The driving trajectory planning method, device, device and storage medium provided by the present application, by determining the expected interaction decision between the target vehicle and the obstacle in the future preset time range, and based on the expected interaction decision, construct the target vehicle corresponding to the future preset time range. The longitudinal feasible space map, based on the longitudinal feasible space map and the first preset cost function, obtains the reference speed of the target vehicle, and determines the target trajectory of the target vehicle in the future preset time range based on the reference speed. Because this application fully considers the information of static obstacles and dynamic obstacles in the driving scene, determines the desired interaction decision, and then constructs the longitudinal feasible space map of the target vehicle, and obtains the reference speed closest to the final execution of the target vehicle based on the longitudinal feasible space map, The reference speed is used to evaluate the optimal path, so the optimal path can be obtained more accurately, the rationality and reliability of the driving trajectory planning result are improved, the driving efficiency is improved, and the driving experience is improved.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present application, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本申请一实施例提供的应用场景示意图;FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application;
图2为本申请一实施例提供的行车轨迹规划方法的流程图;2 is a flowchart of a driving trajectory planning method provided by an embodiment of the present application;
图3为本申请另一实施例提供的行车轨迹规划方法的流程图;3 is a flowchart of a driving trajectory planning method provided by another embodiment of the present application;
图4为本申请一实施例提供的行车轨迹规划装置的结构示意图;FIG. 4 is a schematic structural diagram of a driving trajectory planning device provided by an embodiment of the present application;
图5为本申请提供的一种电子设备结构示意图。FIG. 5 is a schematic structural diagram of an electronic device provided by the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
本申请的技术方案中,所涉及的金融数据或用户数据等信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。In the technical solution of this application, the collection, storage, use, processing, transmission, provision and disclosure of the financial data or user data involved are all in compliance with relevant laws and regulations, and do not violate public order and good customs.
目前,在自动驾驶的行车轨迹规划方案中,采用较多的是路径和速度解耦规划的方式,而一套安全、灵活的路径规划策略是需要充分考虑驾驶场景中静态障碍物和动态障碍物的影响的,即在未来某一时刻,自车(即当前的自动驾驶车辆)与障碍物是否会同时出现在同一位置。因此,在进行备选路径评估时,需要为路径上的离散路径点提供相对应的速度和时间信息,用以分析是否与障碍物存在潜在的碰撞风险。对于基于采样的路径优化方法,不合理的参考速度会导致评估偏差,进而无法选出最优的行车路径,影响行车安全和行车效率。At present, in the driving trajectory planning scheme of automatic driving, the path and speed decoupling planning method is mostly used, and a set of safe and flexible path planning strategy needs to fully consider the static obstacles and dynamic obstacles in the driving scene. , that is, at a certain moment in the future, whether the self-driving vehicle (that is, the current self-driving vehicle) and the obstacle will appear in the same position at the same time. Therefore, when evaluating alternative paths, it is necessary to provide corresponding speed and time information for discrete waypoints on the path to analyze whether there is a potential collision risk with obstacles. For the path optimization method based on sampling, unreasonable reference speed will lead to evaluation deviation, and then the optimal driving path cannot be selected, which affects driving safety and driving efficiency.
基于上述问题,本申请提供一种行车轨迹规划方法、装置、设备及存储介质,通过充分考虑驾驶场景中的静态障碍物和动态障碍物的信息,基于对障碍物的行为和轨迹预测结果,结合目标车辆的执行能力,在与障碍物进行合理交互的前提下,进行参考速度的优化,从而得到最接近目标车辆最终执行的参考速度,将该参考速度用以进行最优路径评估,能够更加准确地获得最优路径,提升行车轨迹规划结果的合理性和可靠性。Based on the above problems, the present application provides a driving trajectory planning method, device, equipment and storage medium. By fully considering the information of static obstacles and dynamic obstacles in the driving scene, based on the behavior and trajectory prediction results of obstacles, combined with The execution ability of the target vehicle, under the premise of reasonable interaction with obstacles, optimize the reference speed, so as to obtain the reference speed closest to the final execution of the target vehicle, and use the reference speed for optimal path evaluation, which can be more accurate It can obtain the optimal path and improve the rationality and reliability of the driving trajectory planning results.
以下,首先对本申请提供的方案的应用场景进行示例说明。Hereinafter, the application scenarios of the solutions provided by the present application are firstly described with examples.
图1为本申请一实施例提供的应用场景示意图。如图1所示,本应用场景中,自动驾驶车辆101根据规划好的行车轨迹在道路102上行驶。其中,自动驾驶车辆101如何获得规划好的行车轨迹的具体实现过程可以参见下述各实施例的方案。FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application. As shown in FIG. 1 , in this application scenario, the
需要说明的是,图1仅是本申请实施例提供的一种应用场景的示意图,本申请实施例不对图1中包括的设备进行限定,也不对图1中设备之间的位置关系进行限定。It should be noted that FIG. 1 is only a schematic diagram of an application scenario provided by the embodiment of the present application, and the embodiment of the present application does not limit the devices included in FIG. 1 , nor does it limit the positional relationship between the devices in FIG. 1 .
接下来,通过具体实施例介绍行车轨迹规划方法。Next, the driving trajectory planning method is introduced through specific embodiments.
图2为本申请一实施例提供的行车轨迹规划方法的流程图。本申请实施例的方法可以应用于电子设备中,该电子设备可以是服务器或服务器集群等。如图2所示,本申请实施例的方法包括:FIG. 2 is a flowchart of a driving trajectory planning method provided by an embodiment of the present application. The methods in the embodiments of the present application may be applied to an electronic device, and the electronic device may be a server or a server cluster, or the like. As shown in FIG. 2, the method of the embodiment of the present application includes:
S201、确定目标车辆在未来预设时间范围内与障碍物的期望交互决策。S201. Determine the expected interaction decision between the target vehicle and the obstacle within a preset time range in the future.
其中,期望交互决策用于表征目标车辆与障碍物的交互行为以及交互行为对应的交互时间窗口,交互行为包括目标车辆主动超过障碍物、目标车辆主动让行障碍物和目标车辆主动忽略障碍物。Among them, the expected interaction decision is used to characterize the interaction behavior between the target vehicle and the obstacle and the interaction time window corresponding to the interaction behavior. The interaction behavior includes the target vehicle actively overtaking the obstacle, the target vehicle actively yielding to the obstacle, and the target vehicle actively ignoring the obstacle.
本申请实施例中,示例性地,未来预设时间范围比如为未来10s。可以基于预设的预测模块给出的障碍物行为及轨迹预测结果,结合考虑公共道路行车规则、路权和限速等信息,对于每个与目标车辆存在潜在交互的障碍物,进行初步的交互决策,即确定目标车辆在未来预设时间范围内与障碍物的期望交互决策。具体地,目标车辆与障碍物的交互行为也可以称为交互属性,该交互属性定义为三种:目标车辆需要主动超过障碍物(表示为pass_type)、目标车辆需要主动让行障碍物(表示为yield_type)以及因为不会对目标车辆产生潜在风险而主动忽略的障碍物(表示为ignore_type)。上述三种交互属性,可以理解为行为层面的决策。In the embodiment of the present application, for example, the preset time range in the future is, for example, 10s in the future. Based on the obstacle behavior and trajectory prediction results given by the preset prediction module, taking into account information such as public road driving rules, road rights and speed limits, preliminary interaction can be performed for each obstacle that has potential interaction with the target vehicle Decision-making, that is, to determine the expected interaction decision of the target vehicle with the obstacle within a preset time range in the future. Specifically, the interaction behavior between the target vehicle and the obstacle can also be called interaction attribute, and the interaction attribute is defined in three types: the target vehicle needs to actively pass the obstacle (denoted as pass_type), the target vehicle needs to actively yield to the obstacle (denoted as pass_type) yield_type) and obstacles (denoted ignore_type) that are actively ignored because they do not pose a potential risk to the target vehicle. The above three interaction attributes can be understood as decision-making at the behavioral level.
对于与目标车辆产生交互的障碍物,除了行为层面的决策,还需要给出该行为层面决策所对应的交互时间窗口,即相应的超车或让行时间窗口,该交互时间窗口的取值范围可以表示为[t_min,t_max],其中,t_min表示交互时间窗口的最小开始时间,t_max表示交互时间窗口的最大结束时间。比如期望在第3s至5s内实现对一个身份标识号(identitydocument,id)用obs_0表示的障碍物的超车,则标记该障碍物的交互属性为pass_type,对应的交互时间窗口为[3,5];比如期望在第8s至10s内实现对一个id用obs_1表示的障碍物的让行,则标记该障碍物的交互属性为yield_type,对应的交互时间窗口为[8,10];若一个id为obs_2的障碍物并不会在10s内驶入目标车辆所在的车道,或不存在潜在的交互,则标记该障碍物的交互属性为ignore_type,对应的交互时间窗口为[0,10]。对于目标车辆驾驶场景内的所有障碍物依次进行交互分析,可以得到目标车辆与每一个障碍物的期望交互决策。For the obstacle that interacts with the target vehicle, in addition to the decision at the behavior level, it is also necessary to give the interaction time window corresponding to the decision at the behavior level, that is, the corresponding overtaking or yield time window. The value range of the interaction time window can be Expressed as [t_min, t_max], where t_min represents the minimum start time of the interaction time window, and t_max represents the maximum end time of the interaction time window. For example, if it is expected to overtake an obstacle whose identity document (id) is represented by obs_0 within 3s to 5s, the interaction attribute of the obstacle is marked as pass_type, and the corresponding interaction time window is [3,5] ; For example, it is expected to yield to an obstacle whose id is represented by obs_1 within 8s to 10s, then mark the interaction attribute of the obstacle as yield_type, and the corresponding interaction time window is [8, 10]; if an id is The obstacle of obs_2 will not drive into the lane where the target vehicle is located within 10s, or there is no potential interaction, then mark the interaction attribute of the obstacle as ignore_type, and the corresponding interaction time window is [0,10]. The interaction analysis of all obstacles in the driving scene of the target vehicle is performed in turn, and the expected interaction decision between the target vehicle and each obstacle can be obtained.
S202、基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图。S202. Based on the expected interaction decision, construct a longitudinal feasible space map of the target vehicle corresponding to a preset time range in the future.
其中,纵向可行空间图用于表征目标车辆在未来预设时间范围内离散时刻对应的纵向可行范围以及纵向速度约束信息。Among them, the longitudinal feasible space map is used to represent the longitudinal feasible range and longitudinal speed constraint information corresponding to the target vehicle at discrete moments in the future preset time range.
该步骤中,在获得了期望交互决策后,可以基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,以确定目标车辆在未来预设时间范围内离散时刻对应的纵向可行范围以及纵向速度约束信息。示例性地,纵向可行空间图的横坐标比如为未来预设时间范围内的离散时刻,纵向可行空间图的纵坐标比如为与每一个离散时刻对应的纵向可行范围,在纵向可行范围内有对应的纵向速度约束信息。对于如何基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,可参考后续实施例,此处不再赘述。In this step, after the expected interaction decision is obtained, a longitudinal feasible space map of the target vehicle corresponding to the future preset time range can be constructed based on the expected interaction decision, so as to determine the longitudinal feasible space map of the target vehicle corresponding to discrete moments in the future preset time range. Range and longitudinal velocity constraint information. Exemplarily, the abscissa of the vertical feasible space map is, for example, discrete moments within a preset time range in the future, and the ordinate of the vertical feasible space map is, for example, the vertical feasible range corresponding to each discrete moment, and there is a corresponding vertical feasible range. longitudinal velocity constraint information. For how to construct a longitudinal feasible space map of the target vehicle corresponding to a predetermined time range in the future based on the expected interaction decision, reference may be made to the subsequent embodiments, which will not be repeated here.
S203、基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度。S203. Obtain a reference speed of the target vehicle based on the longitudinal feasible space map and the first preset cost function.
其中,第一预设代价函数是基于目标车辆的行驶效率和舒适度确定的。The first preset cost function is determined based on the driving efficiency and comfort of the target vehicle.
示例性地,过低的行车速度会带来行车效率较低的问题,而过快的速度容易影响行车体验,严重时甚至会造成车辆失稳,因此,定义第一预设代价函数(表示为cost_function)时,需要权衡目标车辆的行驶效率和舒适度,即:出于对行驶效率的考量,希望行车距离倾向为越远越好;出于舒适度的考量,希望行车过程更加平稳,加速度和加加速度(即加速度的增量)倾向为越小越好。第一预设代价函数的具体定义可参见后续实施例,此处不再赘述。该步骤中,在获得了纵向可行空间图后,可以基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度。对于如何基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,可参考后续实施例,此处不再赘述。Exemplarily, too low driving speed will bring about the problem of low driving efficiency, while too fast speed will easily affect the driving experience, and even cause vehicle instability in severe cases. Therefore, a first preset cost function (expressed as cost_function), it is necessary to weigh the driving efficiency and comfort of the target vehicle, that is, for the consideration of driving efficiency, it is hoped that the driving distance tends to be as far as possible; The jerk (ie, the increment of acceleration) tends to be as small as possible. For the specific definition of the first preset cost function, reference may be made to subsequent embodiments, which will not be repeated here. In this step, after the longitudinal feasible space map is obtained, the reference speed of the target vehicle may be obtained based on the longitudinal feasible space map and the first preset cost function. For how to obtain the reference speed of the target vehicle based on the longitudinal feasible space map and the first preset cost function, reference may be made to subsequent embodiments, which will not be repeated here.
S204、基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。S204. Based on the reference speed, determine the target trajectory of the target vehicle within a preset time range in the future.
该步骤中,在获得了参考速度后,可以基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。对于如何基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹,可参考后续实施例,此处不再赘述。In this step, after the reference speed is obtained, the target trajectory of the target vehicle in the future preset time range may be determined based on the reference speed. For how to determine the target trajectory of the target vehicle in the future preset time range based on the reference speed, reference may be made to subsequent embodiments, which will not be repeated here.
在确定了目标车辆在未来预设时间范围内的目标轨迹后,即确定了目标车辆在未来预设时间范围内的最优轨迹,可以控制目标车辆按照规划好的最优轨迹行驶。After the target trajectory of the target vehicle in the future preset time range is determined, the optimal trajectory of the target vehicle in the future preset time range is determined, and the target vehicle can be controlled to travel according to the planned optimal trajectory.
本申请实施例提供的行车轨迹规划方法,通过确定目标车辆在未来预设时间范围内与障碍物的期望交互决策,基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。由于本申请实施例充分考虑驾驶场景中的静态障碍物和动态障碍物的信息,确定期望交互决策,进而构建目标车辆的纵向可行空间图,基于纵向可行空间图获得最接近目标车辆最终执行的参考速度,将该参考速度用于评估最优路径,因此,能够更加准确地获得最优路径,提升行车轨迹规划结果的合理性和可靠性,提升驾驶效率,改善行车体验。In the driving trajectory planning method provided by the embodiment of the present application, by determining the expected interaction decision between the target vehicle and the obstacle in the future preset time range, and based on the expected interaction decision, a longitudinal feasible space map of the target vehicle corresponding to the future preset time range is constructed, Based on the longitudinal feasible space map and the first preset cost function, the reference speed of the target vehicle is obtained, and based on the reference speed, the target trajectory of the target vehicle in the future preset time range is determined. Since the embodiment of the present application fully considers the information of static obstacles and dynamic obstacles in the driving scene, the desired interaction decision is determined, and then the longitudinal feasible space map of the target vehicle is constructed, and the reference that is closest to the final execution of the target vehicle is obtained based on the longitudinal feasible space map. The reference speed is used to evaluate the optimal path. Therefore, the optimal path can be obtained more accurately, the rationality and reliability of the driving trajectory planning result can be improved, the driving efficiency can be improved, and the driving experience can be improved.
图3为本申请另一实施例提供的行车轨迹规划方法的流程图。在上述实施例的基础上,本申请实施例对如何规划行车轨迹进行进一步说明。如图3所示,本申请实施例的方法可以包括:FIG. 3 is a flowchart of a driving trajectory planning method provided by another embodiment of the present application. On the basis of the above embodiments, the embodiments of the present application further describe how to plan the driving trajectory. As shown in FIG. 3 , the method of this embodiment of the present application may include:
S301、确定目标车辆在未来预设时间范围内与障碍物的期望交互决策。S301. Determine the expected interaction decision between the target vehicle and the obstacle within a preset time range in the future.
其中,期望交互决策用于表征目标车辆与障碍物的交互行为以及交互行为对应的交互时间窗口,交互行为包括目标车辆主动超过障碍物、目标车辆主动让行障碍物和目标车辆主动忽略障碍物。Among them, the expected interaction decision is used to characterize the interaction behavior between the target vehicle and the obstacle and the interaction time window corresponding to the interaction behavior. The interaction behavior includes the target vehicle actively overtaking the obstacle, the target vehicle actively yielding to the obstacle, and the target vehicle actively ignoring the obstacle.
该步骤的具体描述可以参见图2所示实施例中S201的相关描述,此处不再赘述。For a specific description of this step, reference may be made to the relevant description of S201 in the embodiment shown in FIG. 2 , and details are not repeated here.
本申请实施例中,图2中S202步骤可以进一步包括如下的S302和S303两个步骤:In this embodiment of the present application, step S202 in FIG. 2 may further include the following two steps of S302 and S303:
S302、基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值。S302. Determine, based on the expected interaction decision, the minimum target longitudinal feasible distance, the maximum target longitudinal feasible distance, the minimum target longitudinal velocity, and the maximum target longitudinal velocity corresponding to the target vehicle at discrete moments in the future preset time range.
该步骤中,期望交互决策可以为目标车辆在未来预设时间范围内每一个离散时刻的纵向可行空间的构建提供参考依据。在获得了目标车辆在未来预设时间范围内与障碍物的期望交互决策后,可以基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值。In this step, the expected interaction decision can provide a reference for the construction of the longitudinal feasible space of the target vehicle at each discrete moment in the future preset time range. After obtaining the expected interaction decision between the target vehicle and the obstacle in the future preset time range, it is possible to determine the target longitudinal feasible minimum distance and the target longitudinal feasible distance corresponding to the target vehicle at discrete moments in the future preset time range based on the expected interaction decision. Maximum distance, minimum target longitudinal velocity, and maximum target longitudinal velocity.
进一步地,可选的,基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,可以包括:确定目标车辆的初始纵向可行最大距离、初始纵向可行最小距离、初始纵向速度的最小值以及初始纵向速度的最大值;针对未来预设时间范围内离散时刻对应的每个障碍物,执行以下操作,直至遍历完每个障碍物:基于期望交互决策,若确定需要目标车辆主动让行目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设让行安全距离以及初始纵向可行最大距离,确定目标车辆的目标纵向可行最大距离,以及根据目标障碍物的速度,确定目标纵向速度的最大值,确定目标纵向可行最大距离为新的初始纵向可行最大距离,确定目标纵向速度的最大值为新的初始纵向速度的最大值;或者,基于期望交互决策,若确定需要目标车辆主动超过目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设超车安全距离以及初始纵向可行最小距离,确定目标车辆的目标纵向可行最小距离,以及根据目标障碍物的速度,确定目标纵向速度的最小值,确定目标纵向可行最小距离为新的初始纵向可行最小距离,确定目标纵向速度的最小值为新的初始纵向速度的最小值。Further, optionally, based on the expected interaction decision-making, determine the target longitudinal minimum feasible distance, the target longitudinal maximum feasible distance, the minimum target longitudinal speed, and the maximum target longitudinal speed corresponding to the target vehicle at discrete moments in the future preset time range. value, which may include: determining the initial maximum feasible longitudinal distance of the target vehicle, the initial minimum feasible longitudinal distance, the minimum initial longitudinal speed, and the maximum initial longitudinal speed; for each obstacle corresponding to discrete moments in the future preset time range , and perform the following operations until each obstacle is traversed: based on the expected interaction decision, if it is determined that the target vehicle needs to actively yield to the target obstacle, the space occupied by the target obstacle in the longitudinal and lateral directions, the preset yield safety distance, and Determine the maximum longitudinal feasible distance of the target vehicle, and determine the maximum longitudinal speed of the target according to the speed of the target obstacle, determine the maximum feasible longitudinal distance of the target as the new initial maximum feasible longitudinal distance, and determine the maximum longitudinal feasible distance of the target. The maximum value of the speed is the maximum value of the new initial longitudinal speed; or, based on the expected interaction decision, if it is determined that the target vehicle needs to actively pass the target obstacle, the overtaking safety distance is preset according to the space occupied by the target obstacle longitudinally and laterally. and the initial longitudinal feasible minimum distance, determine the target longitudinal feasible minimum distance of the target vehicle, and determine the minimum target longitudinal speed according to the speed of the target obstacle, determine the target longitudinal feasible minimum distance as the new initial longitudinal feasible minimum distance, and determine the target The minimum longitudinal velocity is the new initial minimum longitudinal velocity.
其中,可选的,确定目标车辆的初始纵向可行最大距离,可以包括:基于目标车辆的驾驶场景限速,确定目标车辆在未来预设时间范围内的最大可行距离;根据目标车辆在未来预设时间范围内所行驶路径的最大曲率以及预设曲率和速度约束的对应关系,确定最大曲率对应的最大速度;根据最大速度和最大可行距离,获得目标最大可行距离;确定目标最大可行距离为初始纵向可行最大距离。Wherein, optionally, determining the initial maximum feasible longitudinal distance of the target vehicle may include: determining the maximum feasible distance of the target vehicle within a preset time range in the future based on the speed limit of the driving scene of the target vehicle; Determine the maximum speed corresponding to the maximum curvature corresponding to the maximum curvature of the traveled path within the time range and the corresponding relationship between the preset curvature and the speed constraint; obtain the maximum feasible distance of the target according to the maximum speed and the maximum feasible distance; determine the maximum feasible distance of the target as the initial longitudinal direction The maximum distance possible.
示例性地,未来预设时间范围比如为未来10s,预设曲率和速度约束的对应关系比如为预先离线标定的曲率-速度约束表格。示例性地,获取无干扰状态下目标车辆的最大可行距离(表示为max_drivable_length),即目标车辆在物理约束下,未来10s的最远可行距离,该计算过程充分考虑目标车辆的驾驶场景限速和车道形状对行车速度的限制。首先,考虑目标车辆的驾驶场景限速,根据目标车辆的驾驶场景限速初始化max_drivable_length,获得max_drivable_length的初始值;其次,考虑到行车稳定性,目标车辆的最大速度受车道形状影响,例如,假设目标车辆驶入直角转弯路段,则需要根据路径的曲率做相应的减速,可以基于离线标定的曲率-速度约束表格和未来一段路径的最大曲率,查询曲率-速度约束表格来获得对应的最大速度,根据该最大速度和max_drivable_length的初始值更新max_drivable_length,即获得了目标最大可行距离。Exemplarily, the preset time range in the future is, for example, 10 s in the future, and the corresponding relationship between the preset curvature and the velocity constraint is, for example, a curvature-velocity constraint table calibrated offline in advance. Exemplarily, the maximum drivable distance of the target vehicle (represented as max_drivable_length) in a non-interference state is obtained, that is, the maximum feasible distance of the target vehicle in the next 10s under physical constraints, and the calculation process fully considers the speed limit and Lane shape limits driving speed. First, considering the speed limit of the driving scene of the target vehicle, initialize max_drivable_length according to the speed limit of the driving scene of the target vehicle, and obtain the initial value of max_drivable_length; secondly, considering the driving stability, the maximum speed of the target vehicle is affected by the shape of the lane, for example, suppose the target When the vehicle enters a right-angle turn section, it needs to decelerate according to the curvature of the path. Based on the offline calibration curvature-speed constraint table and the maximum curvature of a future path, query the curvature-speed constraint table to obtain the corresponding maximum speed. The maximum speed and the initial value of max_drivable_length update max_drivable_length, that is, the maximum feasible distance of the target is obtained.
确定目标最大可行距离为初始纵向可行最大距离,初始纵向可行最小距离比如为0,初始纵向速度的最小值比如为0,初始纵向速度的最大值比如为目标车辆的驾驶场景限速。在获得了目标车辆的初始纵向可行最大距离、初始纵向可行最小距离、初始纵向速度的最小值以及初始纵向速度的最大值后,对未来预设时间范围进行等时间间隔离散化处理,获得对应的离散时刻,需要综合考虑目标车辆在每个离散时刻与每个障碍物的合理交互之后,来获得目标车辆的目标纵向可行距离(即纵向可行范围)的边界值,目标车辆的目标纵向可行距离的边界值包括目标纵向可行最小距离(表示为s_ego_min)和目标纵向可行最大距离(表示为s_ego_max),其中,每个离散时刻对应的目标纵向可行距离的边界值需要满足基本约束,即s_ego_min>=0,且s_ego_max<=max_drivable_length。The maximum feasible distance of the target is determined as the initial maximum feasible longitudinal distance, the minimum initial feasible longitudinal distance is, for example, 0, the minimum value of the initial longitudinal speed is, for example, 0, and the maximum value of the initial longitudinal speed is, for example, the speed limit of the driving scene of the target vehicle. After obtaining the initial maximum feasible longitudinal distance of the target vehicle, the minimum feasible initial longitudinal distance, the minimum initial longitudinal speed, and the maximum initial longitudinal speed, the future preset time range is discretized at equal time intervals to obtain the corresponding At discrete moments, it is necessary to comprehensively consider the reasonable interaction between the target vehicle and each obstacle at each discrete moment to obtain the boundary value of the target longitudinal feasible distance of the target vehicle (ie, the longitudinal feasible range). The boundary value includes the target longitudinal feasible minimum distance (denoted as s_ego_min) and the target longitudinal feasible maximum distance (denoted as s_ego_max), wherein the boundary value of the target longitudinal feasible distance corresponding to each discrete moment needs to satisfy the basic constraints, that is, s_ego_min>=0 , and s_ego_max<=max_drivable_length.
具体地,针对未来预设时间范围内每个离散时刻对应的每个障碍物,以离散时刻t0为例,对于目标车辆驾驶场景中的每个障碍物(表示为obs_i),首先,查询t0对应的障碍物轨迹预测结果中障碍物纵向和横向所占据的空间(表示为sdboundary)信息,sdboundary为一个矩形框,用以表征某一离散时刻障碍物占据的车道位置空间,目标障碍物纵向所占据的空间的范围为:[obs_i_s_min,obs_i_s_max],其中,obs_i_s_min表示目标障碍物纵向所占据的空间的最小值,obs_i_s_max表示目标障碍物纵向所占据的空间的最大值;目标障碍物横向所占据的空间的范围为:[obs_i_d_min,obs_i_d_max],其中,obs_i_d_min表示目标障碍物横向所占据的空间的最小值,obs_i_d_max表示目标障碍物横向所占据的空间的最大值,根据sdboundary信息确定了目标车辆不可穿行区域。接下来,考虑目标车辆与障碍物的期望交互决策:Specifically, for each obstacle corresponding to each discrete time in the future preset time range, taking the discrete time t0 as an example, for each obstacle (represented as obs_i) in the target vehicle driving scene, first, query the corresponding The space occupied by the obstacle longitudinally and laterally in the obstacle trajectory prediction result (represented as sdboundary) information, sdboundary is a rectangular box, which is used to represent the lane position space occupied by the obstacle at a discrete moment, and the longitudinal occupied by the target obstacle. The range of the space is: [obs_i_s_min, obs_i_s_max], where obs_i_s_min represents the minimum value of the space occupied by the target obstacle vertically, obs_i_s_max represents the maximum value of the space occupied by the target obstacle vertically; the space occupied by the target obstacle horizontally The range is: [obs_i_d_min, obs_i_d_max], where obs_i_d_min represents the minimum value of the space occupied by the target obstacle horizontally, obs_i_d_max represents the maximum value of the space occupied by the target obstacle horizontally, and the target vehicle cannot pass through the information according to the sdboundary information. . Next, consider the desired interaction decision of the target vehicle with the obstacle:
如果需要让行障碍物,为保证紧急情况下目标车辆有足够的反应时间和空间,则目标车辆的纵向可行最大距离要在障碍物占据的obs_i_s_min的基础上考虑预留让行安全距离(表示为lon_buffer),目标车辆的纵向可行最大距离与障碍物的速度相关,所以t0对应的目标车辆的目标纵向可行最大距离(表示为s_ego_max_t0)更新为s_ego_max_t0和(obs_i_s_min-lon_buffer)中的较小值;如果是距离目标车辆较近的障碍物,则需要将目标车辆的目标纵向速度的最大值(表示为v_ego_max_t0)更新为障碍物的速度;If it is necessary to give way to an obstacle, in order to ensure that the target vehicle has enough response time and space in an emergency, the maximum longitudinal feasible distance of the target vehicle should be considered on the basis of the obs_i_s_min occupied by the obstacle to reserve a safe way to go (expressed as lon_buffer), the longitudinal feasible maximum distance of the target vehicle is related to the speed of the obstacle, so the target longitudinal feasible maximum distance of the target vehicle corresponding to t0 (represented as s_ego_max_t0) is updated to the smaller value of s_ego_max_t0 and (obs_i_s_min-lon_buffer); if is an obstacle closer to the target vehicle, then the maximum value of the target longitudinal velocity of the target vehicle (represented as v_ego_max_t0) needs to be updated to the velocity of the obstacle;
如果需要超越障碍物,则要在障碍物占据的obs_i_s_max的基础上考虑超车预留的纵向安全距离,该纵向安全距离与障碍物的速度相关,所以与障碍物obs_i交互时对应的目标车辆的目标纵向可行最小距离(表示为s_ego_min_t0)更新为s_ego_min_t0和(obs_i_s_max+lon_buffe)中的较大值;如果是距离目标车辆较近的障碍物,则需要将目标车辆的目标纵向速度的最小值(表示为v_ego_min_t0)更新为障碍物的速度。If an obstacle needs to be overtaken, the longitudinal safety distance reserved for overtaking should be considered on the basis of the obs_i_s_max occupied by the obstacle. The longitudinal safety distance is related to the speed of the obstacle, so the target vehicle corresponding to the target vehicle when interacting with the obstacle obs_i Longitudinal feasible minimum distance (represented as s_ego_min_t0) is updated to the larger of s_ego_min_t0 and (obs_i_s_max+lon_buffe); if it is an obstacle closer to the target vehicle, the minimum value of the target longitudinal speed of the target vehicle (represented as v_ego_min_t0) is updated to the velocity of the obstacle.
遍历全部需要让行和需要超越的障碍物,可以更新得到t0对应的目标车辆的纵向可行范围的边界值,该边界值包括目标纵向可行最小距离和目标纵向可行最大距离,即目标车辆的纵向可行范围为[s_ego_min_t0,s_ego_max_t0],以及该边界值对应的障碍物id和目标车辆的纵向速度约束信息,该纵向速度约束信息包括目标纵向速度的最小值以及目标纵向速度的最大值,即目标车辆的纵向速度约束范围为[v_ego_min_t0,v_ego_max_t0]。Traverse all the obstacles that need to give way and need to be overtaken, the boundary value of the longitudinal feasible range of the target vehicle corresponding to t0 can be updated, and the boundary value includes the target longitudinal feasible minimum distance and the target longitudinal feasible maximum distance, that is, the longitudinal feasible distance of the target vehicle The range is [s_ego_min_t0, s_ego_max_t0], along with the obstacle id corresponding to the boundary value and the longitudinal speed constraint information of the target vehicle. The longitudinal speed constraint information includes the minimum value of the target longitudinal speed and the maximum value of the target longitudinal speed, namely the target vehicle’s The longitudinal speed constraint range is [v_ego_min_t0,v_ego_max_t0].
参考离散时刻t0的执行步骤,即可得到未来第0s至第10s的目标车辆的纵向可行范围(对应目标纵向可行最小距离和目标纵向可行最大距离)和纵向速度约束信息(对应目标纵向速度的最小值以及目标纵向速度的最大值)。Referring to the execution steps at discrete time t0, the longitudinal feasible range of the target vehicle from the 0s to the 10s in the future (corresponding to the minimum feasible longitudinal distance of the target and the maximum feasible longitudinal distance of the target) and the longitudinal speed constraint information (corresponding to the minimum longitudinal speed of the target) can be obtained. value and the maximum value of the target longitudinal velocity).
S303、根据目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,构建目标车辆对应未来预设时间范围的纵向可行空间图。S303 , constructing a longitudinal feasible space map of the target vehicle corresponding to a preset time range in the future according to the minimum target longitudinal feasible distance, the target longitudinal maximum feasible distance, the minimum target longitudinal velocity, and the maximum target longitudinal velocity.
该步骤中,示例性地,未来预设时间范围比如为未来10s,在获得了目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值后,可以根据目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,构建目标车辆对应未来10s内的纵向可行空间图,用以描述目标车辆在未来10s每一个离散时刻对应的纵向可行最小距离和纵向可行最大距离,即目标车辆在未来10s每一个离散时刻对应的纵向可行范围,在纵向可行范围内有对应的目标纵向速度的最小值以及目标纵向速度的最大值,即纵向速度约束信息。In this step, for example, the preset time range in the future is, for example, 10 seconds in the future. After obtaining the minimum feasible longitudinal distance of the target, the maximum feasible longitudinal distance of the target, the minimum longitudinal speed of the target, and the maximum longitudinal speed of the target, the The minimum longitudinal feasible distance of the target, the maximum feasible longitudinal distance of the target, the minimum value of the target longitudinal speed, and the maximum value of the target longitudinal speed are constructed, and the longitudinal feasible space map corresponding to the target vehicle in the next 10s is constructed to describe each discrete time of the target vehicle in the next 10s. The longitudinal feasible minimum distance and the longitudinal feasible maximum distance corresponding to the time, that is, the longitudinal feasible range corresponding to each discrete moment of the target vehicle in the next 10s, and the corresponding minimum target longitudinal speed and maximum target longitudinal speed within the longitudinal feasible range. , namely the longitudinal velocity constraint information.
S304、针对未来预设时间范围内离散时刻对应的目标纵向可行最小距离和目标纵向可行最大距离,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离。S304. For the target longitudinal feasible minimum distance and the target longitudinal maximum feasible distance corresponding to discrete moments in the future preset time range, obtain the target longitudinal feasible minimum distance corresponding to the previous discrete moment and the target longitudinal feasible minimum distance corresponding to the current discrete moment. The updated target longitudinal feasible minimum distance corresponding to the current discrete moment, and the updated target longitudinal feasible maximum distance corresponding to the current discrete moment is obtained according to the target maximum feasible distance and the target longitudinal feasible maximum distance corresponding to the current discrete moment.
该步骤可以理解为未来预设时间范围内离散时刻对应的纵向可行范围的边界值的合理性检查。示例性地,由于不是倒车的轨迹规划,需要保证当前离散时刻对应的目标纵向可行最小距离不小于相邻的前一离散时刻对应的目标纵向可行最小距离,且驾驶过程受目标最大可行距离的约束。This step can be understood as the rationality check of the boundary value of the longitudinal feasible range corresponding to the discrete moments in the future preset time range. Exemplarily, since it is not a trajectory planning for reversing, it is necessary to ensure that the target longitudinal feasible minimum distance corresponding to the current discrete moment is not less than the target longitudinal feasible minimum distance corresponding to the adjacent previous discrete moment, and the driving process is constrained by the target maximum feasible distance. .
该步骤中,进一步地,可选的,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离,可以包括:针对未来预设时间范围内离散时刻,若确定更新后的目标纵向可行最大距离小于更新后的目标纵向可行最小距离,则更新对应的障碍物与目标车辆的交互行为,并重新构建目标车辆对应未来预设时间范围的纵向可行空间图。In this step, further, optionally, according to the target longitudinal feasible minimum distance corresponding to the previous discrete moment and the target longitudinal feasible minimum distance corresponding to the current discrete moment, the updated target longitudinal feasible minimum distance corresponding to the current discrete moment is obtained, and obtaining the updated maximum longitudinal feasible distance of the target corresponding to the current discrete moment according to the maximum feasible distance of the target and the maximum feasible longitudinal distance of the target corresponding to the current discrete moment, which may include: for discrete moments within a preset time range in the future, if it is determined that after the update If the target longitudinal feasible maximum distance is less than the updated target longitudinal feasible minimum distance, the interaction behavior between the corresponding obstacle and the target vehicle is updated, and the longitudinal feasible space map of the target vehicle corresponding to the future preset time range is reconstructed.
在上述对纵向可行范围的边界值的合理性检查过程中,若某一离散时刻s_ego_max<s_ego_min,说明如果需要满足期望交互决策,即超过某个障碍物会导致无法让行接下来遭遇到的障碍物,以安全性为最高作为考量,则需要将该pass_type的障碍物的期望交互决策修改为yield_type,并重复执行上述S302、S303和S304步骤,直至所有离散时刻对应的纵向可行范围的边界值均为合理值,并重新构建目标车辆对应未来预设时间范围的纵向可行空间图。In the above process of checking the rationality of the boundary value of the vertical feasible range, if s_ego_max < s_ego_min at a discrete moment, it means that if the expected interactive decision-making needs to be satisfied, that is, exceeding a certain obstacle will cause the obstacle to be encountered next. If the safety is the highest consideration, it is necessary to modify the expected interaction decision of the obstacle of the pass_type to yield_type, and repeat the above steps S302, S303 and S304 until the boundary values of the vertical feasible range corresponding to all discrete moments are all is a reasonable value, and reconstructs the longitudinal feasible space map of the target vehicle corresponding to the preset time range in the future.
S305、根据更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离,获得更新后的纵向可行空间图。S305. Obtain an updated vertical feasible space map according to the updated minimum vertical feasible distance of the target and the updated maximum vertical feasible distance of the target.
该步骤中,在获得了未来预设时间范围内每个离散时刻对应的更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离后,可以根据更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离,获得更新后的纵向可行空间图。In this step, after obtaining the updated minimum vertical feasible distance of the target and the updated maximum vertical feasible distance of the target corresponding to each discrete moment in the future preset time range, the updated minimum vertical feasible distance of the target and the updated maximum vertical distance of the target can be obtained. Afterwards, the maximum feasible vertical distance of the target is obtained, and the updated vertical feasible space map is obtained.
本申请实施例中,图2中S203步骤可以进一步包括如下的S306至S309四个步骤:In this embodiment of the present application, step S203 in FIG. 2 may further include the following four steps S306 to S309:
S306、基于纵向可行空间图,根据目标车辆的最大加速能力、最大减速能力、纵向可行范围内路径的参考线所对应的曲率以及预设曲率和速度约束的对应关系,获得更新后的纵向可行范围和纵向速度约束信息。S306. Based on the longitudinal feasible space map, obtain the updated longitudinal feasible range according to the maximum acceleration capability, the maximum deceleration capability of the target vehicle, the curvature corresponding to the reference line of the path within the longitudinal feasible range, and the corresponding relationship between the preset curvature and the speed constraint and longitudinal velocity constraint information.
该步骤中,纵向可行范围内路径的参考线比如为纵向可行范围内路径的中心线。示例性地,首先确定以下三个约束条件:(1)考虑行车体验和目标车辆的控制器控制信号(比如油门踏板的开度对应的控制信号)的连续性,需要保证目标车辆初始状态(即速度和加速度)的连续,即起始点时的规划初始速度、初始加速度依照目标车辆当前的执行状态被初始化;(2)考虑目标车辆的执行能力,比如目标车辆的最大加速能力和最大减速能力,确定后一离散时刻的可执行速度的约束信息以及后一离散时刻的可执行距离的约束信息;(3)考虑车道形状,比如转弯过程中过高的车速容易导致目标车辆失稳或降低乘车体验,因此,需要依照车道线曲率对目标车辆的速度添加约束;具体地,比如对于离散时刻t,满足纵向可行范围的边界值约束的任一采样点,表示为(t_i,s_i),其中,s_i表示任一采样点的纵向可行距离,查询参考线(reference line)上对应的曲率信息,并通过查询预设曲率和速度约束的对应关系,得到该位置处的最大速度约束。In this step, the reference line of the path within the longitudinal feasible range is, for example, the center line of the path within the longitudinal feasible range. Exemplarily, first determine the following three constraints: (1) Considering the driving experience and the continuity of the controller control signal of the target vehicle (such as the control signal corresponding to the opening of the accelerator pedal), it is necessary to ensure the initial state of the target vehicle (ie, (2) Consider the execution capability of the target vehicle, such as the maximum acceleration capability and maximum deceleration capability of the target vehicle, Determine the constraint information of the executable speed at the next discrete moment and the constraint information of the executable distance at the next discrete moment; (3) Consider the shape of the lane, for example, excessive vehicle speed during the turning process may easily cause the target vehicle to become unstable or reduce the ride. Therefore, it is necessary to add constraints to the speed of the target vehicle according to the curvature of the lane line; specifically, for example, for discrete time t, any sampling point that satisfies the boundary value constraint of the longitudinal feasible range is expressed as (t_i, s_i), where, s_i represents the longitudinal feasible distance of any sampling point, query the corresponding curvature information on the reference line, and obtain the maximum speed constraint at this position by querying the corresponding relationship between the preset curvature and the speed constraint.
基于纵向可行空间图中目标车辆在未来预设时间范围内离散时刻对应的纵向可行范围以及纵向速度约束信息,根据上述三个约束条件,可以获得更新后的纵向可行范围和纵向速度约束信息。Based on the longitudinal feasible range and longitudinal speed constraint information corresponding to the target vehicle at discrete moments in the future preset time range in the longitudinal feasible space map, and according to the above three constraints, the updated longitudinal feasible range and longitudinal speed constraint information can be obtained.
S307、根据更新后的纵向可行范围和纵向速度约束信息,获得更新后的纵向可行空间图。S307. Obtain an updated longitudinal feasible space map according to the updated longitudinal feasible range and longitudinal speed constraint information.
该步骤中,在获得了未来预设时间范围内每个离散时刻对应的更新后的纵向可行范围和纵向速度约束信息后,可以根据更新后的纵向可行范围和纵向速度约束信息,获得更新后的纵向可行空间图。In this step, after obtaining the updated longitudinal feasible range and longitudinal speed constraint information corresponding to each discrete moment in the future preset time range, the updated longitudinal feasible range and longitudinal speed constraint information can be obtained according to the updated longitudinal feasible range and longitudinal speed constraint information. Vertical Feasible Space Diagram.
S308、基于更新后的纵向可行空间图和第一预设代价函数,获取离散时刻对应的目标车辆的第一目标位置。S308 , based on the updated longitudinal feasible space map and the first preset cost function, obtain the first target position of the target vehicle corresponding to the discrete time.
示例性地,第一预设代价函数cost_function的定义为:Exemplarily, the first preset cost function cost_function is defined as:
cost_function=coefficient_vel*(max_vel_i–vel_i)+coefficient_acc*acc_i+coefficient_jerk*jerk_icost_function=coefficient_vel*(max_vel_i–vel_i)+coefficient_acc*acc_i+coefficient_jerk*jerk_i
其中,coefficient_vel、coefficient_acc和coefficient_jerk分别表示第一预设代价函数的速度的权重因子、加速度的权重因子和加加速度的权重因子,且均为正值;vel_i表示第i个离散时刻采样点的速度,max_vel_i第i个离散时刻根据路径的最大曲率确定的最大速度;acc_i表示第i个离散时刻采样点的加速度;jerk_i表示第i个离散时刻采样点的加加速度。Among them, coefficient_vel, coefficient_acc, and coefficient_jerk represent the velocity weighting factor, acceleration weighting factor, and jerk weighting factor of the first preset cost function, respectively, and are all positive values; vel_i represents the velocity of the i-th discrete time sampling point, max_vel_i The maximum velocity determined according to the maximum curvature of the path at the ith discrete time; acc_i represents the acceleration of the sampling point at the ith discrete time; jerk_i represents the jerk at the sampling point at the ith discrete time.
该步骤中,在获得了更新后的纵向可行空间图后,可以基于更新后的纵向可行空间图和第一预设代价函数,获得每个离散时刻对应的目标车辆的第一目标位置,该过程可以理解为一个有限空间内的动态规划求解过程,最终可以搜索得到满足纵向可行范围的边界值的按照时间递增的一个离散序列,表示为s-t离散序列,其中,s表示离散时刻t对应的目标车辆的第一目标位置。In this step, after the updated vertical feasible space map is obtained, the first target position of the target vehicle corresponding to each discrete moment can be obtained based on the updated vertical feasible space map and the first preset cost function. This process It can be understood as a dynamic programming solution process in a limited space, and finally a discrete sequence that satisfies the boundary value of the longitudinal feasible range can be searched and is incremented in time, which is expressed as an s-t discrete sequence, where s represents the target vehicle corresponding to the discrete time t. the first target position.
S309、对第一目标位置进行拟合处理,获得目标车辆的参考速度。S309. Perform a fitting process on the first target position to obtain a reference speed of the target vehicle.
该步骤中,在获得了第一目标位置后,可以对第一目标位置进行拟合处理,获得目标车辆的参考速度。示例性地,对于S308步骤示例获得的s-t离散序列点做拟合,即可得到目标车辆的参考速度,该参考速度具体描述为s-t曲线(curve)的形式。In this step, after the first target position is obtained, a fitting process may be performed on the first target position to obtain the reference speed of the target vehicle. Exemplarily, by fitting the s-t discrete sequence points obtained in the example of step S308, the reference speed of the target vehicle can be obtained, and the reference speed is specifically described in the form of an s-t curve (curve).
本申请实施例中,图2中S204步骤可以进一步包括如下的S310和S311两个步骤:In this embodiment of the present application, step S204 in FIG. 2 may further include the following two steps of S310 and S311:
S310、根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径。S310. Obtain a target candidate path corresponding to a future preset time range according to at least one preset candidate path corresponding to the target vehicle and the reference speed.
其中,预设候选路径是对目标车辆未来行驶路径分别进行纵向和横向采样获得的。Wherein, the preset candidate path is obtained by vertically and horizontally sampling the future travel path of the target vehicle respectively.
示例性地,以目标车辆当前所在位置为纵向起始位置,沿着参考线方向对纵向位置进行等间隔采样,对于每一个采样点(表示为ss),查询对应的车道宽度作为横向采样空间,对横向采样空间做等间隔分割,得到离散点(ss,dd),其中,dd表示目标车辆相对参考线的横向位置。使用样条曲线平滑连接起始点和每一个采样点,可以生成多条初始候选路径,描述为ss-dd curve的形式,即获得了目标车辆对应的预设候选路径。在获得了目标车辆对应的预设候选路径后,可以根据目标车辆对应的预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径。Exemplarily, taking the current position of the target vehicle as the longitudinal starting position, the longitudinal position is sampled at equal intervals along the direction of the reference line, and for each sampling point (represented as ss), the corresponding lane width is queried as the horizontal sampling space, The horizontal sampling space is divided at equal intervals to obtain discrete points (ss, dd), where dd represents the horizontal position of the target vehicle relative to the reference line. Using a spline curve to smoothly connect the starting point and each sampling point, multiple initial candidate paths can be generated, described in the form of ss-dd curve, that is, the preset candidate paths corresponding to the target vehicle are obtained. After the preset candidate path corresponding to the target vehicle is obtained, the target candidate path corresponding to the future preset time range may be obtained according to the preset candidate path corresponding to the target vehicle and the reference speed.
进一步地,可选的,根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径,包括:针对每一条预设候选路径,根据参考速度,获得离散时刻对应的目标车辆对应的纵向前进距离;根据纵向前进距离和预设候选路径,获得离散时刻对应的目标车辆的第二目标位置;对第二目标位置进行坐标变换,获得目标候选路径。Further, optionally, obtaining the target candidate path corresponding to the future preset time range according to at least one preset candidate path corresponding to the target vehicle and the reference speed, including: for each preset candidate path, according to the reference speed, obtaining discrete The longitudinal advance distance corresponding to the target vehicle corresponding to the time; according to the longitudinal advance distance and the preset candidate path, the second target position of the target vehicle corresponding to the discrete time is obtained; the coordinate transformation of the second target position is performed to obtain the target candidate path.
示例性地,对于每一条预设候选路径,按照等时间间隔,即针对每个离散时刻,在参考速度曲线s-t curve上查询得到该离散时刻对应的目标车辆纵向前进距离,该纵向前进距离比如用s1表示,并在ss-dd curve上通过s1插值得到目标车辆相对参考线的横向位置,该横向位置比如用dd1表示,将该离散时刻的(s1,dd1)位置信息进行坐标变换,即可得到目标车辆的空间坐标(x,y)。按照上述方式,可以推演得到未来预设时间范围(比如10s)的目标候选路径(也可以称为目标候选轨迹)。Exemplarily, for each preset candidate path, according to equal time intervals, that is, for each discrete moment, query the reference speed curve s-t curve to obtain the longitudinal forward distance of the target vehicle corresponding to the discrete moment. s1 is represented, and the lateral position of the target vehicle relative to the reference line is obtained by s1 interpolation on the ss-dd curve. The spatial coordinates (x,y) of the target vehicle. According to the above method, a target candidate path (which may also be referred to as a target candidate trajectory) in a preset time range in the future (for example, 10s) can be deduced.
S311、根据目标候选路径以及第二预设代价函数,确定目标车辆在未来预设时间范围内的目标轨迹。S311. Determine a target trajectory of the target vehicle within a predetermined time range in the future according to the target candidate path and the second preset cost function.
其中,第二预设代价函数是基于目标车辆的驾驶安全度、舒适度和稳定度确定的。Wherein, the second preset cost function is determined based on the driving safety, comfort and stability of the target vehicle.
示例性地,在获得了目标候选路径(即目标候选轨迹)后,对于每一条目标候选轨迹,在定义第二预设代价函数(表示为cost_function_2)时,需要综合考量目标候选轨迹的潜在碰撞风险,即同一时刻目标车辆与障碍物出现在同一位置的概率,用于确定目标车辆的驾驶安全度;轨迹的舒适度,即轨迹的加速度及其变化率;轨迹的稳定度,即目标候选轨迹的最大横摆角速度。因此,第二预设代价函数的定义为:Exemplarily, after obtaining the target candidate path (that is, the target candidate trajectory), for each target candidate trajectory, when defining the second preset cost function (represented as cost_function_2), the potential collision risk of the target candidate trajectory needs to be comprehensively considered. , that is, the probability that the target vehicle and the obstacle appear in the same position at the same time, which is used to determine the driving safety of the target vehicle; the comfort of the trajectory, that is, the acceleration of the trajectory and its rate of change; the stability of the trajectory, that is, the target candidate trajectory Maximum yaw rate. Therefore, the definition of the second preset cost function is:
cost_function_2=coefficient_risk*trajectory_risk_value+coefficient_comfort*(trajectory_max_jerk+trajectory_max_acc)+coefficient_stability*trajectory_max_yaw_rate;cost_function_2=coefficient_risk*trajectory_risk_value+coefficient_comfort*(trajectory_max_jerk+trajectory_max_acc)+coefficient_stability*trajectory_max_yaw_rate;
其中,trajectory_risk_value、trajectory_max_jerk、trajectory_max_acc和trajectory_max_yaw_rate分别表示整条目标候选轨迹的碰撞风险、最大加加速度、最大加速度和最大横摆角速度;coefficient_risk、coefficient_comfort和coefficient_stability分别表示目标候选轨迹的潜在碰撞风险的权重因子、舒适度的权重因子和稳定度的权重因子,且均为正值。Among them, trajectory_risk_value, trajectory_max_jerk, trajectory_max_acc, and trajectory_max_yaw_rate represent the collision risk, maximum jerk, maximum acceleration, and maximum yaw angular velocity of the entire target candidate trajectory, respectively; coefficient_risk, coefficient_comfort, and coefficient_stability represent the weight factor of the potential collision risk of the target candidate trajectory, respectively, The weighting factor for comfort and the weighting factor for stability, and both are positive values.
该步骤中,在获得了目标候选路径后,可以根据目标候选路径以及第二预设代价函数,确定目标车辆在未来预设时间范围内的目标轨迹,即最终选择确定一条最优轨迹发布给目标车辆的控制模块,以控制目标车辆按照规划好的最优轨迹行驶。In this step, after the target candidate path is obtained, the target trajectory of the target vehicle in the future preset time range can be determined according to the target candidate path and the second preset cost function, that is, an optimal trajectory is finally selected and released to the target The control module of the vehicle controls the target vehicle to travel according to the planned optimal trajectory.
本申请实施例提供的行车轨迹规划方法,通过确定目标车辆在未来预设时间范围内与障碍物的期望交互决策;基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,根据目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,构建目标车辆对应未来预设时间范围的纵向可行空间图;针对未来预设时间范围内离散时刻对应的目标纵向可行最小距离和目标纵向可行最大距离,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离;根据更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离,获得更新后的纵向可行空间图;基于纵向可行空间图,根据目标车辆的最大加速能力、最大减速能力、纵向可行范围内路径的参考线所对应的曲率以及预设曲率和速度约束的对应关系,获得更新后的纵向可行范围和纵向速度约束信息;根据更新后的纵向可行范围和纵向速度约束信息,获得更新后的纵向可行空间图;基于更新后的纵向可行空间图和第一预设代价函数,获取离散时刻对应的目标车辆的第一目标位置;对第一目标位置进行拟合处理,获得目标车辆的参考速度;根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径;根据目标候选路径以及第二预设代价函数,确定目标车辆在未来预设时间范围内的目标轨迹。由于本申请实施例充分考虑驾驶场景中的静态障碍物和动态障碍物的信息,确定期望交互决策,进而构建目标车辆的纵向可行空间图,基于纵向可行空间图,结合目标车辆的执行能力,在与障碍物进行合理交互的前提下,获得最接近目标车辆最终执行的参考速度,将该参考速度用于评估最优路径,因此,能够更加准确地获得最优路径,提升行车轨迹规划结果的合理性和可靠性,提升驾驶效率,改善行车体验。The driving trajectory planning method provided by the embodiment of the present application determines the expected interaction decision between the target vehicle and the obstacle in the future preset time range; based on the expected interaction decision, determines the target vehicle corresponding to the discrete moment in the future preset time range Longitudinal feasible minimum distance, target longitudinal feasible maximum distance, target longitudinal velocity minimum and target longitudinal velocity maximum, according to target longitudinal feasible minimum distance, target longitudinal maximum feasible distance, target longitudinal velocity minimum and target longitudinal velocity maximum value, construct the longitudinal feasible space map of the target vehicle corresponding to the future preset time range; for the target longitudinal feasible minimum distance and the target longitudinal feasible maximum distance corresponding to discrete moments in the future preset time range, according to the target longitudinal feasible distance corresponding to the previous discrete time The minimum distance and the target longitudinal feasible minimum distance corresponding to the current discrete moment, obtain the updated target longitudinal feasible minimum distance corresponding to the current discrete moment, and obtain the current discrete target according to the target maximum feasible distance and the target longitudinal feasible maximum distance corresponding to the current discrete moment. The updated maximum longitudinal feasible distance of the target corresponding to the time; according to the updated minimum longitudinal feasible distance of the target and the updated maximum longitudinal feasible distance of the target, the updated longitudinal feasible space map is obtained; The maximum acceleration capability, the maximum deceleration capability, the curvature corresponding to the reference line of the path within the longitudinal feasible range, and the corresponding relationship between the preset curvature and the speed constraint, obtain the updated longitudinal feasible range and longitudinal speed constraint information; according to the updated longitudinal feasible range range and longitudinal speed constraint information to obtain the updated longitudinal feasible space map; based on the updated longitudinal feasible space map and the first preset cost function, obtain the first target position of the target vehicle corresponding to the discrete time; Perform a fitting process to obtain the reference speed of the target vehicle; obtain the target candidate path corresponding to the future preset time range according to at least one preset candidate path corresponding to the target vehicle and the reference speed; according to the target candidate path and the second preset cost function , to determine the target trajectory of the target vehicle within a preset time range in the future. Since the embodiment of the present application fully considers the information of static obstacles and dynamic obstacles in the driving scene, the desired interaction decision is determined, and then the longitudinal feasible space map of the target vehicle is constructed. Based on the longitudinal feasible space map and the execution capability of the target vehicle, the Under the premise of reasonably interacting with obstacles, the reference speed closest to the final execution of the target vehicle is obtained, and the reference speed is used to evaluate the optimal path. Therefore, the optimal path can be obtained more accurately, and the reasonableness of the driving trajectory planning result can be improved. performance and reliability, improve driving efficiency and improve driving experience.
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。The following are apparatus embodiments of the present application, which can be used to execute the method embodiments of the present application. For details not disclosed in the device embodiments of the present application, please refer to the method embodiments of the present application.
图4为本申请一实施例提供的行车轨迹规划装置的结构示意图,如图4所示,本申请实施例的行车轨迹规划装置400包括:确定模块401、构建模块402、获取模块403和处理模块404。其中:FIG. 4 is a schematic structural diagram of a driving trajectory planning device according to an embodiment of the present application. As shown in FIG. 4 , the driving
确定模块401,用于确定目标车辆在未来预设时间范围内与障碍物的期望交互决策,期望交互决策用于表征目标车辆与障碍物的交互行为以及交互行为对应的交互时间窗口,交互行为包括目标车辆主动超过障碍物、目标车辆主动让行障碍物和目标车辆主动忽略障碍物。The
构建模块402,用于基于期望交互决策,构建目标车辆对应未来预设时间范围的纵向可行空间图,纵向可行空间图用于表征目标车辆在未来预设时间范围内离散时刻对应的纵向可行范围以及纵向速度约束信息。The
获取模块403,用于基于纵向可行空间图和第一预设代价函数,获得目标车辆的参考速度,第一预设代价函数是基于目标车辆的行驶效率和舒适度确定的。The obtaining
处理模块404,用于基于参考速度,确定目标车辆在未来预设时间范围内的目标轨迹。The
在一些实施例中,构建模块402可以具体用于:基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值;根据目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值,构建目标车辆对应未来预设时间范围的纵向可行空间图。In some embodiments, the
可选的,构建模块402在用于基于期望交互决策,确定目标车辆在未来预设时间范围内离散时刻对应的目标纵向可行最小距离、目标纵向可行最大距离、目标纵向速度的最小值以及目标纵向速度的最大值时,可以具体用于:确定目标车辆的初始纵向可行最大距离、初始纵向可行最小距离、初始纵向速度的最小值以及初始纵向速度的最大值;针对未来预设时间范围内离散时刻对应的每个障碍物,执行以下操作,直至遍历完每个障碍物:基于期望交互决策,若确定需要目标车辆主动让行目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设让行安全距离以及初始纵向可行最大距离,确定目标车辆的目标纵向可行最大距离,以及根据目标障碍物的速度,确定目标纵向速度的最大值,确定目标纵向可行最大距离为新的初始纵向可行最大距离,确定目标纵向速度的最大值为新的初始纵向速度的最大值;或者,基于期望交互决策,若确定需要目标车辆主动超过目标障碍物,则根据目标障碍物纵向和横向所占据的空间、预设超车安全距离以及初始纵向可行最小距离,确定目标车辆的目标纵向可行最小距离,以及根据目标障碍物的速度,确定目标纵向速度的最小值,确定目标纵向可行最小距离为新的初始纵向可行最小距离,确定目标纵向速度的最小值为新的初始纵向速度的最小值。Optionally, the
可选的,构建模块402在用于确定目标车辆的初始纵向可行最大距离时,可以具体用于:基于目标车辆的驾驶场景限速,确定目标车辆在未来预设时间范围内的最大可行距离;根据目标车辆在未来预设时间范围内所行驶路径的最大曲率以及预设曲率和速度约束的对应关系,确定最大曲率对应的最大速度;根据最大速度和最大可行距离,获得目标最大可行距离;确定目标最大可行距离为初始纵向可行最大距离。Optionally, when the
在一些实施例中,该行车轨迹规划装置还包括更新模块405,用于在构建模块402构建目标车辆对应未来预设时间范围的纵向可行空间图之后,针对未来预设时间范围内离散时刻对应的目标纵向可行最小距离和目标纵向可行最大距离,根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离;根据更新后的目标纵向可行最小距离和更新后的目标纵向可行最大距离,获得更新后的纵向可行空间图。In some embodiments, the driving trajectory planning device further includes an
可选的,更新模块405在用于根据前一离散时刻对应的目标纵向可行最小距离和当前离散时刻对应的目标纵向可行最小距离,获得当前离散时刻对应的更新后的目标纵向可行最小距离,以及根据目标最大可行距离和当前离散时刻对应的目标纵向可行最大距离,获得当前离散时刻对应的更新后的目标纵向可行最大距离时,可以具体用于:针对未来预设时间范围内离散时刻,若确定更新后的目标纵向可行最大距离小于更新后的目标纵向可行最小距离,则更新对应的障碍物与目标车辆的交互行为,并重新构建目标车辆对应未来预设时间范围的纵向可行空间图。Optionally, the
在一些实施例中,获取模块403可以具体用于:基于纵向可行空间图,根据目标车辆的最大加速能力、最大减速能力、纵向可行范围内路径的参考线所对应的曲率以及预设曲率和速度约束的对应关系,获得更新后的纵向可行范围和纵向速度约束信息;根据更新后的纵向可行范围和纵向速度约束信息,获得更新后的纵向可行空间图;基于更新后的纵向可行空间图和第一预设代价函数,获取离散时刻对应的目标车辆的第一目标位置;对第一目标位置进行拟合处理,获得目标车辆的参考速度。In some embodiments, the obtaining
在一些实施例中,处理模块404可以具体用于:根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径,预设候选路径是对目标车辆未来行驶路径分别进行纵向和横向采样获得的;根据目标候选路径以及第二预设代价函数,确定目标车辆在未来预设时间范围内的目标轨迹,第二预设代价函数是基于目标车辆的驾驶安全度、舒适度和稳定度确定的。In some embodiments, the
可选的,处理模块404在用于根据目标车辆对应的至少一条预设候选路径以及参考速度,获得未来预设时间范围对应的目标候选路径时,可以具体用于:针对每一条预设候选路径,根据参考速度,获得离散时刻对应的目标车辆对应的纵向前进距离;根据纵向前进距离和预设候选路径,获得离散时刻对应的目标车辆的第二目标位置;对第二目标位置进行坐标变换,获得目标候选路径。Optionally, when the
本实施例的装置,可以用于执行上述任一所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。The apparatus in this embodiment can be used to implement the technical solutions of any of the above-described method embodiments, and the implementation principles and technical effects thereof are similar, and are not repeated here.
图5为本申请提供的一种电子设备结构示意图。如图5所示,该电子设备500可以包括:至少一个处理器501和存储器502。FIG. 5 is a schematic structural diagram of an electronic device provided by the present application. As shown in FIG. 5 , the
存储器502,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。The
存储器502可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The
处理器501用于执行存储器502存储的计算机执行指令,以实现前述方法实施例所描述的行车轨迹规划方法。其中,处理器501可能是一个中央处理器(Central ProcessingUnit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。具体的,在实现前述方法实施例所描述的行车轨迹规划方法时,该电子设备例如可以是终端、服务器等具有处理功能的电子设备。在实现前述方法实施例所描述的行车轨迹规划方法时,该电子设备例如可以是车辆上的电子控制单元。The
可选的,该电子设备500还可以包括通信接口503。在具体实现上,如果通信接口503、存储器502和处理器501独立实现,则通信接口503、存储器502和处理器501可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry StandardArchitecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。Optionally, the
可选的,在具体实现上,如果通信接口503、存储器502和处理器501集成在一块芯片上实现,则通信接口503、存储器502和处理器501可以通过内部接口完成通信。Optionally, in terms of specific implementation, if the
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random AccessMemory)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序指令,程序指令用于上述实施例中的行车轨迹规划方法。The application also provides a computer-readable storage medium, the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory) Various media that can store program codes, such as a magnetic disk, a magnetic disk, or an optical disk, specifically, the computer-readable storage medium stores program instructions, and the program instructions are used in the driving trajectory planning method in the above embodiment.
本申请还提供一种计算机程序产品,该计算机程序产品包括执行指令,该执行指令存储在可读存储介质中。电子设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得电子设备实施上述的各种实施方式提供的行车轨迹规划方法。The present application also provides a computer program product comprising execution instructions stored in a readable storage medium. At least one processor of the electronic device may read the execution instruction from the readable storage medium, and the execution of the execution instruction by the at least one processor causes the electronic device to implement the driving trajectory planning method provided by the above-mentioned various embodiments.
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present application. scope.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210143460.4A CN114620070A (en) | 2022-02-16 | 2022-02-16 | Driving track planning method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210143460.4A CN114620070A (en) | 2022-02-16 | 2022-02-16 | Driving track planning method, device, equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114620070A true CN114620070A (en) | 2022-06-14 |
Family
ID=81898996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210143460.4A Pending CN114620070A (en) | 2022-02-16 | 2022-02-16 | Driving track planning method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114620070A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115257729A (en) * | 2022-08-24 | 2022-11-01 | 深圳元戎启行科技有限公司 | Vehicle trajectory planning method and device, computer equipment and storage medium |
CN115355916A (en) * | 2022-10-24 | 2022-11-18 | 北京智行者科技股份有限公司 | Trajectory planning method, apparatus and computer-readable storage medium for moving tool |
CN115848365A (en) * | 2023-02-03 | 2023-03-28 | 北京集度科技有限公司 | Vehicle controller, vehicle and vehicle control method |
CN119898332A (en) * | 2025-04-01 | 2025-04-29 | 新石器慧通(北京)科技有限公司 | Vehicle speed planning method, device, equipment and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140060107A (en) * | 2012-11-09 | 2014-05-19 | 현대모비스 주식회사 | Control method for collision avoidance of vehicle and apparatus for collision avoidance of vehicle implementing the same |
CN109878513A (en) * | 2019-03-13 | 2019-06-14 | 百度在线网络技术(北京)有限公司 | Defensive driving strategy generation method, device, equipment and storage medium |
WO2020245654A1 (en) * | 2019-06-06 | 2020-12-10 | Mobileye Vision Technologies Ltd. | Systems and methods for vehicle navigation |
CN112109704A (en) * | 2020-09-22 | 2020-12-22 | 同济大学 | Vehicle collision avoidance dynamic safety path planning method based on accurate track prediction |
CN112677963A (en) * | 2021-01-07 | 2021-04-20 | 吉林大学 | Intelligent networking four-wheel independent steering and independent driving electric automobile emergency obstacle avoidance system |
CN113895459A (en) * | 2021-11-11 | 2022-01-07 | 北京经纬恒润科技股份有限公司 | Method and system for screening obstacles |
CN113960996A (en) * | 2020-07-20 | 2022-01-21 | 华为技术有限公司 | Method and device for planning obstacle avoidance path of traveling device |
-
2022
- 2022-02-16 CN CN202210143460.4A patent/CN114620070A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140060107A (en) * | 2012-11-09 | 2014-05-19 | 현대모비스 주식회사 | Control method for collision avoidance of vehicle and apparatus for collision avoidance of vehicle implementing the same |
CN109878513A (en) * | 2019-03-13 | 2019-06-14 | 百度在线网络技术(北京)有限公司 | Defensive driving strategy generation method, device, equipment and storage medium |
WO2020245654A1 (en) * | 2019-06-06 | 2020-12-10 | Mobileye Vision Technologies Ltd. | Systems and methods for vehicle navigation |
CN113960996A (en) * | 2020-07-20 | 2022-01-21 | 华为技术有限公司 | Method and device for planning obstacle avoidance path of traveling device |
CN112109704A (en) * | 2020-09-22 | 2020-12-22 | 同济大学 | Vehicle collision avoidance dynamic safety path planning method based on accurate track prediction |
CN112677963A (en) * | 2021-01-07 | 2021-04-20 | 吉林大学 | Intelligent networking four-wheel independent steering and independent driving electric automobile emergency obstacle avoidance system |
CN113895459A (en) * | 2021-11-11 | 2022-01-07 | 北京经纬恒润科技股份有限公司 | Method and system for screening obstacles |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115257729A (en) * | 2022-08-24 | 2022-11-01 | 深圳元戎启行科技有限公司 | Vehicle trajectory planning method and device, computer equipment and storage medium |
CN115355916A (en) * | 2022-10-24 | 2022-11-18 | 北京智行者科技股份有限公司 | Trajectory planning method, apparatus and computer-readable storage medium for moving tool |
CN115355916B (en) * | 2022-10-24 | 2023-03-03 | 北京智行者科技股份有限公司 | Trajectory planning method, apparatus and computer-readable storage medium for moving tool |
CN115848365A (en) * | 2023-02-03 | 2023-03-28 | 北京集度科技有限公司 | Vehicle controller, vehicle and vehicle control method |
CN119898332A (en) * | 2025-04-01 | 2025-04-29 | 新石器慧通(北京)科技有限公司 | Vehicle speed planning method, device, equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11718318B2 (en) | Method and apparatus for planning speed of autonomous vehicle, and storage medium | |
CN114620070A (en) | Driving track planning method, device, equipment and storage medium | |
JP7466002B2 (en) | DATA PROCESSING METHOD, DATA PROCESSING APPARATUS, COMPUTER DEVICE, AND COMPUTER PROGRAM | |
CN113071520B (en) | Vehicle running control method and device | |
US11440565B2 (en) | Decision method, device, equipment in a lane changing process and storage medium | |
WO2021180035A1 (en) | Parking path planning method and apparatus, vehicle, and storage medium | |
CN112099496B (en) | Automatic driving training method, device, equipment and medium | |
US20200265710A1 (en) | Travelling track prediction method and device for vehicle | |
EP4119412B1 (en) | Vehicle-based data processing method, computer device, and storage medium | |
CN111653113A (en) | Method, device, terminal and storage medium for determining local path of vehicle | |
WO2023070258A1 (en) | Trajectory planning method and apparatus for vehicle, and vehicle | |
CN114644016B (en) | Vehicle automatic driving decision method and device, vehicle-mounted terminal and storage medium | |
CN114987498A (en) | Anthropomorphic trajectory planning method and device for automatic driving vehicle, vehicle and medium | |
CN114715154A (en) | Lane-changing driving track planning method, device, equipment and medium | |
CN113053112A (en) | Vehicle track prediction method, vehicle predicted track analysis method and device and vehicle | |
CN113899378A (en) | Lane changing processing method and device, storage medium and electronic equipment | |
CN114620071A (en) | Detour trajectory planning method, device, device and storage medium | |
KR20250056032A (en) | Method for sharing a driving path of a first vehicle with a second vehicle through v2x communication and allowing the first vehicle to move from a host lane to a target lane while the first vehicle is driving on the host lane and the second vehicle is driving on the target lane and computing device using the same | |
CN115230733B (en) | Automatic driving method, device, computer equipment and storage medium for vehicle | |
CN112937573A (en) | Method, device and system for determining safe speed | |
CN116588136A (en) | Method, device, equipment and medium for generating vehicle drivable area | |
CN114148344B (en) | Vehicle behavior prediction method and device and vehicle | |
CN115185263B (en) | A trajectory planning method and computer readable storage medium | |
CN118034105B (en) | Vehicle control method and device, vehicle and storage medium | |
CN120063304A (en) | A path planning method, device and computer storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |