CN114618542A - 一种低剂量过渡金属促进的钴基费托合成催化剂及其制备方法 - Google Patents

一种低剂量过渡金属促进的钴基费托合成催化剂及其制备方法 Download PDF

Info

Publication number
CN114618542A
CN114618542A CN202011480350.4A CN202011480350A CN114618542A CN 114618542 A CN114618542 A CN 114618542A CN 202011480350 A CN202011480350 A CN 202011480350A CN 114618542 A CN114618542 A CN 114618542A
Authority
CN
China
Prior art keywords
catalyst
cobalt
beta
silicon carbide
tropsch synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011480350.4A
Other languages
English (en)
Inventor
刘岳峰
朴宇昂
蒋倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202011480350.4A priority Critical patent/CN114618542A/zh
Publication of CN114618542A publication Critical patent/CN114618542A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种负载型钴基费托合成催化剂及其制备方法,涉及包含钴的催化剂,该方法通过浸渍法制备钴基低剂量原子级分散助剂M掺杂的β型多孔碳化硅催化剂,将可溶性钴盐和低剂量助剂M前驱体通过浸渍的方式负载至载体β型碳化硅表面,经过老化、干燥、马弗炉焙烧后,在还原气氛中还原,最后制得CoM/β‑SiC催化剂。相比于现有的费托合成催化剂,载体具有良好的导热性和稳定性以及良好机械性能,使得催化剂具有良好的传热性能并且易回收和再生。成品催化剂在高空速下也具有较高的CO转化率和C5+产物的产率。

Description

一种低剂量过渡金属促进的钴基费托合成催化剂及其制备 方法
技术领域
本发明属于催化领域,具体涉及一种以β型多孔碳化硅为载体的低含量助剂M促进的钴基催化剂及其制备方法。
背景技术
费托合成反应为合成气为原料,主要成份为一氧化碳和氢气,经过催化剂被转化为长链烃类的过程,其反应方程式为:CO+H2→CnH2n+2+nH2O。
费托合成是天然气制取油和通过煤间接制取油的技术难点,费托合成催化剂的性能直接决定了天然气制取油和通过煤间接制取油技术的竞争力和经济性。
在工业应用中,费托合成催化剂有钴基和铁基两种,与铁剂催化剂相比,钴基费托合成具有高催化活性、高直链饱和烃和重质烷烃的选择性,以及低水煤气变换反应等特点。而对于费托合成这种强放热反应,具有宏观形状和适当孔径的(中孔或大孔)且具有优良导热性的载体对于催化剂的工业应用具有重要价值。碳化硅具有催化剂载体所需的所有物理性质,即:高机械强度,高导热性(可实现催化剂床层温度均匀变化),高抗氧化性和化学惰性(有利于催化剂回收)。因此,由于碳化硅的存在,其作为多相催化领域中的载体的广泛使用,减少了固体废物的产生,也更有利于催化剂的后续回收。Luis Valverde等(Appl.Catal.,A.2014,82~89)研究了β型多孔碳化硅、二氧化硅与三氧化二铝对于费托反应活性及稳定性的影响,其中β型多孔碳化硅不但具有较高的活性,同时其高机械强度和稳定性也使其具有较为突出的稳定性。但由于缺少过渡金属助剂的加入使其活性远低于本发明所述催化剂。
过渡金属氧化物通常作为载体出现在费托合成中,但其作为一种助剂也在费托合成中具有重要的应用,其可以通过改变金属钴的分散程度提高反应的活性和对于重质烷烃的选择性,也对增强催化的稳定性有一定的贡献。
而对于费托合成中使用的钴基催化剂来说,最核心的问题是:催化剂在高活性以及稳定性前提下如何抑制甲烷的生成、如何调变产物宽泛的ASF分布以实现产品结构调控,并尽可能获得中间馏分油,进一步对于催化剂得以后回收和再生。Goodwin等(Catal.1996,125~160)研究了助剂Ru对氧化铝负载钴基催化剂的性能影响,Ru的加入增加了活性金属的还原度和CO转化率。但是,以贵金属作为助剂导致催化剂的成本大幅度提高,而且,贵金属助剂可能存在局部的热点使得催化剂失活。
发明内容
针对上述技术问题,本发明提供了一种钴基费托合成催化剂及其制备方法,具体地说是一种以β型多孔碳化硅为载体,低成本,高活性,高长链烷烃选择性的钴基费托合成催化剂及其制备方法。
本发明技术方案如下:
一方面,本发明提供了一种用于费托合成的负载型钴基催化剂,所述催化剂以β型多孔碳化硅为载体,以金属钴为活性组分,以过渡金属M为助剂;所述M为Zr、Mn、Mo、Ti、Cu、W中的一种或多种;所述助剂M的质量百分含量为0.01%-1.0%,优选为0.1%-0.5%;Co的质量百分含量为5%-30%,优选为10%-20%。所述的助剂M以原子级分散的形式存在。
另一方面,本发明提供了一种上述负载型钴基催化剂的制备方法,通过浸渍法制备的低剂量原子级分散过渡金属M负载于β型多孔碳化硅催化剂,将钴源和过渡金属M的前驱体溶解,通过浸渍方式负载至β型碳化硅的表面,得到负载钴与过渡金属前躯体的β型多孔碳化硅,老化、干燥、焙烧,得到CoMOx/β-SiC催化剂,再将该材料在还原性气氛中还原得到CoM/β-SiC,即为负载金属钴的M掺杂负载型费托催化剂。
优选地,所述的M的质量百分含量为低剂量的0.1%-0.5%,Co的质量百分含量为10%-20%。
优选地,浸渍法可以使用等体积共浸渍、过饱和共浸渍、分步浸渍等制备方式。
优选地,浸渍法制备钴基低含量助剂M掺杂的β型多孔碳化硅催化剂的钴前驱体为硝酸钴、氯化钴、醋酸钴或其他常见的钴源。
优选地,浸渍法制钴基低含量助剂M掺杂的β型碳化硅催化剂的助剂元素可以选择Zr、Mn、Mo、Ti、Cu、W的硝酸盐、盐酸盐或醋酸盐中的一种。
优选地,老化温度为20-60℃,时间为4-8h,干燥温度为90-120℃,时间为10-12h。
优选地,在马弗炉中空气中焙烧时,温度设置为200-400℃,焙烧时间为2-6h,升温速率为2-5℃/min。
优选地,所述的还原性气氛中H2的浓度为5-100%。
本发明包括的费托合成催化剂的具体制备方法如下:
通过等体积浸渍、过饱和浸渍或是分步浸渍制备的过渡金属Zr、Mn、Mo、Ti、Cu、W等掺杂β型碳化硅催化剂,将其硝酸钴、氯化钴或醋酸钴作为钴源和过渡金属Zr、Mn、Mo、Ti、Cu、W的硝酸盐、盐酸盐或醋酸盐溶解后,通过浸渍方式负载至β型碳化硅的表面,得到负载钴与过渡金属前躯体的β型碳化硅,老化温度为20-60℃,时间为4-8h,干燥温度为90-120℃,时间为10-12h。老化干燥后在马弗炉中焙烧,温度为200-400℃,焙烧时间为2-6h,升温速率为2-5℃/min,制得CoMOx/β-SiC,再将该材料在还原性气氛中还原得到CoM/β-SiC,即为负载金属钴的M掺杂负载型费托催化剂。其中催化剂中金属Co的含量为5~30%,优选10~20%,过渡金属助剂的含量为0.01-1%,优选0.1~0.5%。
再一方面,本发明提供了上述催化剂在费托合成反应中的应用。
优选地,费托合成反应温度为180~320℃,合成气进料的质量空速为5000~20000mL gcat-1h-1,反应压力为0.5~5MPa,合成气比例为H2/CO=1~3。
有益效果
本发明通过引入低剂量过渡金属在高比表面积载体中,实现了通过低过渡金属助剂含量在高空速下对催化剂反应活性的和选择性的提升,并调节助剂在催化剂表面以原子级分散的形式存在,可以进一步提高过渡金属的利用效率,进一步通过电子能量损失谱探究助剂对于活性金属的协同作用,由于单原子助剂的引入使得活性金属处于富电子状态,促进CO的解离,从而提高反应活性。
本发明方法使用特殊的β型碳化硅作为载体,区别于一般的惰性载体,具有高机械强度,高导热性(可实现催化剂床层温度均匀变化),高抗氧化性和化学惰性(有利于催化剂回收)。在本发明中碳化硅作为费托合成催化剂的载体,高机械强度有利于催化剂的后续回收,高导热性有利于床层的温度的传导。其高比表面积的特性有利于反应的传质,从而提高CO的转化率,同时由于助剂的加入进一步促进CO转化率的提高。对于产物的选择性,低价值产物(CH4)的选择性比未加入助剂时有明显下降,而对于目标产物的选择性(C5+产物,尤其是C5~C20的选择性)比未加入助剂改性时有明显的提高。
同时,本发明也实现了通过非贵金属助剂来改性催化剂使催化剂的成本大大降低,而贵金属助剂可能存在局部的热点使得催化剂失活,非贵金属助剂不但解决了失活的问题,而且由于载体β型碳化硅具有良好的导热性使得进步消除局部热点,进一步提高催化剂的稳定性。
本发明提供了一种金属钴负载低含量助剂M掺杂的β型碳化硅费托合成催化剂的合成方式。通过β型碳化硅的高导热性与过渡金属助剂相结合,使得催化剂的活性和稳定性优于普通的低比表面积载体,且引入助剂后目标产物的选择性得到提高。
本发明方法具有与使用贵金属催化剂的钴基费托合成催化剂相接近的反应活性和更高的目标产物选择性,具有高机械强度,催化剂成本低,适用于工业应用。另外贵金属催化剂加氢作用较强,有助于生成低碳数低附加值的烃类,如甲烷等。且一般载体由于导热性差易于形成局部热点造成催化剂失活。本发明方法在降低甲烷选择性的同时,有利于增强催化剂的稳定性。
附图说明
图1为实施例1-4焙烧后样品及对比例1的XRD图谱;
图2为实施例1-4及对比例1的催化剂的BET图;
图3为(a)CFT-1(b)CFT-2(c)CFT-3(d)CFT-4催化剂的表面形貌;
图4为实施例1高角度环形暗场扫描透射显微镜图;
图5为对比例1高角度环形暗场扫描透射显微镜图;
图6为实施例1电子能量损失谱图;
图7为实施例1-4及对比例1的催化剂稳定性测试图。
具体实施方式
下面结合实施例进一步说明本发明方法的过程和效果,但本发明并不因此而受到任何限制。
实施例1
通过等体积浸渍的方式,通过硝酸氧锆为前驱体,硝酸钴为钴源,β型碳化硅为载体的CoZr/β-SiC,将1.23g硝酸钴与0.78g硝酸氧锆溶解于1.5mL乙醇与1.5mL去离子水的混合溶液中,经过3h充分搅拌,得到混合溶液。将混合溶液逐滴滴在1.5gβ型碳化硅表面,使其充分浸润,之后放置于50℃的烘箱中,老化6h,后将烘箱温度提高至130℃,充分干燥后,转移至马弗炉中焙烧,温度设置为300℃,焙烧时间为4h,升温速率为5℃/min,得到成品催化剂CFT-1。
实施例2
通过等体积浸渍的方式,通过异丙醇锆为前驱体,硝酸钴为钴源,β型碳化硅为载体的CoZr/β-SiC,将2.26g硝酸钴与1.28g硝酸氧锆溶解于1.5mL乙醇与1.5mL去离子水的混合溶液中,经过3h充分搅拌,得到混合溶液。将混合溶液逐滴滴在1.5gβ型碳化硅表面,使其充分浸润,之后放置于50℃的烘箱中,老化6小时,后将烘箱温度提高至130℃,充分干燥后,转移至马弗炉中焙烧,温度设置为400℃,焙烧时间为6h,升温速率为3℃/min,得到成品催化剂CFT-2。
实施例3
通过过饱和浸渍的方式,通过硝酸锰为前驱体,硝酸钴为钴源,β型碳化硅为载体的CoMn/β-SiC,将1.31g硝酸钴与0.98g硝酸锰溶解于过量的离子水的混合溶液中,经过0.5h充分搅拌,得到混合溶液。将混合溶液通过旋蒸蒸发仪进行蒸发,之后放置于65℃的真空干燥箱中烘干12小时,充分干燥后,转移至马弗炉中焙烧,温度设置为350℃,焙烧时间为4h,升温速率为5℃/min,得到成品催化剂CFT-3。
实施例4
通过过饱和浸渍的方式,通过硝酸铝为前驱体,硝酸钴为钴源,β型碳化硅为载体的CoMg/β-SiC,将1.09g硝酸钴与0.82g硝酸锰溶解于25mL乙醇与25mL去离子水的混合溶液中再寄加入β型碳化硅,经过2h充分搅拌,得到混合溶液。将混合溶液转移至旋蒸蒸发仪上充分得到负载前驱体的β型碳化硅,之后放置于50℃的真空干燥箱中烘箱中,烘干6小时,后转移至烘箱温度设置至130℃,充分干燥后,转移至马弗炉中焙烧,温度设置为300℃,焙烧时间为4h,升温速率为5℃/min,得到成品催化剂CFT-4。
对比例1
通过等体积浸渍的方式,通过硝酸钴为钴源,β型碳化硅为载体的Co/SiC,将1.32g硝酸钴溶解于1.5mL乙醇与1.5mL去离子水的混合溶液中,经过1.5h充分搅拌,得到混合溶液。将混合溶液逐滴滴在1.5gβ型碳化硅表面,使其充分浸润,之后放置于60℃的烘箱中,老化8小时,后将烘箱温度提高至110℃,充分干燥后,转移至马弗炉中焙烧,温度设置为300℃,焙烧时间为3h,升温速率为5℃/min,得到成品催化剂Co/SiC。
对比例2
通过等体积浸渍的方式,通过硝酸氧锆为前驱体,硝酸钴为钴源,β型碳化硅为载体的CoZr/β-SiC,将1.34g硝酸钴与1.60g硝酸氧锆溶解于2.5mL乙醇与2.5mL去离子水的混合溶液中,经过3h充分搅拌,得到混合溶液。将混合溶液逐滴滴在1.5gβ型碳化硅表面,使其充分浸润,之后放置于50℃的烘箱中,老化8小时,后将烘箱温度提高至110℃,充分干燥后,转移至马弗炉中焙烧,温度设置为300℃,焙烧时间为4h,升温速率为5℃/min,得到成品催化剂DBL-1。
测试例
以Zr掺杂的催化剂为例,将所有制得的不同的低载量过渡金属掺杂的费托合成催化剂分别进行如下测试。不同条件下CO转化率和选择性及稳定性如图1-4及表1-2所示。
(1)XRD检测
取Zr/Co不同比值的催化剂焙烧后的样品分别进行XRD检测,测试仪器为荷兰帕纳科公司Empyrean-100,结果如图1所示:在结果中没有明显的低含量过渡金属的衍射峰。
(2)比表面积、孔容和孔径
通过美国麦克公司ASAP 2020物理吸附仪分别测试所得催化剂的比表面积、孔容、孔径记录于表中。
(3)SEM及EDS表征
催化剂的表面形貌通过SEM进行表征,如图3所示。通过SEM图片可以观察到载体明显的多孔结构,以及金属颗粒在催化剂表面分布均匀。通过表1及表2的EDS元素分析可知助剂确实以低含量负载于催化剂中。
表1.催化剂EDS元素原子百分比含量表(单位:%)
Figure BDA0002835818300000061
表2.催化剂EDS元素质量百分比含量表(单位:%)
Figure BDA0002835818300000062
(4)HAADF-STEM表征
取CFT-1进行高角度环形暗场扫描透射显微镜测试,仪器为日本电子公司的JEM-ARM200F。可以观察到,低剂量助剂的通过单分散的形式位于与活性金属表面。取DBL-1进行高角度环形暗场扫描透射显微镜测试,通过EDS mapping可以观察到高含量的Zr会在催化剂表面形成层状的无定形ZrO2结构。
(5)电子能量损失谱表征
取CFT-1与Co/SiO2进行电子能量损失谱测试,仪器为日立公司的HITACHIHF5000。可以观察到,对于CFT-1催化剂由于单原子过渡金属助剂的引入使得活性金属钴处于富电子状态。
(6)催化剂评价
催化剂评价在固定床反应器中进行。评价前催化剂需在氢气气氛350℃还原8h,还原结束后降温至费托合成反应进行的条件下进行评价。具体的,催化剂评价的反应条件为:合成气组成为H2/CO/N2=64/32/4(体积比),温度设定为220℃,压力设定为2MPa反应时混合气质量空速为12000mL gcat -1h-1。将80小时的反应CO转化率平均值(mol%)记录如下,其中CO转化率的计算方式为:
Figure BDA0002835818300000063
C5+产物的计算方式为:
Figure BDA0002835818300000064
实验结果如表3所示。
表3.费托合成催化剂的CO转化率和C5+选择性表
Figure BDA0002835818300000071
(7)稳定性测试
在催化剂评价环节增长反应时间至90h在线色谱连续记录CO的转化率,其中CO转化率计算公式为:
Figure BDA0002835818300000072
测试结果如图7所示。

Claims (10)

1.一种用于费托合成的负载型钴基催化剂,其特征在于:所述催化剂以β型碳化硅为载体,以金属钴为活性组分,以过渡金属M为助剂;所述M为Zr、Li、Mn、Mo、Ti、Cu、W中的一种或多种;所述的助剂M的质量百分含量为0.01%-1%,活性金属Co的质量百分含量为5%-30%;所述的助剂M以原子级分散的形式存在。
2.按照权利要求1所述的催化剂,其特征在于:所述助剂M的范围为0.1%-0.5%,活性金属Co的范围为10-20%。
3.一种权利要求1~2任一所述的催化剂的制备方法,其特征在于,所述方法包括以下步骤:
步骤一、将钴源和过渡金属M的前驱体溶解,通过浸渍法负载至β型碳化硅的表面,得到负载钴与过渡金属前躯体的β型碳化硅,老化、干燥、焙烧,得到CoMOx/β-SiC前驱体;
步骤二、将所述CoMOx/β-SiC前驱体在还原性气氛中还原得到所述催化剂CoM/β-SiC。
4.按照权利要求3所述的制备方法,其特征在于:所述浸渍法为等体积共浸渍、过饱和浸渍或分步浸渍。
5.按照权利要求3所述的制备方法,其特征在于:所述钴源为硝酸钴、氯化钴或醋酸钴;所述M的前驱体为M的硝酸盐、盐酸盐或醋酸盐中的一种。
6.按照权利要求3所述的制备方法,其特征在于:所述步骤一中,老化温度为20-60℃,老化时间为4-8h,干燥温度为90-120℃,干燥时间为10-12h。
7.按照权利要求3所述的制备方法,其特征在于:所述步骤一中,所述焙烧在马弗炉中空气气氛下进行,焙烧温度为200-400℃,焙烧时间为2-6h,升温速率为2-5℃/min。
8.按照权利要求3所述的制备方法,其特征在于:所述还原性气氛为H2,所述H2的浓度为5-100%。
9.一种权利要求1~2任一所述的催化剂在费托合成中的应用。
10.根据权利要求10所述的应用,其特征在于:费托合成反应温度为180~320℃,合成气进料的质量空速为5000~20000mL geat -1h-1,反应压力为0.5~~5MPa,合成气比例为H2/CO=1~3。
CN202011480350.4A 2020-12-14 2020-12-14 一种低剂量过渡金属促进的钴基费托合成催化剂及其制备方法 Pending CN114618542A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011480350.4A CN114618542A (zh) 2020-12-14 2020-12-14 一种低剂量过渡金属促进的钴基费托合成催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011480350.4A CN114618542A (zh) 2020-12-14 2020-12-14 一种低剂量过渡金属促进的钴基费托合成催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN114618542A true CN114618542A (zh) 2022-06-14

Family

ID=81896870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011480350.4A Pending CN114618542A (zh) 2020-12-14 2020-12-14 一种低剂量过渡金属促进的钴基费托合成催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114618542A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3772376D1 (de) * 1987-03-13 1991-09-26 Exxon Research Engineering Co Kobaltkatalysatoren und deren verwendung fuer die umwandlung von methanol zu kohlenwasserstoffen und fuer die fischer-tropsch-synthese.
CN101269336A (zh) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 多级孔材料负载钴催化剂及制法和应用
WO2014140973A1 (en) * 2013-03-14 2014-09-18 Sasol Technology (Pty) Limited A hydrocarbon synthesis process using a cobalt-based catalyst supported on a silicon carbide comprising support
CN104607223A (zh) * 2015-02-04 2015-05-13 厦门大学 一种含钌钴基费托合成催化剂及其制备方法
CN106867561A (zh) * 2017-03-07 2017-06-20 北京神雾环境能源科技集团股份有限公司 费托合成柴油馏分的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3772376D1 (de) * 1987-03-13 1991-09-26 Exxon Research Engineering Co Kobaltkatalysatoren und deren verwendung fuer die umwandlung von methanol zu kohlenwasserstoffen und fuer die fischer-tropsch-synthese.
CN101269336A (zh) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 多级孔材料负载钴催化剂及制法和应用
WO2014140973A1 (en) * 2013-03-14 2014-09-18 Sasol Technology (Pty) Limited A hydrocarbon synthesis process using a cobalt-based catalyst supported on a silicon carbide comprising support
CN104607223A (zh) * 2015-02-04 2015-05-13 厦门大学 一种含钌钴基费托合成催化剂及其制备方法
CN106867561A (zh) * 2017-03-07 2017-06-20 北京神雾环境能源科技集团股份有限公司 费托合成柴油馏分的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
煤炭工业部科技教育司: "《煤炭高等院校第二届青年学术研讨会》", 中国矿业大学出版社, pages: 421 *

Similar Documents

Publication Publication Date Title
Carrero et al. Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
Das et al. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles
Min et al. Carbon dioxide reforming of methane on Ni–MgO–Al2O3 catalysts prepared by sol–gel method: Effects of Mg/Al ratios
Jafarbegloo et al. NiO–MgO solid solution prepared by sol–gel method as precursor for Ni/MgO methane dry reforming catalyst: effect of calcination temperature on catalytic performance
US9533292B2 (en) Method of preparing iron carbide/carbon nanocomposite catalyst containing potassium for high temperature fischer-tropsch synthesis reaction and the iron carbide/carbon nanocomposite catalyst prepared thereby, and method of manufacturing liquid hydrocarbon using the same and liquid hydrocarbon manufactured thereby
Daneshmand-Jahromi et al. Synthesis, characterization and application of Ni-based oxygen carrier supported on novel yttrium-incorporated SBA-16 for efficient hydrogen production via chemical looping steam methane reforming
Alirezaei et al. Application of zirconium modified Cu-based oxygen carrier in chemical looping reforming
Qin et al. Effect of La 2 O 3 promoter on NiO/Al 2 O 3 catalyst in CO methanation
JP7254809B2 (ja) 調整可能な根元成長多層カーボンナノチューブ用の触媒とプロセス
Moogi et al. Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming
CN111250121B (zh) 超高分散的高负载量Pd/α-MoC负载型催化剂合成与应用
CN110947388B (zh) 一种石墨烯气凝胶负载镍的催化剂及其制备方法和应用
An et al. Co0− Coδ+ active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis
Huang et al. Carbon dioxide reforming of methane over Ni/Mo/SBA-15-La2O3 catalyst: Its characterization and catalytic performance
Ding et al. Anti-coking of Yb-promoted Ni/Al2O3 catalyst in partial oxidation of methane
Wong et al. Investigation on cobalt aluminate as an oxygen carrier catalyst for dry reforming of methane
CN111450834B (zh) 用于乙酸自热重整制氢的二氧化铈负载的钴基催化剂
Habimana et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas
Liu et al. Simultaneous production of hydrogen and carbon nanotubes from cracking of a waste cooking oil model compound over Ni‐Co/SBA‐15 catalysts
Bao et al. Effect of CeO2 on carbon deposition resistance of Ni/CeO2 catalyst supported on SiC porous ceramic for ethanol steam reforming
Shi et al. Impact of nickel phosphides over Ni/SiO2 catalysts in dry methane reforming
Chen et al. Sintered precipitated iron catalysts with enhanced fragmentation-resistance ability for Fischer–Tropsch synthesis to lower olefins
Zhu et al. Seeded-growth preparation of high-performance Ni/MgAl 2 O 4 catalysts for tar steam reforming
US9498769B2 (en) Catalysts for carbon dioxide reforming of hydrocarbons
Natewong et al. Fibrous platelet carbon nanofibers-silica fiber composite supports for a Co-based catalyst in the steam reforming of acetic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220614