CN114612717B - Ai模型训练标签生成方法、训练方法、使用方法及设备 - Google Patents

Ai模型训练标签生成方法、训练方法、使用方法及设备 Download PDF

Info

Publication number
CN114612717B
CN114612717B CN202210232586.9A CN202210232586A CN114612717B CN 114612717 B CN114612717 B CN 114612717B CN 202210232586 A CN202210232586 A CN 202210232586A CN 114612717 B CN114612717 B CN 114612717B
Authority
CN
China
Prior art keywords
image
original sample
fcn
training
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210232586.9A
Other languages
English (en)
Other versions
CN114612717A (zh
Inventor
步宏
杨永全
卫亚妮
李凤玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202210232586.9A priority Critical patent/CN114612717B/zh
Publication of CN114612717A publication Critical patent/CN114612717A/zh
Application granted granted Critical
Publication of CN114612717B publication Critical patent/CN114612717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了AI模型训练标签生成方法、训练方法、使用方法及设备,基于带噪声的训练标签和样本生成更好的的训练标签,从而提高AI模型预测性能。AI模型训练标签生成方法,所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:获得第一原始样本NS1;获得第二原始样本NS2;根据所述第一原始样本NS1建立第一原始样本第一新标签图像T1,根据第二原始样本NS2建立第二原始样本第一新标签图像T2;根据所述第一原始样本NS1建立第一原始样本第二新标签图像T3;根据所述第二原始样本NS2建立第二原始样本第二新标签图像T4

Description

AI模型训练标签生成方法、训练方法、使用方法及设备
技术领域
本发明涉及人工智能技术领域,尤其涉及医学分析人工智能技术,特别涉及AI模型训练标签生成方法、训练方法、使用方法及设备,
背景技术
准确(不带噪声)的训练标签是当前构建稳健的人工智能模型的核心基础,然而生成准确的训练标签往往需要极大的人力物力。尤其是在医学分析领域,准确的训练标签往往是不存在的,因为即使是医学专家,有时也并不能对目标进行准确的标注。带噪声(不准确)的训练标签由于只需要对目标进行粗略的标注,能够大幅度有效降低生成训练人工智能模型所需标签的人力物力。然而其显而易见的缺点则,由于带噪声的训练标签中的不准确性,降低了人工智能模型的预测鲁棒性。
发明内容
本发明的目的是提供AI模型训练标签生成方法、训练方法、使用方法及设备,基于带噪声的训练标签和样本生成更好的训练标签,从而提高AI模型预测性能。
根据本申请的第一个方面,提供了一种AI模型训练标签生成方法,所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:获得第一原始样本NS1,所述第一原始样本NS1包含第一原始样本图像IS1和与所述第一原始样本图像IS1对应的第一原始标签图像NLS1,所述第一原始标签图像NLS1上显示有第一多边形,所述第一多边形可映射到所述第一原始样本图像IS1中而将所述第一原始样本图像IS1划分为位于所述第一多边形内且含有噪声的第一原始样本图像目标区域和位于所述第一多边形外且含有噪声的第一原始样本图像目标外区域;获得第二原始样本NS2,所述第二原始样本NS2包含第二原始样本图像IS2和与所述第二原始样本图像IS2对应的第二原始标签图像NLS2,所述第二原始标签图像NLS2上显示有第二多边形,所述第二多边形可映射到所述第二原始样本图像IS2中而将所述第二原始样本图像IS2划分为位于所述第二多边形内且含有噪声的第二原始样本图像目标区域和位于所述第二多边形外且含有噪声的第二原始样本图像目标外区域;根据所述第一原始样本NS1建立第一原始样本第一新标签图像T1,所述第一原始样本第一新标签图像T1是通过将所述第一原始样本图像目标区域的像素值设为第一定值并将所述第一原始样本图像目标外区域的像素值设为第二定值而获得的;并且,根据第二原始样本NS2建立第二原始样本第一新标签图像T2,所述第二原始样本第一新标签图像T2是通过将所述第二原始样本图像目标区域的像素值设为第一定值并将所述第二原始样本图像目标外区域的像素值设为第二定值而获得的;所述第一定值与所述第二定值不同;根据所述第一原始样本NS1建立第一原始样本第二新标签图像T3,所述第一原始样本第二新标签图像T3是通过将所述第一原始样本图像IS1输入经训练的第二FCN卷积神经网络后将所述第二FCN卷积神经网络输出的中间图像中像素值大于0.5的像素点的像素值调整为所述第一定值并将该中间图像中像素值小于0.5的像素点的像素值调整为所述第二定值后获得的,所述第二FCN卷积神经网络用于以所述第二原始样本图像IS2为输入且输出与所述第二原始样本图像IS2尺度一致的中间图像,所述中间图像中各像素点的像素值在0-1之间,可表示趋近于所述第一定值的概率;根据所述第二原始样本NS2建立第二原始样本第二新标签图像T4,所述第二原始样本第二新标签图像T4是通过将所述第一原始样本图像IS2输入经训练的第一FCN卷积神经网络然后将所述第一FCN卷积神经网络输出的中间图像中像素值大于0.5的像素点的像素值调整为所述第一定值并将该中间图像中像素值小于0.5的像素点的像素值调整为所述第二定值后获得的,所述第一FCN卷积神经网络用于以所述第一原始样本图像IS1为输入且输出与所述第一原始样本图像IS1尺度一致的中间图像,所述中间图像中各像素点的像素值在0-1之间,可表示趋近于所述第一定值的概率。
可选的,所述第一定值取值为255;所述第二定值取值为0。
可选的,所述输入图像为人体组织照片,所述目标区域为肿瘤阳性区域,所述输出图像为肿瘤阳性区域预测分布图。
可选的,所述输入图像为乳腺组织照片,所述目标区域为乳腺肿瘤阳性区域,所述输出图像为乳腺肿瘤阳性区域预测分布图。
可选的,所述第二FCN卷积神经网络是以所述第二原始样本图像IS2为输入且以所述第二原始样本第一新标签图像T2为目标输出训练得到的,训练时,将所述第二FCN卷积神经网络的实际输出与所述目标输出构建交叉熵损失函数,采用随机梯度下降方法最小化交叉熵损失函数值,进而优化所述第二FCN卷积神经网络的参数,得到经训练的第二FCN卷积神经网络。
可选的,所述第一FCN卷积神经网络是以所述第一原始样本图像IS1为输入且以所述第一原始样本第一新标签图像T1为目标输出训练得到的,训练时,将所述第一FCN卷积神经网络的实际输出与所述目标输出构建交叉熵损失函数,采用随机梯度下降方法最小化交叉熵损失函数值,进而优化所述第一FCN卷积神经网络的参数,得到经训练的第一FCN卷积神经网络。
根据本申请的第二个方面,提供了一种AI模型训练方法,所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:获得上述第一个方面的AI模型训练标签生成方法建立的第一原始样本第一新标签图像T1、第二原始样本第一新标签图像T2、第一原始样本第二新标签图像T3和第二原始样本第二新标签图像T4,然后构建第一训练样本和第二训练样本,所述第一训练样本包含所述第一原始样本图像IS1以及与所述第一原始样本图像IS1对应的所述第一原始样本第一新标签图像T1和所述第一原始样本第二新标签图像T3,所述第二训练样本包含所述第二原始样本图像IS2以及与所述第二原始样本图像IS2对应的所述第二原始样本第一新标签图像T2和所述第二原始样本第二新标签图像T4;使用所述第一训练样本和第二训练样本对预设FCN卷积神经网络进行多目标学习迭代训练,直至所述预设FCN卷积神经网络的训练达到设定阈值,得到所述AI模型。
根据本申请的第三个方面,提供了一种AI模型使用方法,应用于一种计算机设备,所述计算机设备部署有所述AI模型,所述AI模型为采用上述第二个方面的AI模型训练方法训练得到的AI模型,并且该方法包括:接收输入图像并通过所述AI模型预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像。
根据本申请的第四个方面,提供了一种计算机设备,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得该控制装置执行上述第一个方面的AI模型训练标签生成方法。
根据本申请的第五个方面,提供了一种计算机设备,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得该控制装置执行上述第二个方面的AI模型训练方法。
根据本申请的第六个方面,提供了一种计算机设备,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得该控制装置执行上述第三个方面的AI模型使用方法。
上述AI模型训练标签生成方法、训练方法、使用方法及设备,能够基于带噪声的训练标签和样本生成更好的训练标签,从而提高AI模型预测性能。
下面结合附图和具体实施方式对本申请做进一步的说明。本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
构成本说明书的一部分的附图用来辅助对本申请的理解,附图中所提供的内容及其在本说明书中有关的说明可用于解释本申请,但不构成对本申请的实施例的不当限定。在附图中:
图1为本申请实施例的一种计算机设备的结构示意图。
图2为本申请实施例的一种AI模型训练标签生成方法的原理示意图。
图3为本申请实施例的一种AI模型训练标签生成方法的流程示意图。
具体实施方式
下面结合附图对本申请进行清楚、完整的说明。本领域普通技术人员在基于这些说明的情况下将能够实现本申请技术方案。在结合附图对本申请进行说明前,需要特别指出的是:
本说明书中在包括下述说明在内的各部分中所提供的技术方案、技术特征,在不冲突的情况下,这些技术方案、技术特征可以相互组合。
下述说明中涉及到的内容通常仅涉及本申请的一部分实施例而不是全部实施例,因此,基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本说明书和权利要求书及有关的部分中的术语“包括”、“包含”、“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
图1申请实施例的一种计算机设备的结构示意图。该计算机设备用于实施本申请实施例的AI模型训练标签生成方法以及AI模型训练方法。如图1所示,该计算机设备包括至少一个处理器11,至少一个存储器12和至少一个网络接口13。处理器11与存储器12与网络接口13相连,例如通过各类接口、传输线或总线相连。可选的,计算机设备还可以包括输入设备14和输出设备15。
处理器11可以包括中央处理器(CPU)、数字信号处理器(DSP)、微处理器、特定集成电路(Application Special Integrated Circuit,ASIC)、微控制器(MCU)、现场可编程门阵列(FPGA)或者用于实现逻辑运算的一个或多个集成电路。优选的,处理器11可以采用人工智能(AI)专用处理芯片,以便在下文提供的实施中提高处理速度。
处理器11可以用于为计算机设备实现所需的功能,例如用于对整个计算机设备进行控制、执行软件程序、处理软件程序的数据等。所述软件可以是用于实施本申请实施例的AI模型训练标签生成方法、AI模型训练方法、AI模型使用方法的软件。
存储器12可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器12可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器12可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器12可在处理器11的内部或外部。在特定实施例中,存储器12是非易失性固态存储器。在特定实施例中,存储器12包括只读存储器(ROM);在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些组合。
网络接口13用于使计算机设备通过通信链路与原始样本的获取设备相连。这里的通信链路既可以是有线通信链路,也可以是无线通信链路。这里的无线通信链路可以通过支持Zig-Bee、蓝牙(Bluetooth)、无线宽带(Wi-Fi)、超宽带(UWB)、通用无线分组业务(GPRS)、码分多址(CDMA)、长期演进(LTE)或新无线(NR)等无线通信技术的无线传输网络来实现。
原始样本的获取设备可以通过对原始样本获取、编辑等处理获得尽可能多的原始样本,每一个原始样本应包括原始样本图像和与原始样本图像对应的原始标签图像,所述原始标签图像上显示有多边形,所述多边形可映射到所述原始样本图像中而将所述原始样本图像划分为位于所述多边形内且含有噪声的原始样本图像目标区域和位于所述多边形外且含有噪声的原始样本图像目标外区域。
输入设备14与处理器11通信,可以以多种方式接受用户的输入。例如,输入设备14可以是鼠标、键盘、触摸屏设备或传感器。输出设备15与处理器11通信,可以以多种方式来显示信息。例如,输出设备15可以是液晶显示器、发光二极管显示设备、阴极射线管显示设备或投影仪等。
图2为本申请实施例的一种AI模型训练标签生成方法的原理示意图。图3为本申请实施例的一种AI模型训练标签生成方法的流程示意图。下面结合图2-3,对本申请实施例的一种AI模型训练标签生成方法进行详细说明。
如图2-3所示,一种AI模型训练标签生成方法,所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:
步骤S1:获得第一原始样本NS1,所述第一原始样本NS1包含第一原始样本图像IS1和与所述第一原始样本图像IS1对应的第一原始标签图像NLS1,所述第一原始标签图像NLS1上显示有第一多边形(参见图2中第一原始标签图像NLS1上的多边形),所述第一多边形可映射到所述第一原始样本图像IS1中(参见图2中第一原始样本NS1)而将所述第一原始样本图像IS1划分为位于所述第一多边形内且含有噪声的第一原始样本图像目标区域和位于所述第一多边形外且含有噪声的第一原始样本图像目标外区域。
步骤S2:获得第二原始样本NS2,所述第二原始样本NS2包含第二原始样本图像IS2和与所述第二原始样本图像IS2对应的第二原始标签图像NLS2,所述第二原始标签图像NLS2上显示有第二多边形(参见图2中第二原始标签图像NLS2上的多边形),所述第二多边形可映射到所述第二原始样本图像IS2中(参见图2中第二原始样本NS2)而将所述第二原始样本图像IS2划分为位于所述第二多边形内且含有噪声的第二原始样本图像目标区域和位于所述第二多边形外且含有噪声的第二原始样本图像目标外区域。
步骤S3:根据所述第一原始样本NS1建立第一原始样本第一新标签图像T1,所述第一原始样本第一新标签图像T1是通过将所述第一原始样本图像目标区域的像素值设为第一定值并将所述第一原始样本图像目标外区域的像素值设为第二定值而获得的;并且,根据第二原始样本NS2建立第二原始样本第一新标签图像T2,所述第二原始样本第一新标签图像T2是通过将所述第二原始样本图像目标区域的像素值设为第一定值并将所述第二原始样本图像目标外区域的像素值设为第二定值而获得的;所述第一定值与所述第二定值不同;所述第一定值建议取值为255,所述第二定值建议取值为0。
步骤S4:根据所述第一原始样本NS1建立第一原始样本第二新标签图像T3,所述第一原始样本第二新标签图像T3是通过将所述第一原始样本图像IS1输入经训练的第二FCN卷积神经网络后将所述第二FCN卷积神经网络输出的中间图像中像素值大于0.5的像素点的像素值调整为所述第一定值并将该中间图像中像素值小于0.5的像素点的像素值调整为所述第二定值后获得的,所述第二FCN卷积神经网络用于以所述第二原始样本图像IS2为输入且输出与所述第二原始样本图像IS2尺度一致的中间图像,所述中间图像中各像素点的像素值在0-1之间,可表示趋近于所述第一定值的概率。
步骤S5:根据所述第二原始样本NS2建立第二原始样本第二新标签图像T4,所述第二原始样本第二新标签图像T4是通过将所述第一原始样本图像IS2输入经训练的第一FCN卷积神经网络然后将所述第一FCN卷积神经网络输出的中间图像中像素值大于0.5的像素点的像素值调整为所述第一定值并将该中间图像中像素值小于0.5的像素点的像素值调整为所述第二定值后获得的,所述第一FCN卷积神经网络用于以所述第一原始样本图像IS1为输入且输出与所述第一原始样本图像IS1尺度一致的中间图像,所述中间图像中各像素点的像素值在0-1之间,可表示趋近于所述第一定值的概率。
其中,所述输入图像可以为人体组织照片,则:所述目标区域为肿瘤阳性区域,所述输出图像为肿瘤阳性区域预测分布图。具体的,所述输入图像可以为乳腺组织照片,则:所述目标区域为乳腺肿瘤阳性区域,所述输出图像为乳腺肿瘤阳性区域预测分布图。
下面以第一原始样本NS1和第二原始样本NS2为乳腺组织照片为例,对本申请实施例的上述AI模型训练标签生成方法进行进一步说明。
基于在医学分析领域准确的训练标签往往是不存在的客观事实,可对第一原始样本NS1和第二原始样本NS2得出如下逻辑推理结论(参见图2):
RG1(GR1,1):=G1,1:IS1中在NLS1多边形外的像素为肿瘤阴性;
RG2(GR1,2):=G1,2:IS1中在NLS1多边形内的像素为肿瘤阳性;
RG3(GR1,3):IS1中在NLS1多边形外的像素不全是真肿瘤阴性;
RG4(GR1,4):IS1中在NLS1多边形内的像素没有完全覆盖真肿瘤阳性;
RG5(GR2,1):=G2,1:IS2中在NLS2多边形内的像素为肿瘤阳性;
RG6(GR2,2):=G2,2:IS2中在NLS2多边形外的像素为肿瘤阴性;
RG7(GR2,3):IS2中在NLS2多边形内的像素不全是真肿瘤阳性;
RG8(GR2,4):IS2中在NLS2多边形外的像素没有完全覆盖真肿瘤阴性。
基于上述逻辑推理结论,可建立第一原始样本第一新标签图像T1、第二原始样本第一新标签图像T2、第一原始样本第二新标签图像T3和第二原始样本第二新标签图像T4
第一原始样本第一新标签图像T1
1)基于逻辑推理结论RG1和RG2,保持RG1和RG2能够使得标签对真实目标具有高召回率。
2)于是建立了一个与IS1像素长宽一致的随机二维矩阵,将T1中与NLS1中标注的多边形内的区域对应的像素赋值为255,并将T1中与NLS1中标注的多边形外的区域对应的像素赋值为0。
第二原始样本第一新标签图像T2
1)基于逻辑推理结论RG5和RG6,保持RG5和RG6能够是的标签对真实目标具有高准确率。
2)于是建立了一个与IS2像素长宽一致的随机二维矩阵,基于逻辑推理结论RG5和RG6,将T2中与NLS2中标注的多边形内的区域对应的像素赋值为255,并将T2中与NLS2中标注的多边形外的区域对应的像素赋值为0。
基于FCN卷积神经网络建立一个图像语义分割模型,命名为TS-FCN。TS-FCN的输入为和IS1或IS2尺度一致的图像,输出为与其输入图像的像素长宽一致的矩阵且矩阵内的像素点的取值范围为[0,1]。
第一原始样本第二新标签图像T3
1)基于T1和逻辑推理结论RG3和RG4,T1能够使得标签对真实目标具有高召回率但精准率较低;为此采用了如下2)-5)来弥补T1的缺点。
2)以IS2为TS-FCN的输入,并以T2为TS-FCN的目标输出;基于TS2作为TS-FCN的输入对应的TS-FCN的输出和TS-FCN的目标输出T2构建交叉熵损失函数L2;采用随机梯度下降方法最小化L2,进而优化TS-FCN的参数,得到模型TS-FCN2(即所述第二FCN卷积神经网络)。
3)以IS1为TS-FCN2的输入,并在TS-FCN2中进行前向传递,输出得到与一个IS1像素长宽一致的矩阵且矩阵内的像素点的取值范围为[0,1]。
4)对以IS1为输入的TS-FCN2所对应的输出矩阵进行二值化,将大于0.5的像素点赋值为255,小于等于0.5的像素点赋值为0;
5)最后二值化后的矩阵即为T3标签,T3弥补了T1精准率低的缺点。
第二原始样本第二新标签图像T4
1)基于T2和逻辑推理结论RG7和RG8,T2能够使得标签对真实目标具有高精准率但召回率较低;为此采用了如下2)-5)来弥补T2的缺点。
2)以IS1为TS-FCN的输入,并以T1为TS-FCN的目标输出;基于TS1作为TS-FCN的输入对应的TS-FCN的输出和TS-FCN的目标输出T1构建交叉熵损失函数L1;采用随机梯度下降方法最小化L1,进而优化TS-FCN的参数,得到模型TS-FCN1(即所述第一FCN卷积神经网络)。
3)以IS2为TS-FCN1的输入,并在TS-FCN1中进行前向传递,输出得到与一个IS2像素长宽一致的矩阵且矩阵内的像素点的取值范围为[0,1]。
4)对以IS2为输入的TS-FCN1所对应的输出矩阵进行二值化,将大于0.5的像素点赋值为255,小于等于0.5的像素点赋值为0;
5)最后二值化后的矩阵即为T4标签,T4弥补了T2召回率低的缺点。
本申请实施例还提供了一种AI模型训练方法,所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:获得上述AI模型训练标签生成方法建立的第一原始样本第一新标签图像T1、第二原始样本第一新标签图像T2、第一原始样本第二新标签图像T3和第二原始样本第二新标签图像T4,然后构建第一训练样本和第二训练样本,所述第一训练样本包含所述第一原始样本图像IS1以及与所述第一原始样本图像IS1对应的所述第一原始样本第一新标签图像T1和所述第一原始样本第二新标签图像T3,所述第二训练样本包含所述第二原始样本图像IS2以及与所述第二原始样本图像IS2对应的所述第二原始样本第一新标签图像T2和所述第二原始样本第二新标签图像T4;使用所述第一训练样本和第二训练样本对预设FCN卷积神经网络进行多目标学习迭代训练,直至所述预设FCN卷积神经网络的训练达到设定阈值,得到所述AI模型。
具体而言,构建第一训练样本和第二训练样本涉及对第一原始样本第一新标签图像T1、第二原始样本第一新标签图像T2、第一原始样本第二新标签图像T3和第二原始样本第二新标签图像T4的重新排列,排列方式可表达为:
Figure BDA0003539034590000091
其中/>
Figure BDA0003539034590000092
与IS1对应为其目标标签组,/>
Figure BDA0003539034590000093
与IS2对应为其目标标签组。
联合损失构建:
Figure BDA0003539034590000094
其中n为样本数量,α12=1,CE为交叉熵函数。
最后,采用随机梯度下降方法最小化UL,进而优化TS-FCN的参数,得到人工智能预测模型TS-FCN-U(即所述AI模型);给定一个与IS尺度一致的图像作为输入,在IS-FCN-U中进行前向传递可得到一个与IS像素长宽一致的矩阵且矩阵内的像素点的取值范围为[0,1],表征了IS图像中对应像素预测为目标的概率。
本申请实施例还提供了一种AI模型使用方法,应用于一种计算机设备,所述计算机设备部署有所述AI模型,所述AI模型为采用上述第二个方面的AI模型训练方法训练得到的AI模型,并且该方法包括:接收输入图像并通过所述AI模型预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像。
AI模型评估策略
通过对比当前水平的各种处理噪声样本的算法和将基于我们新生成的训练标签(T)的人工智能模型训练方法引入当前水平的各种处理噪声样本的算法,分析两种情况下在病理图像的乳腺癌分割任务上的表现,进而评估新生成的训练标签(T)对处理噪声样本的贡献。当前水平的各种处理噪声样本的算法包括BaseLine(直接学习),Forward(G.Patrini,A.Rozza,A.K.Menon,R.Nock,L.Qu,Making deep neural networks robustto label noise:A loss correction approach,in:Proc.-30th IEEEConf.Comput.Vis.Pattern Recognition,CVPR 2017,2017.doi:10.1109/CVPR.2017.240),Boost-Hard,Boost-Soft(S.E.Reed,H.Lee,D.Anguelov,C.Szegedy,D.Erhan,A.Rabinovich,Training deep neural networks on noisy labels withbootstrapping,in:3rd Int.Conf.Learn.Represent.ICLR 2015-Work.Track Proc.,2015.;E.Arazo,D.Ortego,P.Albert,N.E.O’Connor,K.McGuinness,Unsupervised labelnoise modeling and loss correction,in:36th Int.Conf.Mach.Learn.ICML 2019,2019),D2L(X.Ma,Y.Wang,M.E.Houle,S.Zhou,S.M.Erfani,S.T.Xia,S.Wijewickrema,J.Bailey,Dimensionality-Driven learning with noisy labels,in:35thInt.Conf.Mach.Learn.ICML 2018,2018),SCE(Y.Wang,X.Ma,Z.Chen,Y.Luo,J.Yi,J.Bailey,Symmetric cross entropy for robust learning with noisy labels,in:Proc.IEEE Int.Conf.Comput.Vis.,2019.doi:10.1109/ICCV.2019.00041.),Peer(Y.Liu,H.Guo,Peer loss functions:Learning from noisy labels without knowing noiserates,in:37th Int.Conf.Mach.Learn.ICML 2020,2020.),DT-Forward(Y.Yao,T.Liu,B.Han,M.Gong,J.Deng,G.Niu,M.Sugiyama,Dual T:Reducing estimation error fortransition matrix in label-noise learning,in:Adv.Neural Inf.Process.Syst.,2020.),和NCE-SCE(X.Ma,H.Huang,Y.Wang,S.R.S.Erfani,J.Bailey,Normalized lossfunctions for deep learning with noisy labels,in:37thInt.Conf.Mach.Learn.ICML 2020,2020.)。上述引用都是已经发表的论文,根据这些引用都可以查到这些文章。
评估数据准备
对于基于术后切除样本的乳腺癌分割,总共收集了126个WSI(whole slideimage,全数字切片图像)。在收集到的WSI中,病理学专家使用94个WSI产生噪声样本一,病理学专家使用20个WSI产生噪声样本二,其余12个WSI由病理学专家用于生成无噪声样本(NFS)。NS1和NS2都用于训练,NFS用于进行验证和测试。NS1包含2944对图像和相应的噪声标签,NS2包含1431对图像和相应的噪声标签。NFS包含242对图像和相应的准确标签,其中121对用于验证,121对用于测试。
量化评估结果
当前水平的各种算法的表现如表1所示,将基于不同噪声样本的一步式反绎多目标学习方法引入对应当前水平的各种算法的表现如表2所示,基于不同噪声样本的一步式反绎多目标学习方法在基于术后切除样本的乳腺癌分割上对处理噪声样本的贡献评估(表2的量化评估减去表1的量化评估)如表3所示。
表1:
当前水平的各种算法在基于术后切除样本的乳腺癌分割任务上的评估
Figure BDA0003539034590000111
表2:
基于不同噪声样本的一步式反绎多目标学习方法引入对应当前水平的各种算法在基于术后切除样本的乳腺癌分割任务上的评估
Figure BDA0003539034590000121
表3:
基于不同噪声样本的一步式反绎多目标学习方法在基于术后切除样本的乳腺癌分割任务上对处理噪声样本的贡献评估(表2的量化评估减去表1的量化评估)
Figure BDA0003539034590000122
本领域普通技术人员在基于上述这些说明的情况下将能够实现本申请的实施例。基于本说明书提供的上述内容,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本申请保护的范围。

Claims (9)

1.一种AI模型训练标签生成方法,其特征在于:所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:
获得第一原始样本NS1,所述第一原始样本NS1包含第一原始样本图像IS1和与所述第一原始样本图像IS1对应的第一原始标签图像NLS1,所述第一原始标签图像NLS1上显示有第一多边形,所述第一多边形可映射到所述第一原始样本图像IS1中而将所述第一原始样本图像IS1划分为位于所述第一多边形内且含有噪声的第一原始样本图像目标区域和位于所述第一多边形外且含有噪声的第一原始样本图像目标外区域;
获得第二原始样本NS2,所述第二原始样本NS2包含第二原始样本图像IS2和与所述第二原始样本图像IS2对应的第二原始标签图像NLS2,所述第二原始标签图像NLS2上显示有第二多边形,所述第二多边形可映射到所述第二原始样本图像IS2中而将所述第二原始样本图像IS2划分为位于所述第二多边形内且含有噪声的第二原始样本图像目标区域和位于所述第二多边形外且含有噪声的第二原始样本图像目标外区域;
根据所述第一原始样本NS1建立第一原始样本第一新标签图像T1,所述第一原始样本第一新标签图像T1是通过将所述第一原始样本图像目标区域的像素值设为第一定值并将所述第一原始样本图像目标外区域的像素值设为第二定值而获得的;并且,根据第二原始样本NS2建立第二原始样本第一新标签图像T2,所述第二原始样本第一新标签图像T2是通过将所述第二原始样本图像目标区域的像素值设为第一定值并将所述第二原始样本图像目标外区域的像素值设为第二定值而获得的;所述第一定值与所述第二定值不同;
根据所述第一原始样本NS1建立第一原始样本第二新标签图像T3,所述第一原始样本第二新标签图像T3是通过将所述第一原始样本图像IS1输入经训练的第二FCN卷积神经网络后将所述第二FCN卷积神经网络输出的中间图像中像素值大于0.5的像素点的像素值调整为所述第一定值并将该中间图像中像素值小于0.5的像素点的像素值调整为所述第二定值后获得的,所述第二FCN卷积神经网络用于以所述第二原始样本图像IS2为输入且输出与所述第二原始样本图像IS2尺度一致的中间图像,所述中间图像中各像素点的像素值在0-1之间,可表示趋近于所述第一定值的概率;
根据所述第二原始样本NS2建立第二原始样本第二新标签图像T4,所述第二原始样本第二新标签图像T4是通过将所述第一原始样本图像IS2输入经训练的第一FCN卷积神经网络然后将所述第一FCN卷积神经网络输出的中间图像中像素值大于0.5的像素点的像素值调整为所述第一定值并将该中间图像中像素值小于0.5的像素点的像素值调整为所述第二定值后获得的,所述第一FCN卷积神经网络用于以所述第一原始样本图像IS1为输入且输出与所述第一原始样本图像IS1尺度一致的中间图像,所述中间图像中各像素点的像素值在0-1之间,可表示趋近于所述第一定值的概率;
所述第二FCN卷积神经网络是以所述第二原始样本图像IS2为输入且以所述第二原始样本第一新标签图像T2为目标输出训练得到的,训练时,将所述第二FCN卷积神经网络的实际输出与所述目标输出构建交叉熵损失函数,采用随机梯度下降方法最小化交叉熵损失函数值,进而优化所述第二FCN卷积神经网络的参数,得到经训练的第二FCN卷积神经网络;并且/或者,所述第一FCN卷积神经网络是以所述第一原始样本图像IS1为输入且以所述第一原始样本第一新标签图像T1为目标输出训练得到的,训练时,将所述第一FCN卷积神经网络的实际输出与所述目标输出构建交叉熵损失函数,采用随机梯度下降方法最小化交叉熵损失函数值,进而优化所述第一FCN卷积神经网络的参数,得到经训练的第一FCN卷积神经网络。
2.如权利要求1所述的AI模型训练标签生成方法,其特征在于:所述第一定值取值为255;所述第二定值取值为0。
3.如权利要求1所述的AI模型训练标签生成方法,其特征在于:所述输入图像为人体组织照片,所述目标区域为肿瘤阳性区域,所述输出图像为肿瘤阳性区域预测分布图。
4.如权利要求3所述的AI模型训练标签生成方法,其特征在于:所述输入图像为乳腺组织照片,所述目标区域为乳腺肿瘤阳性区域,所述输出图像为乳腺肿瘤阳性区域预测分布图。
5.一种AI模型训练方法,其特征在于:所述AI模型用于接收输入图像并预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像,其包括:
获得如权利要求1-4中任意一项权利要求所述的AI模型训练标签生成方法建立的第一原始样本第一新标签图像T1、第二原始样本第一新标签图像T2、第一原始样本第二新标签图像T3和第二原始样本第二新标签图像T4,然后构建第一训练样本和第二训练样本,所述第一训练样本包含所述第一原始样本图像IS1以及与所述第一原始样本图像IS1对应的所述第一原始样本第一新标签图像T1和所述第一原始样本第二新标签图像T3,所述第二训练样本包含所述第二原始样本图像IS2以及与所述第二原始样本图像IS2对应的所述第二原始样本第一新标签图像T2和所述第二原始样本第二新标签图像T4
使用所述第一训练样本和第二训练样本对预设FCN卷积神经网络进行多目标学习迭代训练,直至所述预设FCN卷积神经网络的训练达到设定阈值,得到所述AI模型。
6.一种AI模型使用方法,应用于一种计算机设备,所述计算机设备部署有所述AI模型,所述AI模型为采用如权利要求5所述的AI模型训练方法训练得到的AI模型,并且该方法包括:接收输入图像并通过所述AI模型预测所述输入图像中的目标区域然后发出用特定像素值来显示所预测出的目标区域的输出图像。
7.一种计算机设备,其特征在于:包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得控制装置执行如权利要求1-4中任意一项权利要求所述的AI模型训练标签生成方法。
8.一种计算机设备,其特征在于:包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得控制装置执行如权利要求5所述的AI模型训练方法。
9.一种计算机设备,其特征在于:包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的该计算机程序或指令,使得控制装置执行如权利要求6所述的AI模型使用方法。
CN202210232586.9A 2022-03-09 2022-03-09 Ai模型训练标签生成方法、训练方法、使用方法及设备 Active CN114612717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210232586.9A CN114612717B (zh) 2022-03-09 2022-03-09 Ai模型训练标签生成方法、训练方法、使用方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210232586.9A CN114612717B (zh) 2022-03-09 2022-03-09 Ai模型训练标签生成方法、训练方法、使用方法及设备

Publications (2)

Publication Number Publication Date
CN114612717A CN114612717A (zh) 2022-06-10
CN114612717B true CN114612717B (zh) 2023-05-26

Family

ID=81860291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210232586.9A Active CN114612717B (zh) 2022-03-09 2022-03-09 Ai模型训练标签生成方法、训练方法、使用方法及设备

Country Status (1)

Country Link
CN (1) CN114612717B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416370A (zh) * 2018-02-07 2018-08-17 深圳大学 基于半监督深度学习的图像分类方法、装置和存储介质
JP2019046269A (ja) * 2017-09-04 2019-03-22 株式会社Soat 機械学習用訓練データの生成
CN110096994A (zh) * 2019-04-28 2019-08-06 西安电子科技大学 一种基于模糊标签语义先验的小样本PolSAR图像分类方法
CN111260055A (zh) * 2020-01-13 2020-06-09 腾讯科技(深圳)有限公司 基于三维图像识别的模型训练方法、存储介质和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985214A (zh) * 2018-07-09 2018-12-11 上海斐讯数据通信技术有限公司 图像数据的标注方法和装置
CN110569699B (zh) * 2018-09-07 2020-12-29 创新先进技术有限公司 对图片进行目标采样的方法及装置
CN110909756A (zh) * 2018-09-18 2020-03-24 苏宁 用于医学图像识别的卷积神经网络模型训练方法和装置
CN109815979B (zh) * 2018-12-18 2020-11-10 通号通信信息集团有限公司 一种弱标签语义分割标定数据生成方法及系统
CN111476290A (zh) * 2020-04-03 2020-07-31 北京推想科技有限公司 检测模型训练方法、淋巴结检测方法、装置、设备及介质
CN111723852B (zh) * 2020-05-30 2022-07-22 杭州迪英加科技有限公司 针对目标检测网络的鲁棒训练方法
CN112990211B (zh) * 2021-01-29 2023-07-11 华为技术有限公司 一种神经网络的训练方法、图像处理方法以及装置
CN113569615A (zh) * 2021-02-24 2021-10-29 腾讯科技(深圳)有限公司 基于图像处理的目标识别模型的训练方法和装置
CN112990432B (zh) * 2021-03-04 2023-10-27 北京金山云网络技术有限公司 目标识别模型训练方法、装置及电子设备
CN113705769B (zh) * 2021-05-17 2024-09-13 华为技术有限公司 一种神经网络训练方法以及装置
CN113920370A (zh) * 2021-10-25 2022-01-11 上海商汤智能科技有限公司 模型训练方法、目标检测方法、装置、设备及存储介质
CN114155365B (zh) * 2022-02-07 2022-06-14 北京航空航天大学杭州创新研究院 模型训练方法、图像处理方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046269A (ja) * 2017-09-04 2019-03-22 株式会社Soat 機械学習用訓練データの生成
CN108416370A (zh) * 2018-02-07 2018-08-17 深圳大学 基于半监督深度学习的图像分类方法、装置和存储介质
CN110096994A (zh) * 2019-04-28 2019-08-06 西安电子科技大学 一种基于模糊标签语义先验的小样本PolSAR图像分类方法
CN111260055A (zh) * 2020-01-13 2020-06-09 腾讯科技(深圳)有限公司 基于三维图像识别的模型训练方法、存储介质和设备

Also Published As

Publication number Publication date
CN114612717A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US20230186476A1 (en) Object detection and instance segmentation of 3d point clouds based on deep learning
CN114092820B (zh) 目标检测方法及应用其的移动目标跟踪方法
US10783640B2 (en) Systems and methods for image segmentation using a scalable and compact convolutional neural network
CN104700099B (zh) 识别交通标志的方法和装置
CN108335303B (zh) 一种应用于手掌x光片的多尺度手掌骨骼分割方法
TWI747120B (zh) 深度模型訓練方法及裝置、電子設備及儲存介質
CN112819821B (zh) 一种细胞核图像检测方法
CN110969200B (zh) 基于一致性负样本的图像目标检测模型训练方法及装置
CN109903282B (zh) 一种细胞计数方法、系统、装置和存储介质
CN109740752B (zh) 深度模型训练方法及装置、电子设备及存储介质
CN110246579B (zh) 一种病理诊断方法及装置
CN110659601B (zh) 基于中心点的深度全卷积网络遥感图像密集车辆检测方法
CN110009628A (zh) 一种针对连续二维图像中多形态目标的自动检测方法
CN112634369A (zh) 空间与或图模型生成方法、装置、电子设备和存储介质
CN112581483B (zh) 基于自学习的植物叶片叶脉分割方法和装置
CN112017161A (zh) 一种基于中心点回归的肺结节检测方法和检测装置
CN114677501A (zh) 一种基于二维高斯边界框重叠度度量的车牌检测方法
König et al. What's cracking? A review and analysis of deep learning methods for structural crack segmentation, detection and quantification
CN115273017A (zh) 基于Yolov5交通标志检测识别模型训练方法及系统
CN110096979A (zh) 模型的构建方法、人群密度估计方法、装置、设备和介质
CN115631397A (zh) 一种基于双模态图像的目标检测方法及装置
CN109886984B (zh) 利用前后景灰度差和深度学习网络的图像精确分割方法
CN112991281B (zh) 视觉检测方法、系统、电子设备及介质
CN112348750B (zh) 基于阈值融合和邻域投票的sar图像变化检测方法
CN114612717B (zh) Ai模型训练标签生成方法、训练方法、使用方法及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant