CN114612411A - Image tampering detection method, device, device and storage medium - Google Patents
Image tampering detection method, device, device and storage medium Download PDFInfo
- Publication number
- CN114612411A CN114612411A CN202210214273.0A CN202210214273A CN114612411A CN 114612411 A CN114612411 A CN 114612411A CN 202210214273 A CN202210214273 A CN 202210214273A CN 114612411 A CN114612411 A CN 114612411A
- Authority
- CN
- China
- Prior art keywords
- image
- information
- feature
- feature information
- frequency domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本申请涉及人工智能技术领域,尤其涉及一种图像篡改检测方法、装置、设备及存储介质。The present application relates to the technical field of artificial intelligence, and in particular, to an image tampering detection method, device, device and storage medium.
背景技术Background technique
近年来,随着数字科技和网络通信技术的发展,数字图像的修改方式变得多样化,比如:利用PhotoShop(图像处理软件)、CrazyTalk(脸部动画制作软件)以及各种手机编辑APP等,由于图像篡改手法越来越先进,篡改的隐蔽性也越来越好,致使图像篡改检测的困难度不断增加。In recent years, with the development of digital technology and network communication technology, the modification methods of digital images have become diversified, such as: using PhotoShop (image processing software), CrazyTalk (face animation production software) and various mobile phone editing APPs, etc. As image tampering techniques become more and more advanced, and the concealment of tampering is getting better and better, the difficulty of image tampering detection continues to increase.
尽管现在已经有了很多图像篡改检测方法,但是这些方法大多只考虑了通过单一特征进行图像篡改检测,比如:通过图像的PRNU(Photo Response Non-Uniformity,光响应非均匀性)噪声的空域特征进行篡改检测,当图像场景内容复杂多变时,单一特征的篡改检测难以保证检测结果的准确率。因此,需要提供一种更加准确的技术方案。Although there are many image tampering detection methods, most of these methods only consider image tampering detection through a single feature, such as: using the spatial features of the image's PRNU (Photo Response Non-Uniformity, light response non-uniformity) noise. Tampering detection, when the content of the image scene is complex and changeable, the tampering detection of a single feature cannot guarantee the accuracy of the detection results. Therefore, a more accurate technical solution needs to be provided.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种图像篡改检测方法、装置、设备及存储介质,将图像中光响应非均匀性噪声的空域特征和频域特征相结合,提升篡改检测结果的准确性,本申请技术方案如下:The present application provides an image tampering detection method, device, equipment and storage medium, which combine the spatial and frequency domain characteristics of light response non-uniformity noise in an image to improve the accuracy of tampering detection results. The technical solution of the present application is as follows :
一方面,提供了一种图像篡改检测方法,所述方法包括:In one aspect, an image tampering detection method is provided, the method comprising:
获取待检测图像;Obtain the image to be detected;
对所述待检测图像进行噪声特征识别,得到所述待检测图像中光响应非均匀性噪声的空域特征信息和所述光响应非均匀性噪声的频域特征信息;Performing noise feature recognition on the image to be detected, to obtain spatial feature information of the non-uniform light response noise and frequency domain feature information of the non-uniform light response noise in the image to be detected;
将所述空域特征信息和所述频域特征信息输入图像篡改检测网络进行图像篡改检测,得到所述待检测图像对应的图像检测信息。Inputting the air domain feature information and the frequency domain feature information into an image tampering detection network for image tampering detection, and obtaining image detection information corresponding to the image to be detected.
另一方面,提供了一种图像篡改检测装置,所述方法包括:In another aspect, an image tampering detection device is provided, the method comprising:
待检测图像获取模块,用于获取待检测图像;a to-be-detected image acquisition module for acquiring the to-be-detected image;
噪声特征识别模块,用于对所述待检测图像进行噪声特征识别,得到所述待检测图像中光响应非均匀性噪声的空域特征信息和所述光响应非均匀性噪声的频域特征信息;A noise feature identification module, configured to perform noise feature identification on the image to be detected, and obtain spatial feature information of light response non-uniformity noise and frequency domain feature information of the light response non-uniformity noise in the to-be-detected image;
图像篡改检测模块,用于将所述空域特征信息和所述频域特征信息输入图像篡改检测网络进行图像篡改检测,得到所述待检测图像对应的图像检测信息。The image tampering detection module is configured to input the air domain feature information and the frequency domain feature information into an image tampering detection network for image tampering detection, and obtain image detection information corresponding to the image to be detected.
另一方面,提供了一种图像篡改检测设备,所述设备包括处理器和存储器,所述存储器中存储有至少一条指令或至少一段程序,所述至少一条指令或所述至少一段程序由所述处理器加载并执行以实现如第一方面所述的图像篡改检测方法。In another aspect, there is provided an image tampering detection device, the device includes a processor and a memory, the memory stores at least one instruction or at least a piece of program, the at least one instruction or the at least one piece of program is generated by the The processor loads and executes to implement the image tampering detection method as described in the first aspect.
另一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令或至少一段程序,所述至少一条指令或所述至少一段程序由处理器加载并执行以实现如第一方面所述的图像篡改检测方法。In another aspect, a computer-readable storage medium is provided, wherein the storage medium stores at least one instruction or at least one piece of program, and the at least one instruction or at least one piece of program is loaded and executed by a processor to achieve the first The image tampering detection method described in one aspect.
另一方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行如第一方面所述的图像篡改检测方法。In another aspect, a computer program product or computer program is provided, the computer program product or computer program comprising computer instructions stored in a computer-readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the image tampering detection method described in the first aspect.
本申请提供的一种图像篡改检测方法、装置、设备及存储介质,具有如下技术效果:An image tampering detection method, device, equipment and storage medium provided by this application have the following technical effects:
本申请在对图像进行篡改检测的场景上,通过获取待检测图像,然后,对所述待检测图像进行噪声特征识别,得到所述待检测图像中光响应非均匀性噪声的空域特征信息和所述光响应非均匀性噪声的频域特征信息;接着,将所述空域特征信息和所述频域特征信息输入图像篡改检测网络进行图像篡改检测,得到所述待检测图像对应的图像检测信息,通过增加特征维度,利用光响应非均匀性噪声的空域和频域的双重特征进行图像篡改检测,可以大大提高对图像进行篡改检测的准确性。In the scene of performing tampering detection on images, the present application obtains the image to be detected, and then performs noise feature recognition on the image to be detected, so as to obtain the spatial characteristic information of the non-uniformity noise of light response in the image to be detected and all The frequency domain feature information of the light response non-uniformity noise; then, the spatial domain feature information and the frequency domain feature information are input into an image tampering detection network for image tampering detection, and the image detection information corresponding to the to-be-detected image is obtained, By increasing the feature dimension and using the dual features of the spatial domain and the frequency domain of the light response non-uniformity noise for image tampering detection, the accuracy of image tampering detection can be greatly improved.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。In order to more clearly illustrate the technical solutions and advantages in the embodiments of the present application or in the prior art, the following briefly introduces the accompanying drawings used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1是本申请实施例提供的一种应用环境的示意图;1 is a schematic diagram of an application environment provided by an embodiment of the present application;
图2是本申请实施例提供的一种图像篡改检测方法的流程示意图;2 is a schematic flowchart of an image tampering detection method provided by an embodiment of the present application;
图3是本申请实施例提供的一种获取待检测图像的流程示意图;FIG. 3 is a schematic flow chart of obtaining an image to be detected provided by an embodiment of the present application;
图4是本申请实施例提供的一种对待检测图像进行噪声特征识别,得到待检测图像中光响应非均匀性噪声的空域特征信息和光响应非均匀性噪声的频域特征信息的流程示意图;FIG. 4 is a schematic flowchart of performing noise feature recognition on an image to be detected to obtain spatial feature information of light response non-uniformity noise and frequency domain feature information of light response non-uniformity noise in the to-be-detected image provided by an embodiment of the present application;
图5是本申请实施例提供的一种对待检测图像进行光响应非均匀性噪声的空域特征提取,得到空域特征信息的流程示意图;FIG. 5 is a schematic flowchart of performing spatial feature extraction of light response non-uniformity noise on a to-be-detected image provided by an embodiment of the present application to obtain spatial feature information;
图6是本申请实施例提供的一种将空域特征信息和频域特征信息输入图像篡改检测网络进行图像篡改检测,得到待检测图像对应的图像检测信息的流程示意图;6 is a schematic flowchart of inputting air domain feature information and frequency domain feature information into an image tampering detection network to perform image tampering detection, and obtaining image detection information corresponding to an image to be detected, provided by an embodiment of the present application;
图7是本申请实施例提供的一种图像篡改检测网络的示意图;7 is a schematic diagram of an image tampering detection network provided by an embodiment of the present application;
图8是本申请实施例提供的一种图像篡改检测网络的结构示意图;8 is a schematic structural diagram of an image tampering detection network provided by an embodiment of the present application;
图9是本申请实施例提供的一种网络训练方法的流程示意图;9 is a schematic flowchart of a network training method provided by an embodiment of the present application;
图10是本申请实施例提供的一种图像篡改检测装置的组成框图;FIG. 10 is a block diagram of an image tampering detection device provided by an embodiment of the present application;
图11是本申请实施例提供的一种图像篡改检测设备的结构示意图。FIG. 11 is a schematic structural diagram of an image tampering detection device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present application.
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "comprising" and "having" in the description and claims of the present application and the above-mentioned drawings, as well as any modifications thereof, are intended to cover non-exclusive inclusion, for example, including a series of steps or units A process, method, system, product or server is not necessarily limited to those steps or units expressly listed, but may include other steps or units not expressly listed or inherent to such process, method, product or device.
可以理解的是,在本申请的具体实施方式中,涉及到用户信息等相关的数据,当本申请以上实施例运用到具体产品或技术中时,需要获得用户许可或者同意,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。It can be understood that, in the specific implementation of this application, related data such as user information is involved. When the above embodiments of this application are applied to specific products or technologies, the user's permission or consent needs to be obtained, and the collection of relevant data. , use and processing need to comply with relevant laws, regulations and standards of relevant countries and regions.
请参阅图1,图1是本申请实施例提供的一种应用环境的示意图,该应用环境中可以包括客户端10和服务器端20,客户端10与服务器端20可以通过有线或无线通信方式进行直接或间接地连接。用户可以通过客户端10向服务器端20发送图像篡改检测请求。服务器端20基于图像篡改检测请求确定对应的待检测图像,然后对待检测图像进行噪声特征识别,得到待检测图像中光响应非均匀性噪声的空域特征信息和光响应非均匀性噪声的频域特征信息,再将空域特征信息和频域特征信息输入图像篡改检测网络进行图像篡改检测,得到所述待检测图像对应的图像检测信息,并将图像检测信息返回客户端10。需要说明的是,图1仅仅是一种示例。Please refer to FIG. 1. FIG. 1 is a schematic diagram of an application environment provided by an embodiment of the present application. The application environment may include a
客户端可以是智能手机、电脑(如台式电脑、平板电脑、笔记本电脑)、数字助理、智能语音交互设备(如智能音箱)、智能可穿戴设备等类型的实体设备,也可以是运行于实体设备中的软体,比如计算机程序。客户端所对应的操作系统可以是安卓系统(Android系统)、iOS系统(是由苹果公司开发的移动操作系统)、Linux系统(一种操作系统)、MicrosoftWindows系统(微软视窗操作系统)等。The client can be a smart phone, computer (such as desktop computer, tablet computer, laptop computer), digital assistant, intelligent voice interaction device (such as smart speaker), smart wearable device and other types of physical devices, or it can be running on physical devices. software, such as computer programs. The operating system corresponding to the client may be an Android system (Android system), an iOS system (a mobile operating system developed by Apple), a Linux system (an operating system), a Microsoft Windows system (Microsoft Windows operating system), and the like.
服务器端可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN(Content Delivery Network,内容分发网络)以及大数据和人工智能平台等基础云计算服务的云服务器。其中服务器可以包括有网络通信单元、处理器和存储器等等。服务器端可以为对应的客户端提供后台服务。The server side can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or it can provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, Cloud servers for basic cloud computing services such as middleware services, domain name services, security services, CDN (Content Delivery Network), and big data and artificial intelligence platforms. The server may include a network communication unit, a processor, a memory, and the like. The server side can provide background services for the corresponding clients.
上述客户端10和服务器端20可以用于构建一个有关图像篡改检测的系统,该系统可以是分布式系统。以分布式系统为区块链系统为例,由多个节点(接入网络中的任意形式的计算设备,如服务器、用户终端)和客户端形成,节点之间形成组成的点对点(P2P,PeerTo Peer)网络,P2P协议是一个运行在传输控制协议(TCP,Transmission ControlProtocol)协议之上的应用层协议。在分布式系统中,任何机器如服务器、终端都可以加入而成为节点,节点包括硬件层、中间层、操作系统层和应用层。The above-mentioned
上述区块链系统中各节点的功能,涉及的功能包括:The functions of each node in the above blockchain system include:
1)路由,节点具有的基本功能,用于支持节点之间的通信。1) Routing, a basic function that a node has to support communication between nodes.
节点除具有路由功能外,还可以具有以下功能:In addition to the routing function, a node can also have the following functions:
2)应用,用于部署在区块链中,根据实际业务需求而实现特定业务,记录实现功能相关的数据形成记录数据,在记录数据中携带数字签名以表示任务数据的来源,将记录数据发送到区块链系统中的其他节点,供其他节点在验证记录数据来源以及完整性成功时,将记录数据添加到临时区块中。2) Application, used to deploy in the blockchain, implement specific business according to actual business needs, record data related to the realization of functions to form record data, carry a digital signature in the record data to indicate the source of the task data, and send the record data To other nodes in the blockchain system, for other nodes to add the record data to the temporary block when verifying the source and integrity of the record data successfully.
3)区块链,包括一系列按照产生的先后时间顺序相互接续的区块(Block),新区块一旦加入到区块链中就不会再被移除,区块中记录了区块链系统中节点提交的记录数据。3) Blockchain, including a series of blocks (Blocks) that follow each other in chronological order. Once a new block is added to the blockchain, it will not be removed. The block records the blockchain system. The record data submitted by the middle node.
以下介绍本申请提供的一种图像篡改检测方法的具体实施例,图2是本申请实施例提供的一种图像篡改检测方法的流程示意图,本申请提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的系统或产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图2所示,所述方法可以包括:A specific embodiment of an image tampering detection method provided by the present application is introduced below. FIG. 2 is a schematic flowchart of an image tampering detection method provided by an embodiment of the present application. The present application provides the method described in the embodiment or the flowchart. operational steps, but may include more or fewer operational steps based on routine or non-creative work. The sequence of steps enumerated in the embodiments is only one of the execution sequences of many steps, and does not represent the only execution sequence. When an actual system or product is executed, the methods shown in the embodiments or the accompanying drawings may be executed sequentially or in parallel (for example, a parallel processor or a multi-threaded processing environment). Specifically, as shown in Figure 2, the method may include:
S201,获取待检测图像。S201, an image to be detected is acquired.
在本说明书实施例中,上述待检测图像可以为任意需要进行篡改检测的图像。In the embodiment of this specification, the above-mentioned image to be detected may be any image that needs to be tampered with.
在实际应用中,不同来源的图像的尺寸数据可能不同,为了保证图像篡改检测结果的准确性,通常会对初始待检测图像进行预处理后得到预设尺寸的待检测图像,具体的,预设尺寸可以结合实际应用中图像篡改检测的精度需求进行设置。为了避免对图像进行缩放处理时可能导致的对图像像素间特征的破坏,本说明书实施例中可以通过对初始待检测图像进行剪裁预处理来获取待检测图像。In practical applications, the size data of images from different sources may be different. In order to ensure the accuracy of the image tampering detection results, the initial to-be-detected image is usually preprocessed to obtain a preset size of the to-be-detected image. Specifically, the preset The size can be set in combination with the accuracy requirements of image tampering detection in practical applications. In order to avoid the damage to the inter-pixel features of the image that may be caused when the image is zoomed, in the embodiment of the present specification, the image to be detected may be acquired by performing clipping preprocessing on the initial image to be detected.
在一些实施例中,如图3所示,图3是本说明书实施例提供的一种获取待检测图像的流程示意图,具体的,可以包括:In some embodiments, as shown in FIG. 3 , FIG. 3 is a schematic flowchart of obtaining an image to be detected provided by the embodiments of this specification. Specifically, it may include:
S301,获取初始待检测图像。S301, acquiring an initial image to be detected.
具体的,初始待检测图像的尺寸数据一般不小于上述预设尺寸。Specifically, the size data of the initial to-be-detected image is generally not smaller than the above-mentioned preset size.
S302,对初始待检测图像进行中心裁剪处理,得到待检测图像。S302, performing center cropping processing on the initial image to be detected to obtain an image to be detected.
在一个具体的实施例中,中心剪裁处理可以为按照图像通道数据,对图像的不同通道数据分别进行中心裁剪,具体的裁剪区域可以包括:In a specific embodiment, the center cropping process may be to perform center cropping on different channel data of the image according to the image channel data, and the specific cropping area may include:
startXpos=(srcWidth–dstWidth)/2;startXpos=(srcWidth–dstWidth)/2;
startYpos=(srcHeight–dstHeight)/2;startYpos=(srcHeight–dstHeight)/2;
endXpos=startXpos+dstWidth;endXpos=startXpos+dstWidth;
endYpos=startYpos+dstHeight;endYpos=startYpos+dstHeight;
其中,(srcWidth,srcHeight)为初始待检测图像的宽度和高度,(dstWidth,dstHeight)为待检测图像的宽度和高度,(startXpos,endXpos)为裁剪区域水平方向的起始位置和终止位置,(startYpos,endYpos)为裁剪区域垂直方向起始和终止位置。Among them, (srcWidth, srcHeight) is the width and height of the initial image to be detected, (dstWidth, dstHeight) is the width and height of the image to be detected, (startXpos, endXpos) is the horizontal start position and end position of the cropping area, ( startYpos, endYpos) are the vertical start and end positions of the clipping area.
由以上实施例可见,对初始待检测图像进行中心裁剪处理,得到待检测图像,可以保证检测图像尺寸的一致,避免缩放处理等图像处理方式可能导致的对图像像素间特征的破坏,提升噪声特征提取的准确性,从而提升篡改检测结果的准确性。It can be seen from the above embodiments that the initial image to be detected is centrally cropped to obtain the image to be detected, which can ensure the consistency of the detected image size, avoid the damage to the features between image pixels that may be caused by image processing methods such as scaling processing, and improve the noise feature. Extraction accuracy, thereby improving the accuracy of tampering detection results.
S202,对待检测图像进行噪声特征识别,得到待检测图像中光响应非均匀性噪声的空域特征信息和光响应非均匀性噪声的频域特征信息。S202 , performing noise feature recognition on the image to be detected, to obtain spatial feature information of the non-uniform light response noise and frequency domain feature information of the non-uniform light response noise in the image to be detected.
在实际应用中,光响应非均匀性噪声是一种由于相机传感器CCD(Charge CoupledDevice,电荷耦合器件)的硬件制造缺陷引入数字图像中的噪声干扰。目前业界制造的CCD都存在工艺问题,导致CCD每个像素的半导体硅材料的厚度不一致,在相机感光时不同像素间就会产生微小的差异,这种微小差异带入数字图像的每个像素中就形成了一种比较微弱的噪声。因此,在本说明书实施例中,通过对待检测图像进行光响应非均匀性噪声的特征识别,得到光响应非均匀性噪声的空域特征信息和频域特征信息,从而基于空域特征信息和频域特征信息进行待检测图像的图像篡改检测。In practical applications, photoresponse non-uniformity noise is a kind of noise interference introduced into digital images due to hardware manufacturing defects of a camera sensor CCD (Charge Coupled Device, Charge Coupled Device). At present, the CCDs manufactured in the industry all have process problems, resulting in the inconsistent thickness of the semiconductor silicon material of each pixel of the CCD. When the camera is exposed to light, there will be slight differences between different pixels. This slight difference is brought into each pixel of the digital image. A relatively weak noise is formed. Therefore, in the embodiment of the present specification, by performing the feature identification of the non-uniform light response noise on the image to be detected, the spatial domain feature information and frequency domain feature information of the light response non-uniformity noise are obtained, so that the spatial domain feature information and the frequency domain feature information are based on the spatial domain feature information and frequency domain feature information. information for image tampering detection of the image to be detected.
具体的,空域特征信息可以表征光响应非均匀性噪声的空间域特征,频域特征信息可以表征光响应非均匀性噪声的频率域特征。Specifically, the spatial domain feature information can represent the spatial domain feature of the light response non-uniformity noise, and the frequency domain feature information can represent the frequency domain feature of the light response non-uniformity noise.
在本说明书实施例中,如4所示,上述对待检测图像进行噪声特征识别,得到待检测图像中光响应非均匀性噪声的空域特征信息和光响应非均匀性噪声的频域特征信息可以包括:In the embodiment of this specification, as shown in 4, the above-mentioned noise feature recognition of the image to be detected, and obtaining the spatial domain feature information of the photoresponse non-uniformity noise and the frequency domain feature information of the photoresponse non-uniformity noise in the to-be-detected image may include:
S401,对待检测图像进行光响应非均匀性噪声的空域特征提取,得到空域特征信息。S401, perform spatial feature extraction of light response non-uniformity noise on the image to be detected to obtain spatial feature information.
在本说明书实施例中,空域特征信息的表现形式可以为空域特征图像。In the embodiment of this specification, the representation form of the airspace feature information may be an airspace feature image.
在一个具体的实施例中,如图5所示,上述对待检测图像进行光响应非均匀性噪声的空域特征提取,得到空域特征信息可以包括:In a specific embodiment, as shown in FIG. 5 , the above-mentioned spatial feature extraction of non-uniform light response noise on the image to be detected, and obtaining spatial feature information may include:
S501,对待检测图像的多个颜色通道分别进行高频分量提取,得到多个颜色通道的高频分量数据。S501 , extract high-frequency components from multiple color channels of the image to be detected, respectively, to obtain high-frequency component data of multiple color channels.
具体的,高频分量数据可以包括:水平方向高频分量、垂直方向高频分量和对角方向高频分量。Specifically, the high-frequency component data may include: horizontal high-frequency components, vertical high-frequency components, and diagonal high-frequency components.
在一个具体的实施例中,对待检测图像的多个颜色通道分别进行高频分量提取,得到多个颜色通道的高频分量数据可以包括:对待检测图像的多个颜色通道分别进行多尺度小波变换处理,得到每个颜色通道对应的多个尺度的小波域高频分量数据。可选的,上述多尺度小波变换处理可以为4级小波变换,小波基可以为db4(4阶多贝西小波)。In a specific embodiment, performing high-frequency component extraction on multiple color channels of the image to be detected respectively, and obtaining high-frequency component data of the multiple color channels may include: respectively performing multi-scale wavelet transform on multiple color channels of the image to be detected After processing, wavelet domain high-frequency component data of multiple scales corresponding to each color channel are obtained. Optionally, the multi-scale wavelet transform processing may be a fourth-order wavelet transform, and the wavelet base may be db4 (fourth-order Dobessie wavelet).
S502,对多个颜色通道的高频分量数据分别进行噪声强度分析,得到噪声强度数据。S502: Perform noise intensity analysis on the high-frequency component data of multiple color channels, respectively, to obtain noise intensity data.
具体的,对每个颜色通道的水平方向高频分量、垂直方向高频分量和对角方向高频分量分别进行局部噪声方差分析,得到水平方向高频分量的目标方差数据、垂直方向高频分量的目标方差数据和对角方向高频分量的目标方差数据;将水平方向高频分量的目标方差数据、垂直方向高频分量的目标方差数据和对角方向高频分量的目标方差数据作为上述噪声强度数据。Specifically, the local noise variance analysis is performed on the horizontal high-frequency components, the vertical high-frequency components and the diagonal high-frequency components of each color channel, respectively, to obtain the target variance data of the horizontal high-frequency components and the vertical high-frequency components. The target variance data and the target variance data of the high frequency components in the diagonal direction are taken as the above noise strength data.
可选的实施例中,局部噪声方差分析可以包括对每种高频分量数据分别进行多个窗口尺寸的噪声方差分析,得到多个窗口尺寸对应的方差数据,并选取多个窗口尺寸对应的方差数据中的最小值作为每种高频分量数据的目标方差数据。优选的,多个窗口可以包括:3、5、7、9,局部噪声方差分析过程中的初始标准差可以为5。In an optional embodiment, the local noise variance analysis may include performing noise variance analysis of multiple window sizes on each high-frequency component data, obtaining variance data corresponding to the multiple window sizes, and selecting the variance corresponding to the multiple window sizes. The minimum value in the data is used as the target variance data for each high-frequency component data. Preferably, the multiple windows may include: 3, 5, 7, and 9, and the initial standard deviation in the local noise variance analysis process may be 5.
S503,基于噪声强度数据,对多个颜色通道的高频分量数据分别进行滤波处理,得到多个颜色通道的初始噪声信息。S503 , based on the noise intensity data, filter the high-frequency component data of the multiple color channels respectively, to obtain initial noise information of the multiple color channels.
在一个具体的实施例中,在上述噪声强度数据为每个颜色通道的高频分量的目标方差数据的情况下,上述基于噪声强度数据,对多个颜色通道的高频分量数据分别进行滤波处理,得到多个颜色通道的初始噪声信息可以包括:利用每个颜色通道的高频分量的目标方差数据分别对每个颜色通道的高频分量进行滤波处理,得到每个颜色通道的初始噪声信息。In a specific embodiment, when the noise intensity data is the target variance data of the high-frequency components of each color channel, the above-mentioned filtering processing is performed on the high-frequency component data of the multiple color channels based on the noise intensity data. , obtaining the initial noise information of the multiple color channels may include: filtering the high frequency components of each color channel by using the target variance data of the high frequency components of each color channel to obtain the initial noise information of each color channel.
可选的,滤波处理使用的滤波器可以包括但不限于:维纳滤波器、卡尔曼滤波器等。Optionally, the filters used in the filtering process may include, but are not limited to, Wiener filters, Kalman filters, and the like.
在一个具体的实施例中,在上述高频分量提取为多尺度小波变换处理的情况下,上述初始噪声信息In a specific embodiment, in the case that the above-mentioned high-frequency components are extracted by multi-scale wavelet transform processing, the above-mentioned initial noise information
S504,对多个颜色通道的初始噪声信息进行重构处理,得到初始空域特征信息。S504: Perform reconstruction processing on the initial noise information of multiple color channels to obtain initial spatial feature information.
在一个具体的实施例中,在上述高频分量提取为多尺度小波变换处理的情况下,上述初始噪声信息可以为小波域噪声信息,相应的,对多个颜色通道的初始噪声信息进行重构处理,得到初始空域特征信息可以包括:对多个颜色通道的小波域噪声信息进行逆小波变换处理,得到待检测图像的空域噪声信息,并将空域噪声信息作为光响应非均匀性噪声的初始空域特征信息。In a specific embodiment, when the above-mentioned high-frequency components are extracted by multi-scale wavelet transform processing, the above-mentioned initial noise information may be wavelet domain noise information, and correspondingly, the initial noise information of multiple color channels is reconstructed The processing to obtain the initial spatial domain feature information may include: performing inverse wavelet transform processing on the wavelet domain noise information of multiple color channels to obtain the spatial domain noise information of the image to be detected, and using the spatial domain noise information as the initial spatial domain of the light response non-uniformity noise characteristic information.
S505,对初始空域特征信息进行噪声增强处理,得到空域特征信息。S505 , performing noise enhancement processing on the initial airspace feature information to obtain airspace feature information.
在一个具体的实施例中,对初始空域特征信息进行噪声增强处理,得到空域特征信息可以包括:In a specific embodiment, performing noise enhancement processing on the initial spatial feature information to obtain the spatial feature information may include:
1)对初始空域特征信息进行零均值化滤波处理,得到滤波处理后的初始空域特征信息。1) Perform zero-average filtering on the initial airspace feature information to obtain the initial airspace feature information after filtering.
具体的,通过零均值化滤波处理来去除初始空域特征信息中的干扰信息,以增强光响应非均匀性噪声。Specifically, the interference information in the initial spatial domain feature information is removed by zero-average filtering processing, so as to enhance the non-uniformity noise of the optical response.
2)对滤波处理后的初始空域特征信息进行傅里叶峰值抑制处理,得到空域特征信息。2) Perform Fourier peak suppression processing on the initial spatial domain feature information after filtering to obtain spatial domain feature information.
在实际应用中,可以通过傅里叶峰值抑制处理,从傅里叶频域的维度,去除图像中比较刺眼的干扰像素来增强光响应非均匀性噪声。In practical applications, the non-uniformity noise of the light response can be enhanced by removing the dazzling interfering pixels in the image from the Fourier frequency domain dimension through Fourier peak suppression processing.
由以上实施例可见,通过对待检测图像的高频分量数据进行滤波处理,得到初始噪声信息,并对初始噪声信息进行重构处理,得到初始空域特征信息,再对初始空域特征信息进行噪声增强处理,得到空域特征信息,能够有效去除干扰,提升空域特征提取的精准性。It can be seen from the above embodiments that the initial noise information is obtained by filtering the high-frequency component data of the image to be detected, and the initial noise information is reconstructed to obtain the initial spatial feature information, and then noise enhancement processing is performed on the initial spatial feature information. , to obtain airspace feature information, which can effectively remove interference and improve the accuracy of airspace feature extraction.
S402,对空域特征信息进行空频变换处理,得到频域特征信息。S402 , performing space-frequency transform processing on the spatial-domain feature information to obtain frequency-domain feature information.
在本说明书实施例中,频域特征信息的表现形式可以为频域特征图像。In the embodiment of this specification, the representation form of the frequency domain feature information may be a frequency domain feature image.
在一个具体的实施例中,上述对空域特征信息进行空频变换处理,得到频域特征信息可以包括:In a specific embodiment, the above-mentioned space-frequency transform processing on the spatial-domain feature information to obtain the frequency-domain feature information may include:
1)对空域特征信息进行离散傅里叶变换处理,得到初始频域特征信息。1) Discrete Fourier transform is performed on the spatial domain feature information to obtain the initial frequency domain feature information.
2)对初始频域特征信息进行频谱中心化处理,得到频域特征信息。2) Perform spectral centering processing on the initial frequency domain feature information to obtain frequency domain feature information.
具体的,在初始频域特征信息为初始频域特征图像的情况下,初始频域特征图像中的直流分量通常位于图像的四个顶角区域,初始频域特征图像中的交流分量通常位于图像的剩余区域,而本说明书实施例中为了便于后续特征提取,可以对初始频域特征信息进行频谱中心化处理,将直流分量转换到图像中心。Specifically, in the case where the initial frequency domain feature information is the initial frequency domain feature image, the DC component in the initial frequency domain feature image is usually located in the four corner areas of the image, and the AC component in the initial frequency domain feature image is usually located in the image. However, in the embodiment of this specification, in order to facilitate subsequent feature extraction, spectral centering processing may be performed on the initial frequency domain feature information, and the DC component may be converted to the image center.
在一个可选实施例中,将初始频域特征图像基于图像的水平对称轴和垂直对称轴进行划分,得到4个区域,并分别将图像对角的两个区域进行互换,从而将直流分量转换到图像中心。In an optional embodiment, the initial frequency domain feature image is divided based on the horizontal symmetry axis and the vertical symmetry axis of the image to obtain 4 regions, and the two diagonal regions of the image are exchanged respectively, so that the DC component is divided into four regions. Transform to the center of the image.
由以上实施例可见,对空域特征信息进行离散傅里叶变换处理,得到初始频域特征信息,并对初始频域特征信息进行频谱中心化处理,得到频域特征信息,能够有效提升频域特征提取的精准性,从而提升检测结果的准确性。It can be seen from the above embodiments that discrete Fourier transform processing is performed on the spatial domain feature information to obtain initial frequency domain feature information, and frequency domain feature information is obtained by performing spectrum centering processing on the initial frequency domain feature information, which can effectively improve the frequency domain feature information. The accuracy of extraction improves the accuracy of detection results.
S203,将空域特征信息和频域特征信息输入图像篡改检测网络进行图像篡改检测,得到待检测图像对应的图像检测信息。S203: Input the air domain feature information and the frequency domain feature information into an image tampering detection network to perform image tampering detection, and obtain image detection information corresponding to the image to be detected.
在本说明书实施例中,上述图像篡改检测网络可以为基于样本空域特征信息和样本频域特征信息对预设图像篡改检测网络进行图像篡改检测训练后得到的,具体的,图像篡改检测网络可以包括:空域特征聚合层、频域特征聚合层、特征融合层和篡改检测层。In the embodiment of this specification, the above-mentioned image tampering detection network may be obtained by performing image tampering detection training on a preset image tampering detection network based on sample air domain feature information and sample frequency domain feature information. Specifically, the image tampering detection network may include: : spatial domain feature aggregation layer, frequency domain feature aggregation layer, feature fusion layer and tamper detection layer.
在一个具体的实施例中,如图6所示,上述将空域特征信息和频域特征信息输入图像篡改检测网络进行图像篡改检测,得到待检测图像对应的图像检测信息可以包括:In a specific embodiment, as shown in FIG. 6 , the above-mentioned inputting the air domain feature information and the frequency domain feature information into the image tampering detection network for image tampering detection, and obtaining the image detection information corresponding to the image to be detected may include:
S601,将空域特征信息输入空域特征聚合层进行空域特征聚合处理,得到目标空域特征信息。S601 , input airspace feature information into an airspace feature aggregation layer to perform airspace feature aggregation processing to obtain target airspace feature information.
具体的,目标空域特征信息可以表征光响应非均匀性噪声的空间域聚合特征。目标空域特征信息的表现形式可以为目标空域特征图像。Specifically, the target spatial domain feature information can represent the spatial domain aggregation features of the non-uniformity noise of the light response. The representation form of the target airspace feature information can be a target airspace feature image.
在一个可选的实施例中,空域特征聚合层可以包括:第一卷积层,第一批归一化层,第一激活层和至少一层MBConv(Mobile Inverted Bottleneck Convolution,移动翻转瓶颈卷积)层。In an optional embodiment, the spatial feature aggregation layer may include: a first convolution layer, a first batch of normalization layers, a first activation layer and at least one layer of MBConv (Mobile Inverted Bottleneck Convolution, Mobile Inverted Bottleneck Convolution). )Floor.
S602,将频域特征信息输入频域特征聚合层进行频域特征聚合处理,得到目标频域特征信息。S602: Input the frequency domain feature information into the frequency domain feature aggregation layer to perform frequency domain feature aggregation processing to obtain target frequency domain feature information.
具体的,目标频域特征信息可以表征光响应非均匀性噪声的频率域聚合特征。目标频域特征信息的表现形式可以为目标频域特征图像。Specifically, the target frequency domain feature information can represent the frequency domain aggregation features of the non-uniformity noise of the light response. The representation form of the target frequency domain feature information may be a target frequency domain feature image.
在一个可选的实施例中,频域特征聚合层可以包括:第二卷积层,第二批归一化层,第二激活层和至少一层MBConv(Mobile Inverted Bottleneck Convolution,移动翻转瓶颈卷积)层。In an optional embodiment, the frequency domain feature aggregation layer may include: a second convolution layer, a second batch of normalization layers, a second activation layer, and at least one layer of MBConv (Mobile Inverted Bottleneck Convolution, Mobile Inverted Bottleneck Convolution). accumulation) layer.
在实际应用中,空域特征聚合层和频域特征聚合层的结构可以相同,也可以不同,但空域特征聚合层输出的目标空域特征图像和频域特征聚合层输出的目标频域特征图像的尺寸大小应当保持一致,以便于后续进行特征融合。In practical applications, the structure of the spatial feature aggregation layer and the frequency domain feature aggregation layer can be the same or different, but the size of the target spatial feature image output by the spatial feature aggregation layer and the target frequency domain feature image output by the frequency domain feature aggregation layer. The size should be kept consistent to facilitate subsequent feature fusion.
S603,将目标空域特征信息和目标频域特征信息输入特征融合层进行特征融合处理,得到目标特征融合信息。S603, the target air domain feature information and the target frequency domain feature information are input into the feature fusion layer to perform feature fusion processing to obtain target feature fusion information.
具体的,目标频域特征信息可以表征光响应非均匀性噪声的空间域聚合特征和频率域聚合特征。Specifically, the target frequency domain feature information can represent the spatial domain aggregation features and frequency domain aggregation features of the non-uniformity noise of the light response.
在一个可选的实施例中,特征融合层可以为通道融合层,上述将目标空域特征信息和目标频域特征信息输入特征融合层进行特征融合处理,得到目标特征融合信息可以包括:将目标空域特征信息和目标频域特征信息输入通道融合层,对目标空域特征信息和目标频域特征信息按图像通道进行叠加融合,得到目标特征融合信息。In an optional embodiment, the feature fusion layer may be a channel fusion layer, and the above-mentioned inputting the target airspace feature information and the target frequency domain feature information into the feature fusion layer for feature fusion processing, and obtaining the target feature fusion information may include: The feature information and the target frequency domain feature information are input to the channel fusion layer, and the target air domain feature information and the target frequency domain feature information are superimposed and fused according to the image channel to obtain the target feature fusion information.
具体的,通道融合层可以从图像通道的维度对目标空域特征信息和目标频域特征信息进行叠加融合。例如,目标空域特征信息是尺寸为7×7×512的空域特征图,目标频域特征信息是尺寸为7×7×512的频域特征图,其中,7×7为空间分辨率,512为通道数;相应的,从图像通道的维度对目标空域特征信息和目标频域特征信息进行叠加融合可以包括:将空域特征图和频域特征图按图像通道进行叠加,得到7×7×1024的融合特征图,将该融合特征图作为目标特征融合信息。Specifically, the channel fusion layer can superimpose and fuse the target spatial domain feature information and the target frequency domain feature information from the dimension of the image channel. For example, the target spatial feature information is a spatial feature map with a size of 7×7×512, and the target frequency domain feature information is a frequency domain feature map with a size of 7×7×512, where 7×7 is the spatial resolution and 512 is the Correspondingly, superimposing and merging the target air domain feature information and the target frequency domain feature information from the dimension of the image channel may include: superimposing the air domain feature map and the frequency domain feature map according to the image channel to obtain a 7×7×1024 The feature map is fused, and the fused feature map is used as the target feature fusion information.
在另一个可选的实施例中,特征融合层可以包括:特征向量生成层和特征向量融合层,上述将目标空域特征信息和目标频域特征信息输入特征融合层进行特征融合处理,得到目标特征融合信息可以包括:将目标空域特征信息输入特征向量生成层进行空域特征向量生成处理,得到空域特征向量;将目标频域特征信息输入特征向量生成层进行频域特征向量生成处理,得到频域特征向量;将空域特征向量和频域特征向量输入特征向量融合层进行特征向量融合,得到目标特征向量;将目标特征向量作为目标特征融合信息。In another optional embodiment, the feature fusion layer may include: a feature vector generation layer and a feature vector fusion layer, wherein the target air domain feature information and target frequency domain feature information are input into the feature fusion layer for feature fusion processing to obtain target features. The fusion information may include: inputting the target spatial domain feature information into the feature vector generation layer to perform spatial domain feature vector generation processing to obtain a spatial domain feature vector; inputting the target frequency domain feature information into the eigenvector generation layer for frequency domain feature vector generation processing to obtain frequency domain features vector; input the air domain feature vector and the frequency domain feature vector into the feature vector fusion layer for feature vector fusion to obtain the target feature vector; take the target feature vector as the target feature fusion information.
具体的,特征向量生成层可以为全局平均池化层或全连接层,通过特征向量生成层可以分别对目标空域特征信息和目标频域特征信息进行特征压缩,得到空域特征向量和频域特征向量;通过特征向量融合层可以从特征向量的维度对空域特征向量和频域特征向量进行逐点加法或逐点乘法处理,得到目标特征向量。Specifically, the feature vector generation layer can be a global average pooling layer or a fully connected layer. The feature vector generation layer can perform feature compression on the target spatial feature information and the target frequency domain feature information, respectively, to obtain the spatial domain feature vector and the frequency domain feature vector. ; Through the feature vector fusion layer, the air domain feature vector and the frequency domain feature vector can be subjected to point-by-point addition or point-by-point multiplication processing from the dimension of the feature vector to obtain the target feature vector.
由以上实施例可见,提供多种特征融合方式,针对不同类型的待检测图像,可以选择图像通道融合或者将图像对应特征向量融合的特征融合方法,从而提升目标特征融合信息对待检测图像的噪声特征的表征精准性。It can be seen from the above embodiments that a variety of feature fusion methods are provided. For different types of images to be detected, image channel fusion or feature fusion methods that fuse the corresponding feature vectors of the images can be selected, thereby improving the target feature fusion information. The noise feature of the image to be detected. representation accuracy.
S604,将目标特征融合信息输入篡改检测层进行图像篡改检测,得到图像检测信息。S604, input the target feature fusion information into the tampering detection layer to perform image tampering detection, and obtain image detection information.
在本说明书实施例中,图像检测信息可以用于表征待检测图像是否进行过篡改。具体的,图像检测信息可以为待检测图像对应的检测标签,其中,检测标签可以为真实图像标签或篡改检测标签。In the embodiment of this specification, the image detection information may be used to represent whether the image to be detected has been tampered with. Specifically, the image detection information may be a detection label corresponding to the image to be detected, wherein the detection label may be a real image label or a tampering detection label.
在一个具体的实施例中,篡改检测层可以包括第三卷积层、全局平均池化层、全连接层和输出层。In a specific embodiment, the tamper detection layer may include a third convolutional layer, a global average pooling layer, a fully connected layer, and an output layer.
具体的,第三卷积层可以对输入的目标特征融合信息进行卷积处理,实现对目标特征融合信息的特征提取。Specifically, the third convolution layer can perform convolution processing on the input target feature fusion information to realize feature extraction of the target feature fusion information.
具体的,全局平均池化层可以对上一层的输出进行降采样操作,即返回采样窗口中最大值作为降采样的输出。一方面可以使图像变小,简化计算复杂度;另一方面可以进行特征压缩,提取主要特征。Specifically, the global average pooling layer can perform down-sampling operation on the output of the previous layer, that is, return the maximum value in the sampling window as the output of down-sampling. On the one hand, it can make the image smaller and simplify the computational complexity; on the other hand, it can perform feature compression to extract the main features.
具体的,全连接层可以作为上下两层的节点之间的连接层,将上下两层所得到的各节点数据建立连接关系。全连接层可以对目标特征融合信息进行特征压缩处理得到待检测特征信息。Specifically, the fully connected layer can be used as a connection layer between the nodes of the upper and lower layers, and establishes a connection relationship between the data of each node obtained by the upper and lower layers. The fully connected layer can perform feature compression processing on the target feature fusion information to obtain the feature information to be detected.
具体的,分类层可以对待检测特征信息进行图像篡改检测,输出相应的检测标签。在一个具体的实施例中,分类层可以采用激活函数进行目标知识点标签输出,可选的实施例中,激活函数可以为Softmax函数,Softmax函数中包含的是一个非线性分类器,用于对待检测特征信息进行图像篡改检测。Specifically, the classification layer can perform image tampering detection on the feature information to be detected, and output corresponding detection labels. In a specific embodiment, the classification layer can use an activation function to output the target knowledge point label. In an optional embodiment, the activation function can be a Softmax function, and the Softmax function includes a nonlinear classifier for processing Detect feature information for image tampering detection.
此外,需要说明的是,本说明书实施例所述图像篡改检测网络并不仅限于上述的预设图像篡改检测网络,在实际应用中,还可以包括其他机器学习网络,例如决策树机器学习网络等,本申请实施例并不以上述预设图像篡改检测网络为限。In addition, it should be noted that the image tampering detection network described in the embodiments of this specification is not limited to the above-mentioned preset image tampering detection network. In practical applications, it may also include other machine learning networks, such as decision tree machine learning networks, etc. The embodiments of the present application are not limited to the above-mentioned preset image tampering detection network.
在一个具体的实施例中,如图7所示,建立包含上述空域特征聚合层、上述频域特征聚合层、上述特征融合层和上述篡改检测层的图像篡改检测网络,将待检测图像中光响应非均匀性噪声的空域特征信息和频域特征信息输入图像篡改检测网络进行图像篡改检测,得到待检测图像对应的图像检测信息。In a specific embodiment, as shown in FIG. 7 , an image tampering detection network including the above-mentioned spatial domain feature aggregation layer, the above-mentioned frequency domain feature aggregation layer, the above-mentioned feature fusion layer and the above-mentioned tampering detection layer is established, and the light in the image to be detected is The spatial domain feature information and frequency domain feature information in response to the non-uniform noise are input into the image tampering detection network for image tampering detection, and the image detection information corresponding to the image to be detected is obtained.
在一个具体的实施例中,如图8所示,图8是本申请实施例提供的一种图像篡改检测网络的结构示意图,具体的,图像篡改检测网络可以包括:空域特征聚合层、频域特征聚合层、特征融合层和篡改检测层;空域特征聚合层可以包括:第一卷积层、第一批归一化层、第一激活层和5层MBConv层;频域特征聚合层可以包括:第二卷积层、第二批归一化层、第二激活层和5层MBConv层;篡改检测层可以包括:第三卷积层、全局平均池化层、全连接层和分类层。In a specific embodiment, as shown in FIG. 8 , FIG. 8 is a schematic structural diagram of an image tampering detection network provided by an embodiment of the present application. Specifically, the image tampering detection network may include: a spatial domain feature aggregation layer, a frequency domain Feature aggregation layer, feature fusion layer and tampering detection layer; the spatial domain feature aggregation layer may include: the first convolution layer, the first batch normalization layer, the first activation layer and the 5-layer MBConv layer; the frequency domain feature aggregation layer may include : the second convolution layer, the second batch normalization layer, the second activation layer and the 5-layer MBConv layer; the tamper detection layer can include: the third convolution layer, the global average pooling layer, the fully connected layer and the classification layer.
此外,需要说明的是,本申请实施例中空域特征聚合层和频域特征聚合层的层次结构不是固定的,可以任意设计,但是空域特征聚合层输出的目标空域特征图像和频域特征聚合层输出的目标频域特征图像的尺寸大小应当保持一致,以便于后续进行特征融合。In addition, it should be noted that the hierarchical structures of the spatial feature aggregation layer and the frequency domain feature aggregation layer in the embodiments of the present application are not fixed and can be arbitrarily designed, but the target spatial feature image and frequency domain feature aggregation layer output by the spatial feature aggregation layer The size of the output target frequency domain feature images should be consistent to facilitate subsequent feature fusion.
由以上实施例可见,利用空域特征聚合层、频域特征聚合层、特征融合层和篡改检测层进行图像篡改检测,可以提高对不同图像的篡改检测适应能力,进而可以大大提高对图像进行篡改检测的准确率。It can be seen from the above embodiments that using the spatial domain feature aggregation layer, the frequency domain feature aggregation layer, the feature fusion layer and the tampering detection layer to perform image tampering detection can improve the adaptability of tampering detection to different images, and thus can greatly improve the image tampering detection. 's accuracy.
在本说明书实施例中,可以通过样本检测图像对预设图像篡改检测网络进行训练,得到上述图像篡改检测网络。In the embodiment of this specification, a preset image tampering detection network can be trained by using sample detection images to obtain the above-mentioned image tampering detection network.
在一个具体的实施例中,如图9所示,图9是本申请实施例提供的一种网络训练方法的流程示意图,具体的,可以包括:In a specific embodiment, as shown in FIG. 9 , FIG. 9 is a schematic flowchart of a network training method provided by an embodiment of the present application. Specifically, it may include:
S901,获取样本检测图像和样本检测图像对应的预设图像检测信息。S901: Acquire a sample detection image and preset image detection information corresponding to the sample detection image.
在实际应用中,在进行网络训练之前,可以先确定训练数据,具体的,本申请实施例中,可以获取包含有预设图像检测信息的样本检测图像作为训练数据。In practical applications, training data may be determined before network training. Specifically, in this embodiment of the present application, a sample detection image containing preset image detection information may be obtained as training data.
具体的,预设图像检测信息可以为对样本检测图像预先标注的预设检测标签。在本说明书实施例中,预设检测标签可以包括真实图像标签或篡改图像标签,样本检测图像可以包括样本真实图像和样本篡改图像,相应的,样本真实图像的预设检测标签可以为真实图像标签,样本篡改图像的预设检测标签可以为篡改图像标签。一般地,可以结合网络训练精度的实际需求,预先设置训练数据中样本真实图像和样本篡改图像的比例。Specifically, the preset image detection information may be a preset detection label pre-marked on the sample detection image. In the embodiment of this specification, the preset detection label may include a real image label or a tampered image label, and the sample detection image may include a sample real image and a sample tampered image. Correspondingly, the preset detection label of the sample real image may be a real image label , the preset detection label of the sample tampered image can be the tampered image label. Generally, the ratio of the sample real image and the sample tampered image in the training data can be preset according to the actual requirements of the network training accuracy.
在一个具体的实施例中,上述获取样本检测图像可以包括:In a specific embodiment, obtaining the sample detection image above may include:
1)获取初始样本检测图像。1) Obtain the initial sample detection image.
2)对初始样本检测图像进行中心裁剪处理,得到样本检测图像。2) Perform center cropping processing on the initial sample detection image to obtain a sample detection image.
在实际应用中,通过对初始样本检测图像进行裁剪预处理,能够在保证后续输入预设图像篡改检测网络的图像数据具有相同尺寸的同时,避免破坏图像像素间的光响应非均匀性噪声的特征,此外,还可以进一步降低训练预测耗时。In practical applications, by cropping and preprocessing the initial sample detection image, it can ensure that the image data input to the preset image tampering detection network has the same size, and at the same time avoid destroying the characteristics of the non-uniformity noise of light response between image pixels. , in addition, it can further reduce the time-consuming of training prediction.
S902,对样本检测图像进行噪声特征识别,得到样本检测图像中样本光响应非均匀性噪声的样本空域特征信息和样本光响应非均匀性噪声的样本频域特征信息。S902: Perform noise feature recognition on the sample detection image to obtain sample spatial domain feature information of the sample light response non-uniformity noise and sample frequency domain feature information of the sample light response non-uniformity noise in the sample detection image.
S903,将样本空域特征信息和样本频域特征信息输入预设图像篡改检测网络进行图像篡改检测,得到样本检测图像对应的样本图像检测信息。S903: Input the sample air domain feature information and the sample frequency domain feature information into a preset image tampering detection network to perform image tampering detection, and obtain sample image detection information corresponding to the sample detection image.
S904,基于预设图像检测信息和样本图像检测信息,确定目标损失信息。S904, based on the preset image detection information and the sample image detection information, determine target loss information.
S905,基于目标损失信息,训练预设图像篡改检测网络,得到图像篡改检测网络。S905 , based on the target loss information, train a preset image tampering detection network to obtain an image tampering detection network.
在一个可选的实施例中,上述样本图像检测信息可以包括样本检测图像的样本检测标签,相应的,上述目标损失信息可以包括检测标签损失;In an optional embodiment, the above-mentioned sample image detection information may include a sample detection label of the sample detection image, and correspondingly, the above-mentioned target loss information may include detection label loss;
相应的,上述基于预设图像检测信息和样本图像检测信息,确定目标损失信息可以包括:Correspondingly, the above-mentioned determination of target loss information based on the preset image detection information and the sample image detection information may include:
根据预设检测标签和样本检测标签,确定检测标签损失。According to the preset detection label and the sample detection label, the detection label loss is determined.
在一个具体的实施例中,上述根据预设检测标签和样本检测标签,确定检测标签损失可以包括基于预设损失函数,确定预设检测标签和样本检测标签间的检测标签损失。In a specific embodiment, determining the detection label loss according to the preset detection label and the sample detection label may include determining the detection label loss between the preset detection label and the sample detection label based on a preset loss function.
在一个具体的实施例中,检测标签损失可以表征预设检测标签和样本检测标签间的差异。In a specific embodiment, the detection label loss can represent the difference between the preset detection label and the sample detection label.
在一个具体的实施例中,预设损失函数可以包括但不限于交叉熵损失函数、逻辑损失函数、指数损失函数等。In a specific embodiment, the preset loss function may include, but is not limited to, a cross-entropy loss function, a logistic loss function, an exponential loss function, and the like.
在一个可选的实施例中,基于目标损失信息,训练预设图像篡改检测网络,得到图像篡改检测网络可以包括:In an optional embodiment, training a preset image tampering detection network based on the target loss information, and obtaining the image tampering detection network may include:
S9051,基于目标损失信息,更新预设图像篡改检测网络的网络参数;S9051, based on the target loss information, update network parameters of a preset image tampering detection network;
S9052,基于更新后的预设图像篡改检测网络,重复执行包括有步骤S903、S904和S9051的图像篡改检测训练迭代操作,至达到图像篡改检测收敛条件;S9052, based on the updated preset image tampering detection network, repeatedly perform the image tampering detection training iterative operation including steps S903, S904 and S9051 until the image tampering detection convergence condition is reached;
S9053,将达到图像篡改检测收敛条件的情况下得到的预设图像篡改检测网络,作为图像篡改检测网络。S9053, use the preset image tampering detection network obtained when the image tampering detection convergence condition is reached as the image tampering detection network.
在一个可选的实施例中,上述达到图像篡改检测收敛条件可以为训练迭代操作的次数达到预设训练次数。可选的,达到图像篡改检测收敛条件也可以为目标损失信息小于指定阈值。本说明书实施例中,预设训练次数和指定阈值可以结合实际应用中对网络的训练速度和精准度预先设置。In an optional embodiment, the above-mentioned condition for reaching the convergence of image tampering detection may be that the number of training iteration operations reaches a preset number of training times. Optionally, reaching the convergence condition of image tampering detection may also be that the target loss information is less than a specified threshold. In the embodiment of this specification, the preset training times and the specified threshold may be preset in combination with the training speed and accuracy of the network in practical applications.
在一个具体的实施例中,上述预设图像篡改检测网络可以包括预设空域特征聚合层、预设频域特征聚合层、预设特征融合层和预设篡改检测层,相应的,上述将样本空域特征信息和样本频域特征信息输入预设图像篡改检测网络进行图像篡改检测,得到样本检测图像对应的样本图像检测信息可以包括:In a specific embodiment, the above-mentioned preset image tampering detection network may include a preset spatial domain feature aggregation layer, a preset frequency domain feature aggregation layer, a preset feature fusion layer, and a preset tampering detection layer. The air domain feature information and the sample frequency domain feature information are input into a preset image tampering detection network to perform image tampering detection, and the sample image detection information corresponding to the sample detection image obtained may include:
将样本空域特征信息输入预设空域特征聚合层进行空域特征聚合处理,得到样本目标空域特征信息;将样本频域特征信息输入预设频域特征聚合层进行频域特征聚合处理,得到样本目标频域特征信息;将样本目标空域特征信息和样本目标频域特征信息输入预设特征融合层进行特征融合处理,得到样本目标特征融合信息;将样本目标特征融合信息输入预设篡改检测层进行图像篡改检测,得到样本图像检测信息。Input the sample spatial feature information into the preset spatial feature aggregation layer for spatial feature aggregation processing to obtain sample target spatial feature information; input the sample frequency domain feature information into the preset frequency domain feature aggregation layer to perform frequency domain feature aggregation processing to obtain the sample target frequency domain feature information; input the sample target air domain feature information and sample target frequency domain feature information into the preset feature fusion layer for feature fusion processing to obtain sample target feature fusion information; input the sample target feature fusion information into the preset tamper detection layer for image tampering Detect to obtain sample image detection information.
由以上实施例可见,一方面,基于样本检测图像与相应的预设检测标签的机器学习训练,提升图像篡改检测网络的泛化能力和健壮性,从而可以更好的提升网络对图像篡改检测的准确性。It can be seen from the above embodiments that, on the one hand, the machine learning training based on sample detection images and corresponding preset detection labels improves the generalization ability and robustness of the image tampering detection network, so as to better improve the network's ability to detect image tampering. accuracy.
由以上本申请实施例提供的技术方案可见,本申请在对图像进行篡改检测的场景上,一方面,对初始待检测图像进行中心裁剪处理,得到待检测图像,可以保证检测图像尺寸的一致,避免缩放处理等图像处理方式可能导致的对图像像素间特征的破坏,提升噪声特征识别的准确性;另一方面,通过对待检测图像的高频分量数据进行滤波处理,得到初始噪声信息,并对初始噪声信息进行重构处理,得到初始空域特征信息,再对初始空域特征信息进行噪声增强处理,得到空域特征信息,能够有效去除干扰,提升空域特征提取的精准性;另一方面,对空域特征信息进行离散傅里叶变换处理,得到初始频域特征信息,并对初始频域特征信息进行频谱中心化处理,得到频域特征信息,能够有效提升频域特征提取的精准性;另一方面,利用空域特征聚合层、频域特征聚合层、特征融合层和篡改检测层进行图像篡改检测,可以提高对不同图像的篡改检测适应能力,进而可以大大提高对图像进行篡改检测的准确率;另一方面,基于样本检测图像与相应的预设检测标签的机器学习训练,提升图像篡改检测网络的泛化能力和健壮性,从而可以更好的提升网络对图像篡改检测的准确性。It can be seen from the technical solutions provided by the above embodiments of the present application that, in the scenario of performing tampering detection on images, on the one hand, the initial image to be detected is centrally cropped to obtain the image to be detected, which can ensure the consistency of the detected image size. Avoid the damage to the features between image pixels that may be caused by image processing methods such as scaling processing, and improve the accuracy of noise feature recognition; on the other hand, by filtering the high-frequency component data of the image to be detected, the initial noise information is obtained. The initial noise information is reconstructed to obtain initial airspace feature information, and then noise enhancement processing is performed on the initial airspace feature information to obtain airspace feature information, which can effectively remove interference and improve the accuracy of airspace feature extraction. The information is subjected to discrete Fourier transform processing to obtain initial frequency domain feature information, and spectrum centralization is performed on the initial frequency domain feature information to obtain frequency domain feature information, which can effectively improve the accuracy of frequency domain feature extraction; on the other hand, Using the spatial feature aggregation layer, frequency domain feature aggregation layer, feature fusion layer and tampering detection layer for image tampering detection can improve the adaptability of tampering detection to different images, which can greatly improve the accuracy of image tampering detection; another On the one hand, machine learning training based on sample detection images and corresponding preset detection labels improves the generalization ability and robustness of the image forgery detection network, which can better improve the accuracy of the network for image forgery detection.
本申请实施例还提供了一种图像篡改检测装置,如图10所示,该图像篡改检测装置可以包括:The embodiment of the present application further provides an image tampering detection device, as shown in FIG. 10 , the image tampering detection device may include:
待检测图像获取模块1010,用于获取待检测图像;a to-be-detected image acquisition module 1010, configured to acquire the to-be-detected image;
噪声特征识别模块1020,用于对待检测图像进行噪声特征识别,得到待检测图像中光响应非均匀性噪声的空域特征信息和光响应非均匀性噪声的频域特征信息;The noise feature identification module 1020 is configured to perform noise feature identification on the image to be detected, and obtain the spatial feature information of the non-uniform light response noise and the frequency domain feature information of the non-uniform light response noise in the image to be detected;
图像篡改检测模块1030,用于将空域特征信息和频域特征信息输入图像篡改检测网络进行图像篡改检测,得到待检测图像对应的图像检测信息。The image tampering detection module 1030 is configured to input the air domain feature information and the frequency domain feature information into the image tampering detection network for image tampering detection, and obtain image detection information corresponding to the image to be detected.
在一些实施例中,上述待检测图像获取模块1010可以包括:In some embodiments, the above-mentioned to-be-detected image acquisition module 1010 may include:
初始待检测图像获取单元,用于获取初始待检测图像;an initial to-be-detected image acquisition unit, configured to acquire an initial to-be-detected image;
中心裁剪处理单元,用于对初始待检测图像进行中心裁剪处理,得到待检测图像。The center cropping processing unit is used to perform center cropping processing on the initial to-be-detected image to obtain the to-be-detected image.
在本说明书实施例中,上述噪声特征识别模块1020可以包括:In the embodiment of this specification, the above-mentioned noise feature identification module 1020 may include:
空域特征提取单元,用于对待检测图像进行光响应非均匀性噪声的空域特征提取,得到空域特征信息;The spatial feature extraction unit is used to perform spatial feature extraction of light response non-uniformity noise on the image to be detected to obtain spatial feature information;
空频变换处理单元,用于对空域特征信息进行空频变换处理,得到频域特征信息。The space-frequency transform processing unit is used for performing space-frequency transform processing on the spatial-domain feature information to obtain frequency-domain feature information.
在一个具体的实施例中,上述空域特征提取单元可以包括:In a specific embodiment, the above-mentioned airspace feature extraction unit may include:
高频分量提取单元,用于对待检测图像的多个颜色通道分别进行高频分量提取,得到多个颜色通道的高频分量数据;a high-frequency component extraction unit, which is used for extracting high-frequency components from multiple color channels of the image to be detected, to obtain high-frequency component data of multiple color channels;
噪声强度分析单元,用于对多个颜色通道的高频分量数据分别进行噪声强度分析,得到噪声强度数据;The noise intensity analysis unit is used for separately performing noise intensity analysis on the high-frequency component data of multiple color channels to obtain noise intensity data;
滤波处理单元,用于基于噪声强度数据,对多个颜色通道的高频分量数据分别进行滤波处理,得到多个颜色通道的初始噪声信息;a filtering processing unit, configured to perform filtering processing on the high-frequency component data of multiple color channels based on the noise intensity data, to obtain initial noise information of multiple color channels;
重构处理单元,用于对多个颜色通道的初始噪声信息进行重构处理,得到初始空域特征信息;a reconstruction processing unit, configured to perform reconstruction processing on the initial noise information of multiple color channels to obtain initial spatial feature information;
噪声增强处理单元,用于对初始空域特征信息进行噪声增强处理,得到空域特征信息。The noise enhancement processing unit is used for performing noise enhancement processing on the initial spatial feature information to obtain the spatial feature information.
在一个具体的实施例中,上述图像篡改检测模块1030可以包括:In a specific embodiment, the above-mentioned image tampering detection module 1030 may include:
空域特征聚合处理单元,用于将空域特征信息输入空域特征聚合层进行空域特征聚合处理,得到目标空域特征信息;The airspace feature aggregation processing unit is used to input the airspace feature information into the airspace feature aggregation layer for airspace feature aggregation processing to obtain the target airspace feature information;
频域特征聚合处理单元,用于将频域特征信息输入频域特征聚合层进行频域特征聚合处理,得到目标频域特征信息;a frequency-domain feature aggregation processing unit, used for inputting the frequency-domain feature information into the frequency-domain feature aggregation layer for frequency-domain feature aggregation processing to obtain target frequency-domain feature information;
特征融合单元,用于将目标空域特征信息和目标频域特征信息输入特征融合层进行特征融合处理,得到目标特征融合信息;The feature fusion unit is used for inputting the target air domain feature information and the target frequency domain feature information into the feature fusion layer for feature fusion processing to obtain target feature fusion information;
图像篡改检测单元,用于将目标特征融合信息输入篡改检测层进行图像篡改检测,得到图像检测信息。The image tampering detection unit is used to input the target feature fusion information into the tampering detection layer for image tampering detection, and obtain image detection information.
在一个可选的实施例中,上述特征融合单元可以包括:In an optional embodiment, the above-mentioned feature fusion unit may include:
堆叠融合单元,用于将目标空域特征信息和目标频域特征信息输入通道融合层,对目标空域特征信息和目标频域特征信息按图像通道进行堆叠融合,得到目标特征融合信息。The stacking fusion unit is used to input the target airspace feature information and the target frequency domain feature information into the channel fusion layer, and stack and fuse the target airspace feature information and the target frequency domain feature information according to the image channel to obtain the target feature fusion information.
在一个具体的实施例中,上述装置还可以包括:In a specific embodiment, the above device may further include:
样本获取模块,用于获取样本检测图像和样本检测图像对应的预设图像检测信息;The sample acquisition module is used to acquire the sample detection image and the preset image detection information corresponding to the sample detection image;
样本噪声特征识别模块,用于对样本检测图像进行噪声特征识别,得到样本检测图像中样本光响应非均匀性噪声的样本空域特征信息和样本光响应非均匀性噪声的样本频域特征信息;The sample noise feature identification module is used to identify the noise feature of the sample detection image, and obtain the sample spatial domain feature information of the sample photoresponse non-uniformity noise and the sample frequency domain feature information of the sample photoresponse non-uniformity noise in the sample detection image;
样本图像检测信息模块,用于将样本空域特征信息和样本频域特征信息输入预设图像篡改检测网络进行图像篡改检测,得到样本检测图像对应的样本图像检测信息;The sample image detection information module is used to input the sample air domain feature information and the sample frequency domain feature information into a preset image tampering detection network for image tampering detection, and obtain sample image detection information corresponding to the sample detection image;
目标损失信息确定模块,用于基于预设图像检测信息和样本图像检测信息,确定目标损失信息;The target loss information determination module is used to determine the target loss information based on the preset image detection information and the sample image detection information;
网络训练模块,用于基于目标损失信息,训练预设图像篡改检测网络,得到图像篡改检测网络。The network training module is used to train a preset image tampering detection network based on the target loss information to obtain an image tampering detection network.
需要说明的是,所述装置实施例中的装置与方法实施例基于同样的发明构思。It should be noted that the apparatus and method embodiments in the apparatus embodiments are based on the same inventive concept.
本申请实施例提供了一种图像篡改检测设备,该图像篡改检测设备包括处理器和存储器,该存储器中存储有至少一条指令或至少一段程序,该至少一条指令或该至少一段程序由该处理器加载并执行以实现如上述方法实施例所提供的图像篡改检测方法。An embodiment of the present application provides an image tampering detection device. The image tampering detection device includes a processor and a memory, and the memory stores at least one instruction or at least one program, and the at least one instruction or the at least one program is executed by the processor. Load and execute to implement the image tampering detection method provided by the above method embodiments.
进一步地,图11示出了一种用于实现本申请实施例所提供的图像篡改检测方法的图像篡改检测设备的硬件结构示意图,所述图像篡改检测设备可以参与构成或包含本申请实施例所提供的图像篡改检测装置。如图11所示,图像篡改检测设备110可以包括一个或多个(图中采用1102a、1102b,……,1102n来示出)处理器1102(处理器1102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器1104、以及用于通信功能的传输装置1106。除此以外,还可以包括:显示器、输入/输出接口(I/O接口)、通用串行总线(USB)端口(可以作为I/O接口的端口中的一个端口被包括)、网络接口、电源和/或相机。本领域普通技术人员可以理解,图11所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,图像篡改检测设备110还可包括比图11中所示更多或者更少的组件,或者具有与图11所示不同的配置。Further, FIG. 11 shows a schematic diagram of the hardware structure of an image tampering detection device for implementing the image tampering detection method provided by the embodiment of the present application. Provided image tampering detection device. As shown in FIG. 11 , the image tampering detection device 110 may include one or more processors 1102 (illustrated by 1102a, 1102b, . A processing device such as a programmable logic device FPGA), a
应当注意到的是上述一个或多个处理器1102和/或其他数据处理电路在本文中通常可以被称为“数据处理电路”。该数据处理电路可以全部或部分的体现为软件、硬件、固件或其他任意组合。此外,数据处理电路可为单个独立的处理模块,或全部或部分的结合到图像篡改检测设备110(或移动设备)中的其他元件中的任意一个内。如本申请实施例中所涉及到的,该数据处理电路作为一种处理器控制(例如与接口连接的可变电阻终端路径的选择)。It should be noted that the one or more processors 1102 and/or other data processing circuits described above may generally be referred to herein as "data processing circuits." The data processing circuit may be embodied in whole or in part as software, hardware, firmware or any other combination. Additionally, the data processing circuitry may be a single, stand-alone processing module, or incorporated in whole or in part into any of the other elements in the image tampering detection device 110 (or mobile device). As referred to in the embodiments of the present application, the data processing circuit acts as a kind of processor control (eg, selection of a variable resistance termination path connected to an interface).
存储器1104可用于存储应用软件的软件程序以及模块,如本申请实施例中所述的图像篡改检测方法对应的程序指令/数据存储装置,处理器1102通过运行存储在存储器1104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的一种图像篡改检测方法。存储器1104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1104可进一步包括相对于处理器1102远程设置的存储器,这些远程存储器可以通过网络连接至图像篡改检测设备110。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
传输装置1106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括图像篡改检测设备110的通信供应商提供的无线网络。在一个实例中,传输装置1106包括一个网络适配器(NetworkInterfaceController,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实施例中,传输装置1106可以为射频(RadioFrequency,RF)模块,其用于通过无线方式与互联网进行通讯。Transmission means 1106 is used to receive or transmit data via a network. The specific example of the above-mentioned network may include a wireless network provided by the communication provider of the image tampering detection device 110 . In one example, the transmission device 1106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through the base station so as to communicate with the Internet. In one embodiment, the transmission device 1106 may be a radio frequency (Radio Frequency, RF) module, which is used to communicate with the Internet in a wireless manner.
显示器可以例如触摸屏式的液晶显示器(LCD),该液晶显示器可使得用户能够与图像篡改检测设备110(或移动设备)的用户界面进行交互。The display may be, for example, a touch screen-style liquid crystal display (LCD) that enables a user to interact with the user interface of the image tamper detection device 110 (or mobile device).
本申请的实施例还提供了一种计算机可读存储介质,所述存储介质可设置于图像篡改检测设备之中以保存用于实现方法实施例中图像篡改检测方法相关的至少一条指令或至少一段程序,该至少一条指令或该至少一段程序由该处理器加载并执行以实现上述方法实施例提供的图像篡改检测方法。Embodiments of the present application further provide a computer-readable storage medium, which can be set in an image tampering detection device to store at least one instruction or at least a section for implementing the image tampering detection method in the method embodiment. A program, the at least one instruction or the at least one segment of the program is loaded and executed by the processor to implement the image tampering detection method provided by the above method embodiments.
可选地,在本实施例中,上述存储介质可以位于计算机网络的多个网络服务器中的至少一个网络服务器。可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。Optionally, in this embodiment, the above-mentioned storage medium may be located in at least one network server among multiple network servers of a computer network. Optionally, in this embodiment, the above-mentioned storage medium may include but is not limited to: a U disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a mobile hard disk, a magnetic Various media that can store program codes, such as a disc or an optical disc.
本申请的实施例还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行如方法实施例提供的图像篡改检测方法。Embodiments of the present application also provide a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the image tampering detection method provided by the method embodiment.
需要说明的是:上述本申请实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本申请特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。It should be noted that: the above-mentioned order of the embodiments of the present application is only for description, and does not represent the advantages and disadvantages of the embodiments. And the above describes specific embodiments of the present application. Other embodiments are within the scope of the appended claims. In some cases, the actions or steps recited in the claims can be performed in an order different from that in the embodiments and still achieve desirable results. Additionally, the processes depicted in the figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In some embodiments, multitasking and parallel processing are also possible or may be advantageous.
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置和设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this application is described in a progressive manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the apparatus and device embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and reference may be made to some descriptions of the method embodiments for related parts.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps of implementing the above embodiments can be completed by hardware, or can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium. The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, etc.
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present application shall be included in the protection of the present application. within the range.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210214273.0A CN114612411B (en) | 2022-03-04 | 2022-03-04 | Image tampering detection method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210214273.0A CN114612411B (en) | 2022-03-04 | 2022-03-04 | Image tampering detection method, device, equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114612411A true CN114612411A (en) | 2022-06-10 |
CN114612411B CN114612411B (en) | 2025-03-18 |
Family
ID=81861239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210214273.0A Active CN114612411B (en) | 2022-03-04 | 2022-03-04 | Image tampering detection method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114612411B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115641330A (en) * | 2022-11-17 | 2023-01-24 | 东莞市众嘉印刷有限公司 | Flexible circuit board defect detection method and system based on image processing |
CN116912223A (en) * | 2023-07-24 | 2023-10-20 | 重庆蚂蚁消费金融有限公司 | Image tampering detection method and device, storage medium and electronic equipment |
WO2025001454A1 (en) * | 2023-06-27 | 2025-01-02 | 腾讯科技(深圳)有限公司 | Method and apparatus for processing device data, and product, device and medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8160293B1 (en) * | 2006-05-19 | 2012-04-17 | The Research Foundation Of State University Of New York | Determining whether or not a digital image has been tampered with |
CN111311563A (en) * | 2020-02-10 | 2020-06-19 | 北京工业大学 | Image tampering detection method based on multi-domain feature fusion |
CN111709930A (en) * | 2020-06-15 | 2020-09-25 | 荆门汇易佳信息科技有限公司 | Image provenance and tampering identification method based on pattern noise |
CN112686331A (en) * | 2021-01-11 | 2021-04-20 | 中国科学技术大学 | Forged image recognition model training method and forged image recognition method |
CN112991345A (en) * | 2021-05-11 | 2021-06-18 | 腾讯科技(深圳)有限公司 | Image authenticity detection method and device, computer equipment and storage medium |
WO2021189959A1 (en) * | 2020-10-22 | 2021-09-30 | 平安科技(深圳)有限公司 | Brain midline recognition method and apparatus, and computer device and storage medium |
CN113554627A (en) * | 2021-07-27 | 2021-10-26 | 广西师范大学 | A Wheat Head Detection Method Based on Computer Vision Semi-supervised Pseudo-Label Learning |
CN113935365A (en) * | 2021-09-27 | 2022-01-14 | 华南农业大学 | Deep forgery video identification method and system based on spatial and frequency domain dual features |
-
2022
- 2022-03-04 CN CN202210214273.0A patent/CN114612411B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8160293B1 (en) * | 2006-05-19 | 2012-04-17 | The Research Foundation Of State University Of New York | Determining whether or not a digital image has been tampered with |
CN111311563A (en) * | 2020-02-10 | 2020-06-19 | 北京工业大学 | Image tampering detection method based on multi-domain feature fusion |
CN111709930A (en) * | 2020-06-15 | 2020-09-25 | 荆门汇易佳信息科技有限公司 | Image provenance and tampering identification method based on pattern noise |
WO2021189959A1 (en) * | 2020-10-22 | 2021-09-30 | 平安科技(深圳)有限公司 | Brain midline recognition method and apparatus, and computer device and storage medium |
CN112686331A (en) * | 2021-01-11 | 2021-04-20 | 中国科学技术大学 | Forged image recognition model training method and forged image recognition method |
CN112991345A (en) * | 2021-05-11 | 2021-06-18 | 腾讯科技(深圳)有限公司 | Image authenticity detection method and device, computer equipment and storage medium |
CN113554627A (en) * | 2021-07-27 | 2021-10-26 | 广西师范大学 | A Wheat Head Detection Method Based on Computer Vision Semi-supervised Pseudo-Label Learning |
CN113935365A (en) * | 2021-09-27 | 2022-01-14 | 华南农业大学 | Deep forgery video identification method and system based on spatial and frequency domain dual features |
Non-Patent Citations (4)
Title |
---|
CHIERCHIA G 等: "PRNU-based forgery detection with regularity constraints and global optimization", 《2013 IEEE 15TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING》, 11 November 2013 (2013-11-11), pages 236 - 241 * |
U. SCHERHAG等: "Detection of Face Morphing Attacks Based on PRNU Analysis", 《IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE》, vol. 1, no. 4, 23 September 2019 (2019-09-23), pages 302 - 317, XP011756143, DOI: 10.1109/TBIOM.2019.2942395 * |
王新月 等: "基于PRNU估计的图像篡改检测研究——刑事案件中使用数字图像作为证据的算法实探", 《法制与经济》, vol. 30, no. 07, 31 July 2021 (2021-07-31), pages 38 - 41 * |
邢楠 等: "基于多分类器融合的图像真伪鉴别方法", 《计算机工程与应用》, vol. 50, no. 24, 7 March 2014 (2014-03-07), pages 164 - 167 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115641330A (en) * | 2022-11-17 | 2023-01-24 | 东莞市众嘉印刷有限公司 | Flexible circuit board defect detection method and system based on image processing |
WO2025001454A1 (en) * | 2023-06-27 | 2025-01-02 | 腾讯科技(深圳)有限公司 | Method and apparatus for processing device data, and product, device and medium |
CN116912223A (en) * | 2023-07-24 | 2023-10-20 | 重庆蚂蚁消费金融有限公司 | Image tampering detection method and device, storage medium and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN114612411B (en) | 2025-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114612411A (en) | Image tampering detection method, device, device and storage medium | |
US9202129B2 (en) | Reducing object detection time by utilizing space localization of features | |
CN112001274B (en) | Crowd density determining method, device, storage medium and processor | |
CN111444744A (en) | Living body detection method, living body detection device, and storage medium | |
CN109583389B (en) | Drawing recognition method and device | |
CN113066030B (en) | A method and system for panchromatic sharpening of multispectral images based on spatial spectrum fusion network | |
CN113065521B (en) | Object identification method, device, equipment and medium | |
US10007680B2 (en) | Content collection search with robust content matching | |
CN118655142B (en) | Online detection system and method for motor commutator quality | |
CN114218613A (en) | Image tampering detection method, device, and computer-readable storage medium | |
CN114610942A (en) | Image retrieval method and device, storage medium and electronic device based on joint learning | |
CN115239590A (en) | Method, apparatus, apparatus, medium and program product for generating sample images | |
CN106446791A (en) | Smart city public monitoring system | |
CN112785651B (en) | Method and apparatus for determining relative pose parameters | |
CN113762266A (en) | Target detection method, device, electronic equipment and computer readable medium | |
CN104851114B (en) | A kind of method and terminal for realizing image local discoloration | |
Novozámský et al. | Extended IMD2020: a large‐scale annotated dataset tailored for detecting manipulated images | |
CN116503614A (en) | Dinner plate shape feature extraction network training method and dinner plate shape information generation method | |
Rouhi et al. | A cluster-based approach of smartphone camera fingerprint for user profiles resolution within social network | |
CN116453086A (en) | Method and device for identifying traffic sign and electronic equipment | |
CN115984977A (en) | Liveness detection method and system | |
CN113658084A (en) | Image processing method, device, storage medium, and electronic device | |
CN107038090A (en) | Selection includes the method and electronic equipment, system, computer program product and computer-readable recording medium of the content of audio-visual data | |
CN114758258B (en) | A method for inferring garbage location based on geometric appearance features | |
US9058674B1 (en) | Enhancing resolution of single images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |