CN114608719A - A laser temperature measurement device for high temperature objects - Google Patents
A laser temperature measurement device for high temperature objects Download PDFInfo
- Publication number
- CN114608719A CN114608719A CN202210319032.2A CN202210319032A CN114608719A CN 114608719 A CN114608719 A CN 114608719A CN 202210319032 A CN202210319032 A CN 202210319032A CN 114608719 A CN114608719 A CN 114608719A
- Authority
- CN
- China
- Prior art keywords
- temperature
- etalon
- laser
- light
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009529 body temperature measurement Methods 0.000 title abstract description 32
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000013307 optical fiber Substances 0.000 claims abstract description 28
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims description 26
- 239000000835 fiber Substances 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 238000012937 correction Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 abstract description 4
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 7
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明公开一种高温物体的激光测温装置,属于温度测量技术领域,包括光电锁相环路、温度探测单元、光电探测器和信号处理单元,温度探测单元包括光纤环形器、传输光纤、非球面镜和设置于待测物体上的F‑P标准具,光电锁相环路输出的线性调频光经光纤环形器、传输光纤光、非球面镜至F‑P标准具,反射后传输回光纤环形器,再经光电探测器至信号处理单元处理,通过采集反射光两相邻最强光强的时间,结合线性调频光的频率随时间变化的关系,计算得到待测物体的温度。本发明还提出了一种实现非线性校正的光电锁相环路。本发明实现对高温物体的温度测量,并对纵模间隔进行扫频测量,提高测试精度。
The invention discloses a laser temperature measurement device for a high-temperature object, belonging to the technical field of temperature measurement, comprising a photoelectric phase-locked loop, a temperature detection unit, a photoelectric detector and a signal processing unit. The spherical mirror and the F-P etalon set on the object to be measured, the linear frequency modulated light output by the photoelectric phase-locked loop passes through the optical fiber circulator, transmits the optical fiber light, and the aspheric mirror to the F-P etalon, and then transmits back to the optical fiber circulator after reflection , and then processed by the photodetector to the signal processing unit, and the temperature of the object to be measured is calculated by collecting the time of the two adjacent strongest light intensities of the reflected light and combining the relationship between the frequency of the linear frequency modulated light and the time change. The invention also proposes a photoelectric phase-locked loop for realizing nonlinear correction. The invention realizes the temperature measurement of high-temperature objects, and performs frequency sweep measurement on the longitudinal mode interval, thereby improving the test accuracy.
Description
技术领域technical field
本发明属于温度测量技术领域,具体涉及一种高温物体的激光测温装置。The invention belongs to the technical field of temperature measurement, in particular to a laser temperature measurement device for a high-temperature object.
背景技术Background technique
在工业生产中,对温度的科学控制一直是非常重要的工作内容,特别是当产品工作在高温环境中时,温度决定着生产产品的质量,同时与生产效率存在着紧密的联系,进而可能影响到生产的整体流程和情况。所以在工业生产中对于温度的测量意义重大。In industrial production, the scientific control of temperature has always been a very important work content, especially when the product works in a high temperature environment, the temperature determines the quality of the produced product, and is closely related to the production efficiency, which may affect the to the overall process and situation of production. Therefore, the measurement of temperature is of great significance in industrial production.
温度是表征物体冷热程度的物理量,温度测试按照测量方式可分为接触式和非接触式两大类。接触式测温仪器是通过将敏感元件与被测物体充分接触进行热交换以测得温度,方法简单、直观可靠,且测量精度高。Temperature is a physical quantity that characterizes the degree of heat and cold of an object. According to the measurement method, temperature testing can be divided into two categories: contact type and non-contact type. The contact temperature measuring instrument measures the temperature by fully contacting the sensitive element with the object to be measured for heat exchange. The method is simple, intuitive and reliable, and the measurement accuracy is high.
接触式测温仪器按照测温原理不同可分为四类:膨胀式温度计、热电阻式温度计、热电偶式温度计和PN结集成温度传感器。热电阻式温度计将对温度的测量转化为对电阻的测量,其测温原理是导体或半导体的阻值随温度的变化而变化。热电偶温度传感器是将被测温度转化为热电动势信号输出,通过将导线与显示仪表相连接组成测温系统,实现温度测量。热电阻具有测量精度高、测量范围广等特点。一般情况下,测量500℃以上的较高温度时用热电偶,500℃以下环境温度则采用热电阻测量,这是因为在500℃以下的中低温度区域,热电偶输出的热电势很小,对二次仪表的抗干扰措施要求很高,热电偶通常难以实现精确测量。并且在较低温区域,考虑到冷端温度变化所引起的相对误差也非常突出,一般使用热电阻温度测量仪表较为合适。Contact temperature measuring instruments can be divided into four categories according to different temperature measuring principles: expansion thermometers, thermal resistance thermometers, thermocouple thermometers and PN junction integrated temperature sensors. The thermal resistance thermometer converts the measurement of temperature into the measurement of resistance. The principle of temperature measurement is that the resistance of the conductor or semiconductor changes with the change of temperature. Thermocouple temperature sensor converts the measured temperature into thermoelectromotive force signal output, and realizes temperature measurement by connecting the wire with the display instrument to form a temperature measurement system. Thermal resistance has the characteristics of high measurement accuracy and wide measurement range. In general, thermocouples are used to measure higher temperatures above 500°C, and thermal resistance measurements are used for ambient temperatures below 500°C. This is because the thermoelectric potential output by thermocouples is very small in the mid-low temperature region below 500°C. The anti-interference measures of the secondary instrument are very demanding, and it is usually difficult for thermocouples to achieve accurate measurement. And in the lower temperature area, considering that the relative error caused by the temperature change of the cold junction is also very prominent, it is generally more appropriate to use a thermal resistance temperature measuring instrument.
非接触式测温比较常见的是通过热辐射进行测量的红外测温。它的优点在于:测量不干扰被测温场,不影响温场分布,从而具有较高的测量准确度;测温范围宽,理论上无测量上限,可以测量相当高的温度;探测器的响应时间短,反应速度快,易于快速与动态测量;不必接触被测物体,操作方便;可以确定微小目标的温度。The most common non-contact temperature measurement is infrared temperature measurement that is measured by thermal radiation. Its advantages are: the measurement does not interfere with the measured temperature field and does not affect the temperature field distribution, so it has high measurement accuracy; the temperature measurement range is wide, theoretically there is no upper limit of measurement, and a relatively high temperature can be measured; the response of the detector The time is short, the response speed is fast, and it is easy to quickly and dynamically measure; it is not necessary to touch the measured object, and the operation is convenient; the temperature of the tiny target can be determined.
尽管如此,现存的测温技术仍然存在很多不足,热电阻感温部分尺寸大,测温反应慢;热电偶测温需要补偿导线,而且焊锡、高频磁场环境也会对测温产生影响,存在很大的误差;更重要的是,热电阻和热电偶由于它们的物理特性,限制了测温上限范围。而红外测温受外界环境因素的影响比较大,黑体的光谱辐射亮度存在一个极值,极值的变化随温度变化缓慢,因此测量误差较大。Despite this, there are still many shortcomings in the existing temperature measurement technology. The size of the temperature sensing part of the thermal resistance is large, and the temperature measurement response is slow; the thermocouple temperature measurement needs compensation wires, and the solder and high-frequency magnetic field environment will also affect the temperature measurement. Large errors; more importantly, RTDs and thermocouples limit the upper temperature range due to their physical properties. Infrared temperature measurement is greatly affected by external environmental factors. The spectral radiance of a black body has an extreme value, and the change of the extreme value changes slowly with temperature, so the measurement error is large.
发明内容SUMMARY OF THE INVENTION
本发明目的在于针对上述现有技术中的问题,提供一种高温物体的激光测温装置。The purpose of the present invention is to provide a laser temperature measuring device for a high temperature object in view of the above-mentioned problems in the prior art.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种高温物体的激光测温装置,其特征在于,包括光电锁相环路、温度探测单元、光电探测器和信号处理单元;所述温度探测单元包括光纤环形器、传输光纤、非球面镜和F-P(法布里-珀罗)标准具,所述F-P标准具设置于待测物体上;A laser temperature measurement device for high-temperature objects, characterized in that it includes a photoelectric phase-locked loop, a temperature detection unit, a photodetector and a signal processing unit; the temperature detection unit includes a fiber circulator, a transmission fiber, an aspheric mirror and an F-P (Fabry-Perot) etalon, the F-P etalon is set on the object to be measured;
所述光电锁相环路用于输出线性调频光,其输出端口光连接至光纤环形器的激光输入端口;光纤环形器的双工端口通过传输光纤光连接至非球面镜的光输入端口,非球面镜的光输出端口光连接F-P标准具;光纤环形器的信号光输出端口光连接光电探测器的输入端,光电探测器的输出端电连接信号处理单元。The photoelectric phase-locked loop is used to output linear frequency modulated light, and its output port is optically connected to the laser input port of the fiber circulator; The optical output port of the optical fiber circulator is optically connected to the F-P etalon; the signal light output port of the optical fiber circulator is optically connected to the input end of the photodetector, and the output end of the photodetector is electrically connected to the signal processing unit.
进一步地,所述光电锁相环路包括依次首尾连接的宽带可调谐激光器、微光学透镜、第一耦合器、MZ(马赫-曾德尔)干涉仪、第二耦合器、平衡光电探测器、鉴相器、环路滤波器、升/降开关控制电路和积分器;Further, the optoelectronic phase-locked loop includes a broadband tunable laser, a micro-optical lens, a first coupler, an MZ (Mach-Zehnder) interferometer, a second coupler, a balanced photodetector, a Phaser, loop filter, up/down switch control circuit and integrator;
所述宽带可调谐激光器输出调频光,经微光学透镜耦合至第一耦合器,输出两束光束,其中一束光束作为光电锁相环路的输出,另一束光束输入至MZ干涉仪的输入端口;MZ干涉仪的输出端口经第二耦合器光连接至平衡光电探测器的输入端口,平衡光电探测器的输出端口电连接至鉴相器的输入端口;鉴相器将输入的信号与正弦参考频率信号进行混频,得到频率误差信号,通过鉴相器的输出端口传输至环路滤波器,得到频率控制信号,再依次经过升/降开关控制电路和积分器,输出三角波信号,反馈至宽带可调谐激光器,实现对宽带可调谐激光器的非线性校正,使得光电锁相环路输出线性调频光。The broadband tunable laser outputs frequency-modulated light, which is coupled to the first coupler through a micro-optical lens, and outputs two beams, one of which is used as the output of the photoelectric phase-locked loop, and the other beam is input to the input of the MZ interferometer. port; the output port of the MZ interferometer is optically connected to the input port of the balanced photodetector through the second coupler, and the output port of the balanced photodetector is electrically connected to the input port of the phase detector; the phase detector combines the input signal with the sine The reference frequency signal is mixed to obtain the frequency error signal, which is transmitted to the loop filter through the output port of the phase detector to obtain the frequency control signal, and then passes through the up/down switch control circuit and the integrator in turn to output the triangular wave signal, which is fed back to The broadband tunable laser realizes nonlinear correction of the broadband tunable laser, so that the photoelectric phase-locked loop outputs chirp light.
进一步地,所述F-P标准具的晶体材料为三氧化二铝或YAG(钇铝石榴石)。Further, the crystal material of the F-P etalon is aluminum oxide or YAG (yttrium aluminum garnet).
进一步地,光电锁相环路输出的线性调频光经非球面镜汇聚成平行光,传输至F-P标准具,F-P标准具发出反射光,依次传输回光纤环形器的双工端口,再从信号光输出端口输出至光电探测器中转换为电信号,经信号处理单元处理后得到被测物体的温度T。Further, the linear frequency modulated light output by the photoelectric phase-locked loop is converged into parallel light by the aspherical mirror, and transmitted to the F-P etalon. The F-P etalon emits reflected light, which is sequentially transmitted back to the duplex port of the optical fiber circulator, and then output from the signal light. The output of the port is converted into an electrical signal into the photodetector, and the temperature T of the measured object is obtained after being processed by the signal processing unit.
进一步地,所述F-P标准具发出的反射光光强与接收的入射光光强的比值为:Further, the ratio of the reflected light intensity emitted by the F-P etalon to the received incident light intensity is:
其中,Ir为反射光光强;Ii为入射光光强;R1和R2分别为F-P标准具前后反射面的反射率;δ为环程相位延迟,与入射光频率v的关系为:Among them, I r is the reflected light intensity; I i is the incident light intensity; R 1 and R 2 are the reflectances of the front and rear reflective surfaces of the FP etalon, respectively; :
其中,n为F-P标准具晶体材料的折射率;L为F-P标准具前后反射面之间的距离;c为光在真空中传播的速度(3×108m/s);Among them, n is the refractive index of the FP etalon crystal material; L is the distance between the front and rear reflection surfaces of the FP etalon; c is the speed of light propagating in vacuum (3×10 8 m/s);
获得反射光的纵模间隔(即两相邻最强光强之间的频率差)Δv为:The longitudinal mode interval of the reflected light (that is, the frequency difference between two adjacent strongest light intensities) Δv is:
由于公式(3)中的n和L与温度T相关,对公式(3)两边温度求导可得:Since n and L in formula (3) are related to the temperature T, the temperature on both sides of formula (3) can be derived from:
进而得到纵模间隔Δν和待测物体的温度T的关系为:Then, the relationship between the longitudinal mode interval Δν and the temperature T of the object to be measured is obtained as:
其中,T0为室温;β为F-P标准具晶体材料的热光系数;α为F-P标准具晶体材料的线性热膨胀系数;α和β均为常数;Δv0为测温前F-P标准具的反射光的初始纵模间隔;Among them, T 0 is room temperature; β is the thermo-optic coefficient of the FP etalon crystal material; α is the linear thermal expansion coefficient of the FP etalon crystal material; α and β are both constants; Δv 0 is the reflected light of the FP etalon before temperature measurement The initial longitudinal mode interval of ;
所述信号处理单元通过采集反射光两相邻最强光强的时间,根据线性调频光的频率随时间变化的关系,获得反射光两相邻最强光强对应的扫频频率值,二者频率差即为纵模间隔Δν,从而计算得到被测物体的温度T。The signal processing unit obtains the frequency sweep frequency value corresponding to the two adjacent strongest light intensities of the reflected light according to the relationship between the frequency of the linear frequency modulated light and the time change by collecting the time of the two adjacent strongest light intensities of the reflected light. The frequency difference is the longitudinal mode interval Δν, so that the temperature T of the measured object can be calculated.
进一步地,设置测温前F-P标准具的反射光的初始纵模间隔Δv0不低于5GHz。Further, the initial longitudinal mode interval Δv 0 of the reflected light of the FP etalon before temperature measurement is set to not be lower than 5 GHz.
进一步地,当F-P标准具晶体材料为三氧化二铝时,折射率n=1.53;当F-P标准具晶体材料为YAG时,折射率n=1.82。Further, when the crystal material of the F-P etalon is Al2O3, the refractive index n=1.53; when the crystal material of the F-P etalon is YAG, the refractive index n=1.82.
进一步地,所述宽带可调谐激光器的调频带宽大于初始纵模间隔Δν0的两倍,此时一个调频带宽内获得多个反射光的纵模间隔Δν,通过计算平均值获得待测物体的温度T,以提高激光测温装置的测试精度。Further, the frequency modulation bandwidth of the broadband tunable laser is greater than twice the initial longitudinal mode interval Δν 0. At this time, the longitudinal mode interval Δν of multiple reflected lights is obtained within one frequency modulation bandwidth, and the temperature of the object to be measured is obtained by calculating the average value. T, in order to improve the test accuracy of the laser temperature measurement device.
进一步地,所述激光测温装置测试的温度高于1200℃。Further, the temperature tested by the laser temperature measuring device is higher than 1200°C.
进一步地,所述激光测温装置包括多个温度探测单元,还包括第一光开关阵列和第二光开关阵列,实现对多个待测物体的测温;所述光电锁相环路的输出端口通过第一光开关阵列分别光连接至各温度探测单元中光纤环形器的激光输入端口,各温度探测单元中光纤环形器的信号光输出端口经第二光开关阵列光连接至光电探测器,各温度探测单元的F-P标准具设置于对应待测物体上。Further, the laser temperature measurement device includes a plurality of temperature detection units, and also includes a first optical switch array and a second optical switch array, so as to realize the temperature measurement of a plurality of objects to be measured; the output of the photoelectric phase-locked loop is The ports are respectively optically connected to the laser input ports of the optical fiber circulators in each temperature detection unit through the first optical switch array, and the signal light output ports of the optical fiber circulators in each temperature detection unit are optically connected to the photodetector through the second optical switch array, The F-P etalon of each temperature detection unit is arranged on the corresponding object to be measured.
本发明的有益效果为:The beneficial effects of the present invention are:
1、本发明提出一种高温物体的激光测温装置,利用F-P标准具的温度敏感特性,通过入射线性调频光,测量反射光的光强变化周期,从而得到周期时间对应的扫频频率值,也就是纵模间隔大小,进而获得物体温度,并且由于F-P标准具未镀膜,故可测量高温物体的温度;1. The present invention proposes a laser temperature measurement device for high-temperature objects, which utilizes the temperature-sensitive characteristics of the F-P etalon to measure the light intensity change period of the reflected light by incident chirp light, thereby obtaining the frequency sweep frequency value corresponding to the cycle time, That is, the size of the longitudinal mode interval, and then the temperature of the object can be obtained, and since the F-P etalon is not coated, the temperature of the high-temperature object can be measured;
2、本发明通过设置宽带可调谐激光器的调频带宽,实现对纵模间隔的扫频测量,以提高测试精度;2. The present invention realizes the frequency sweep measurement of the longitudinal mode interval by setting the frequency modulation bandwidth of the broadband tunable laser, so as to improve the test accuracy;
3、优选地,本发明提出了一种光电锁相环路,通过闭环控制实现对宽带可调谐激光器的非线性校正,以输出线性调频光,保证测量精确性;3. Preferably, the present invention proposes an optoelectronic phase-locked loop, which realizes the nonlinear correction of the broadband tunable laser through closed-loop control, so as to output chirp light and ensure the measurement accuracy;
4、优选地,采用传输光纤传输反射光,结合光开关技术(多路光切换),实现多物体测量。4. Preferably, a transmission optical fiber is used to transmit the reflected light, combined with the optical switch technology (multi-channel optical switching), to realize multi-object measurement.
附图说明Description of drawings
图1为本发明实施例1提供的高温物体的激光测温装置的结构示意图;1 is a schematic structural diagram of a laser temperature measurement device for a high-temperature object provided in
图2为本发明实施例1中F-P标准具的结构示意图;Fig. 2 is the structural representation of F-P etalon in the embodiment of the
图3为本发明实施例1中光纤环形器的端口结构示意图;3 is a schematic diagram of the port structure of the optical fiber circulator in
图4为本发明实施例1中光锁相环输出的线性调频光频率随时间变化的关系图;Fig. 4 is the relational diagram of the chirp optical frequency outputted by the optical phase-locked loop in the
图5为本发明实施例1中F-P标准具发出的反射光谱图;Fig. 5 is the reflection spectrogram that F-P etalon sends out in the embodiment of the
图6为本发明实施例1中纵模间隔Δv和温度T的关系图;Fig. 6 is the relation diagram of longitudinal mode interval Δv and temperature T in the
图7为本发明实施例2提供的高温物体的激光测温装置的结构示意图;7 is a schematic structural diagram of a laser temperature measurement device for a high-temperature object provided in Embodiment 2 of the present invention;
附图中各标记的说明如下:The descriptions of the marks in the accompanying drawings are as follows:
1.宽带可调谐激光器;2.光纤环形器;3.传输光纤;4.非球面镜;5.F-P标准具;6.光电探测器;7.信号处理单元;8.微光学透镜;9-1.第一耦合器;9-2.第二耦合器;10.MZ干涉仪;11.平衡光电探测器;12.鉴相器;13.环路滤波器;14.升/降开关控制电路;15.积分器;16.第一光开关阵列;17.第二光开关阵列。1. Broadband tunable laser; 2. Optical fiber circulator; 3. Transmission fiber; 4. Aspheric mirror; 5. F-P etalon; 6. Photodetector; 7. Signal processing unit; 8. Micro-optical lens; 9-1 1. The first coupler; 9-2. The second coupler; 10. MZ interferometer; 11. Balanced photodetector; 12. Phase detector; 13. Loop filter; 14. Up/down switch control circuit; 15. Integrator; 16. First optical switch array; 17. Second optical switch array.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图与实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
实施例1Example 1
本实施例提供了一种高温物体的激光测温装置,结构如图1所示,包括光电锁相环路、温度探测单元、光电探测器6和信号处理单元7;所述温度探测单元依次包括光纤环形器2、传输光纤3、非球面镜4和F-P标准具5,F-P标准具5设置于待测物体上;所述光电锁相环路包括依次首尾连接的宽带可调谐激光器1、微光学透镜8、第一耦合器9-1、MZ干涉仪10、第二耦合器9-2、平衡光电探测器11、鉴相器12、环路滤波器13、升/降开关控制电路14和积分器15。This embodiment provides a laser temperature measurement device for a high-temperature object. The structure is shown in FIG. 1 and includes a photoelectric phase-locked loop, a temperature detection unit, a photodetector 6 and a signal processing unit 7; the temperature detection unit sequentially includes The optical fiber circulator 2, the transmission fiber 3, the aspheric mirror 4 and the F-P etalon 5, the F-P etalon 5 is arranged on the object to be measured; the photoelectric phase-locked loop comprises a
所述宽带可调谐激光器1输出调频光,经微光学透镜8耦合至第一耦合器9-1,输出两束光束,其中一束光束作为光电锁相环路的输出,另一束光束输入至MZ干涉仪10的输入端口;MZ干涉仪10的输出端口经第二耦合器9-2光连接至平衡光电探测器11的输入端口,平衡光电探测器11的输出端口电连接至鉴相器12的输入端口;鉴相器12将输入的信号与频率相同的正弦参考频率信号进行混频,得到频率误差信号,通过鉴相器12的输出端口传输至环路滤波器13,得到频率控制信号,再依次经过升/降开关控制电路14和积分器15,输出三角波信号,反馈至宽带可调谐激光器1,实现对宽带可调谐激光器1的非线性校正,使得光电锁相环路输出线性调频光。本实施例中输出的线性调频光频率随时间变化的关系如图4所示,调频带宽为60GHz。The
所述光电锁相环路输出的线性调频光通过其输出端口传输至光纤环形器2的激光输入端口;光纤环形器2的双工端口通过传输光纤3光连接至非球面镜4的光输入端口,非球面镜4的光输出端口光连接F-P标准具5;光纤环形器2的信号光输出端口光连接光电探测器6的输入端,光电探测器6的输出端电连接信号处理单元7。The linear frequency modulated light output by the photoelectric phase-locked loop is transmitted to the laser input port of the optical fiber circulator 2 through its output port; the duplex port of the optical fiber circulator 2 is optically connected to the optical input port of the aspheric mirror 4 through the transmission fiber 3, The light output port of the aspheric mirror 4 is optically connected to the F-P etalon 5 ; the signal light output port of the optical fiber circulator 2 is optically connected to the input end of the photodetector 6 , and the output end of the photodetector 6 is electrically connected to the signal processing unit 7 .
具体地,光电锁相环路输出的线性调频光经非球面镜4汇聚成平行光,传输至F-P标准具5,F-P标准具5发出反射光(平行光),经非球面镜4汇聚耦合到传输光纤3的光纤端面上,再传输回光纤环形器2的双工端口,再从信号光输出端口输出至光电探测器6中转换为电信号,经信号处理单元7处理后得到待测物体的温度变化。Specifically, the linear frequency modulated light output by the photoelectric phase-locked loop is converged into parallel light by the aspherical mirror 4, and transmitted to the F-P etalon 5, and the F-P etalon 5 emits reflected light (parallel light), which is converged by the aspherical mirror 4 and coupled to the transmission fiber The optical fiber end face of 3 is transmitted back to the duplex port of the optical fiber circulator 2, and then output from the signal light output port to the photodetector 6 and converted into an electrical signal, and processed by the signal processing unit 7 to obtain the temperature change of the object to be measured. .
所述宽带可调谐激光器1采用DBR(分布式布拉格反射)半导体激光芯片,其具有独立的调频端口,通过注入三角波进行线性调频。The
所述平衡光电探测器11的输出端口输出的光电信号的频率变化反应了调频线性度。The frequency change of the photoelectric signal output by the output port of the balanced photodetector 11 reflects the frequency modulation linearity.
所述鉴相器12是基于混频原理设计的激光频率误差测量电路,输出的频率误差信号是输入信号与正弦参考频率信号之间相位误差的度量,可以提高电路带宽,减小电路延时;通过数字化来降低激光幅度调制引起的频率测量误差,提高信号质量。The
所述环路滤波器13是对频率误差信号进行滤波和整形,并不仅仅对高频波形进行滤除,更重要的功能是建立反馈环路的动态特性,以及提供合适的频率控制信号。The
所述升/降开关控制电路14在频率控制信号的控制下对积分器15进行周期性的积分复位,不断地使积分后输出的三角波信号驱动宽带可调谐激光器1,直至锁相环输出信号的频率和相位达到稳定。The up/down
所述光纤环形器2的端口结构如图3所示,包括激光输入端口、双工端口和信号光输出端口,具有很好的隔离性,使输入的光信号与反射回的信号光不发生串扰,并且将反射光接收输出。The port structure of the optical fiber circulator 2 is shown in Figure 3, including a laser input port, a duplex port and a signal light output port, with good isolation, so that the input optical signal and the reflected signal light do not crosstalk , and the reflected light is received and output.
所述传输光纤3用于对光进行传输,可以灵活改变待测物体与测量装置的距离。The transmission optical fiber 3 is used to transmit light, and can flexibly change the distance between the object to be measured and the measuring device.
所述F-P标准具5为一个块状晶体,结构如图2所示,为YAG材料,线性调频光从前反射面射入,经前反射面和后反射面反射后射出;F-P标准具5发出的反射光光强与接收的入射光光强的比值为:The F-P etalon 5 is a block crystal, the structure is shown in Figure 2, it is a YAG material, the linear frequency modulated light is injected from the front reflection surface, and is reflected by the front reflection surface and the rear reflection surface and then exits; the F-P etalon 5 emits The ratio of the reflected light intensity to the received incident light intensity is:
其中,Ir为反射光光强;Ii为入射光光强;R1和R2分别为F-P标准具5的前反射面和后反射面的反射率;δ为环程相位延迟,与入射光频率ν的关系为:Among them, I r is the reflected light intensity; I i is the incident light intensity; R 1 and R 2 are the reflectances of the front and rear reflection surfaces of the FP etalon 5, respectively; The relation of the optical frequency ν is:
其中,n=1.82,为F-P标准具5的YAG的折射率;L为F-P标准具5的前反射面和后反射面之间的距离;c为光在真空中传播的速度(3×108m/s);Among them, n=1.82, which is the refractive index of YAG of the FP etalon 5; L is the distance between the front reflection surface and the rear reflection surface of the FP etalon 5; c is the speed of light propagation in vacuum (3×10 8 m/s);
获得反射光的纵模间隔(即两相邻最强光强之间的频率差)Δv为:The longitudinal mode interval of the reflected light (that is, the frequency difference between two adjacent strongest light intensities) Δv is:
实际可通过设置F-P标准具5的前反射面和后反射面之间的距离L和折射率n,以调整测温前F-P标准具5的反射光的初始纵模间隔Δν0,本实施例中设置测温前F-P标准具5的反射光的初始纵模间隔Δv0为10GHz,反射光的自由光谱图如图5所示。Actually, the distance L and the refractive index n between the front reflection surface and the rear reflection surface of the FP etalon 5 can be set to adjust the initial longitudinal mode interval Δν 0 of the reflected light of the FP etalon 5 before temperature measurement. The initial longitudinal mode interval Δv 0 of the reflected light of the FP etalon 5 before temperature measurement is set to 10 GHz, and the free spectrum of the reflected light is shown in Figure 5 .
由于公式(3)中的n和L与温度T相关,对公式(3)两边求导可得:Since n and L in formula (3) are related to temperature T, derivation of both sides of formula (3) can be obtained:
所以得到纵模间隔Δv和温度T的关系为:Therefore, the relationship between the longitudinal mode interval Δv and the temperature T is obtained as:
其中,T0为室温,取T0=27℃;β=7.3×10-6℃-1,为F-P标准具5的YAG的热光系数;α=7.8×10-6℃-1,为F-P标准具5的YAG的线性热膨胀系数;α和β均为常数;本实施例中纵模间隔Δν和温度T的关系如图6所示,基本呈线性关系。在高温情况下,纵模间隔Δν和温度T的关系需根据工作环境作进一步标定。Among them, T 0 is room temperature, take T 0 =27℃; β=7.3×10 -6 ℃ -1 , is the thermo-optic coefficient of YAG of FP etalon 5; α=7.8×10 -6 ℃ -1 , is FP The linear thermal expansion coefficient of the YAG of the etalon 5; α and β are both constants; the relationship between the longitudinal mode interval Δν and the temperature T in this embodiment is shown in FIG. 6 , which is basically a linear relationship. In the case of high temperature, the relationship between the longitudinal mode interval Δν and the temperature T needs to be further calibrated according to the working environment.
所述F-P标准具5发出的反射光依次经非球面镜4、传输光纤3、光纤环形器2传输至光电探测器6中转换为电信号,再发送至信号处理单元7;信号处理单元7通过示波器采集反射光两相邻最强光强的时间,根据如图4所示的线性调频光的频率随时间变化的关系,获得反射光两相邻最强光强对应的扫频频率值,二者频率差即为纵模间隔Δν;测量获得F-P标准具5在60GHz调频带宽内的反射光的6个纵模间隔Δν,计算得到各纵模间隔Δν对应的温度值,通过计算平均值获得待测物体的温度。The reflected light emitted by the F-P etalon 5 is sequentially transmitted to the photodetector 6 through the aspheric mirror 4, the transmission fiber 3, and the fiber circulator 2, and is converted into an electrical signal, and then sent to the signal processing unit 7; the signal processing unit 7 passes through the oscilloscope. Collect the time of the two adjacent strongest light intensities of the reflected light, and obtain the frequency sweep frequency corresponding to the two adjacent strongest light intensities of the reflected light according to the relationship between the frequency of the chirp light and time as shown in Figure 4. The frequency difference is the longitudinal mode interval Δν; the 6 longitudinal mode intervals Δν of the reflected light of the F-P etalon 5 in the 60GHz frequency modulation bandwidth are measured and obtained, and the temperature value corresponding to each longitudinal mode interval Δν is obtained by calculating the average value. the temperature of the object.
实施例2Example 2
本实施例提供了一种高温物体的激光测温装置,结构如图7所示,包括光电锁相环路、三个温度探测单元、光电探测器6、信号处理单元7、第一光开光阵列16和第二光开关阵列17。This embodiment provides a laser temperature measurement device for a high-temperature object. The structure is shown in FIG. 7, including a photoelectric phase-locked loop, three temperature detection units, a photodetector 6, a signal processing unit 7, and a first optical switching array. 16 and a second optical switch array 17.
所述温度探测单元依次包括光纤环形器2、传输光纤3、非球面镜4和F-P标准具5,F-P标准具5设置于对应待测物体上,温度探测单元的工作原理与实施例1相同。The temperature detection unit sequentially includes an optical fiber circulator 2, a transmission optical fiber 3, an aspheric mirror 4, and an F-P etalon 5. The F-P etalon 5 is arranged on the corresponding object to be measured. The working principle of the temperature detection unit is the same as that of
所述光电锁相环路包括依次首尾连接的宽带可调谐激光器1、微光学透镜8、第一耦合器9-1、MZ干涉仪10、第二耦合器9-2、平衡光电探测器11、鉴相器12、环路滤波器13、升/降开关控制电路14和积分器15,光电锁相环路的工作原理与实施例1相同。The optoelectronic phase-locked loop includes a
所述光电锁相环路的输出端口通过第一光开光阵列16分别光连接至各温度探测单元中光纤环形器2的激光输入端口,各温度探测单元中光纤环形器2的信号光输出端口经第二光开关阵列17光连接至光电探测器6,进而连接至信号处理单元7。通过控制第一光开关阵列16和第二光开关阵列17选择对对应待测物体测温,实现对多个待测物体的测温。The output ports of the photoelectric phase-locked loop are respectively optically connected to the laser input ports of the optical fiber circulators 2 in each temperature detection unit through the first optical switching
上述实施例仅作为本发明提出的高温物体测量的一个示例,其内部光路和电路结构并非用于限制本发明,仅为帮助理解本发明原理,本发明保护范围亦不限于上述的配置和实施例,本领域技术人员可以根据公开技术做出不脱离本发明实质的其他各种具体变形与组合,但仍在本发明的保护范围内。The above embodiment is only an example of the measurement of a high-temperature object proposed by the present invention, and its internal optical path and circuit structure are not used to limit the present invention, but only to help understand the principle of the present invention, and the protection scope of the present invention is not limited to the above-mentioned configurations and embodiments. , those skilled in the art can make other various specific deformations and combinations without departing from the essence of the present invention according to the disclosed technology, but still fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210319032.2A CN114608719B (en) | 2022-03-29 | 2022-03-29 | Laser temperature measuring device for high-temperature object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210319032.2A CN114608719B (en) | 2022-03-29 | 2022-03-29 | Laser temperature measuring device for high-temperature object |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114608719A true CN114608719A (en) | 2022-06-10 |
CN114608719B CN114608719B (en) | 2023-04-07 |
Family
ID=81867627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210319032.2A Expired - Fee Related CN114608719B (en) | 2022-03-29 | 2022-03-29 | Laser temperature measuring device for high-temperature object |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114608719B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100085992A1 (en) * | 2008-10-08 | 2010-04-08 | George Rakuljic | Arbitrary Optical Waveform Generation Utilizing Optical Phase-Locked Loops |
WO2010061718A1 (en) * | 2008-11-27 | 2010-06-03 | ニューブレクス株式会社 | Distributed optical fiber sensor |
CN102544998A (en) * | 2012-01-06 | 2012-07-04 | 中国科学院上海光学精密机械研究所 | High-stability tunable light source system for Brillouin distributed optical fiber sensor |
CN102782964A (en) * | 2010-02-19 | 2012-11-14 | 加州理工学院 | Swept-frequency semiconductor laser coupled to microfabricated biomolecular sensor and methods related thereto |
CN103954645A (en) * | 2014-05-15 | 2014-07-30 | 黑龙江大学 | Device and method for measuring metal linear expansion coefficient through linear frequency modulation double-beam laser heterodynes |
CN107407635A (en) * | 2015-03-26 | 2017-11-28 | 英特尔公司 | Sensing system based on integrated photon element |
CN108731841A (en) * | 2018-08-08 | 2018-11-02 | 西安工业大学 | CW with frequency modulation laser interference optical fiber temperature sensor |
CA3063048A1 (en) * | 2017-05-11 | 2018-11-15 | Febus Optics | Optoelectronic device for distributed measurement by means of optical fibre |
JP2018185278A (en) * | 2017-04-27 | 2018-11-22 | アンリツ株式会社 | Optical frequency domain refractometry device and optical frequency domain refractometry method |
CN111404006A (en) * | 2020-03-20 | 2020-07-10 | 北京理工大学 | Noise suppression method based on phase continuous frequency sweeping fiber laser |
CN112968344A (en) * | 2021-02-03 | 2021-06-15 | 北京理工大学 | Composite light phase-locked fiber laser based sweep frequency linearization and coherence enhancement method |
CN113447158A (en) * | 2021-06-28 | 2021-09-28 | 中国人民解放军国防科技大学 | Method for measuring temperature distribution of full-link fiber core of high-power optical fiber laser |
-
2022
- 2022-03-29 CN CN202210319032.2A patent/CN114608719B/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100085992A1 (en) * | 2008-10-08 | 2010-04-08 | George Rakuljic | Arbitrary Optical Waveform Generation Utilizing Optical Phase-Locked Loops |
WO2010061718A1 (en) * | 2008-11-27 | 2010-06-03 | ニューブレクス株式会社 | Distributed optical fiber sensor |
CN102782964A (en) * | 2010-02-19 | 2012-11-14 | 加州理工学院 | Swept-frequency semiconductor laser coupled to microfabricated biomolecular sensor and methods related thereto |
CN102544998A (en) * | 2012-01-06 | 2012-07-04 | 中国科学院上海光学精密机械研究所 | High-stability tunable light source system for Brillouin distributed optical fiber sensor |
CN103954645A (en) * | 2014-05-15 | 2014-07-30 | 黑龙江大学 | Device and method for measuring metal linear expansion coefficient through linear frequency modulation double-beam laser heterodynes |
CN107407635A (en) * | 2015-03-26 | 2017-11-28 | 英特尔公司 | Sensing system based on integrated photon element |
JP2018185278A (en) * | 2017-04-27 | 2018-11-22 | アンリツ株式会社 | Optical frequency domain refractometry device and optical frequency domain refractometry method |
CA3063048A1 (en) * | 2017-05-11 | 2018-11-15 | Febus Optics | Optoelectronic device for distributed measurement by means of optical fibre |
WO2018207163A2 (en) * | 2017-05-11 | 2018-11-15 | Febus Optics | Optoelectronic device for distributed measurement by means of optical fibre |
CN108731841A (en) * | 2018-08-08 | 2018-11-02 | 西安工业大学 | CW with frequency modulation laser interference optical fiber temperature sensor |
CN111404006A (en) * | 2020-03-20 | 2020-07-10 | 北京理工大学 | Noise suppression method based on phase continuous frequency sweeping fiber laser |
CN112968344A (en) * | 2021-02-03 | 2021-06-15 | 北京理工大学 | Composite light phase-locked fiber laser based sweep frequency linearization and coherence enhancement method |
CN113447158A (en) * | 2021-06-28 | 2021-09-28 | 中国人民解放军国防科技大学 | Method for measuring temperature distribution of full-link fiber core of high-power optical fiber laser |
Non-Patent Citations (1)
Title |
---|
王欢: "调频连续波激光干涉光纤温度传感器", 《光电工程》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114608719B (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101586986B (en) | High precision optical fiber grating wave length demodulation system | |
US8734011B2 (en) | Distributed optical fiber temperature sensor based on optical fiber delay | |
CN108731841B (en) | Frequency modulation continuous wave laser interference optical fiber temperature sensor | |
CN101373145A (en) | Embedded multi-channel high-speed fiber grating sensor demodulation system | |
CN114777950B (en) | Temperature strain double-parameter sensing system and method based on dual-wavelength pulse | |
CN108562237A (en) | A device and method for spectral calibration in an optical frequency domain reflectance sensing system using an HCN gas cell | |
JPH0151933B2 (en) | ||
CN101419317B (en) | A Double Edge Filter Based on Fiber Bragg Grating | |
KR102745808B1 (en) | Temperature measurement system and method using optical signal transmission through optical interferometer | |
CN101936786A (en) | Reflection interference type optical fiber temperature probe of semiconductor monolayer film and sensing device thereof | |
CN201322623Y (en) | Embedded multi-channel high-speed fiber grating sensor demodulation system | |
Wang et al. | Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor | |
CN114608719B (en) | Laser temperature measuring device for high-temperature object | |
CN108957152B (en) | An integrated optical waveguide field sensor system based on wavelength demodulation and its measurement method | |
CN113124913B (en) | A temperature-insensitive sensor with large bandwidth based on Mach-Zehnder interferometer | |
CN201716126U (en) | Semiconductor single thin film reflection interference type optical fiber temperature probe and sensing device thereof | |
CN100399083C (en) | Tunable Dual Parallel Matched Fiber Bragg Grating Demodulation System | |
CN201017069Y (en) | Optical fiber grating wavelength demodulating equipment | |
CN106840452B (en) | Temperature measurement method of microwave photon temperature sensing system | |
CN101413809A (en) | Multifunctional optical fiber grating sensing system | |
CN112729605B (en) | An Optical Fiber Temperature Measurement System Based on the Principle of Spectral Absorption | |
CN113624267B (en) | A fiber grating central wavelength demodulation system and demodulator based on edge filtering | |
CN110907376A (en) | A high spatial resolution distributed gas detection system based on optical coherent absorption spectroscopy and its working method | |
CN118548995B (en) | A miniature wavelength measuring device | |
CN119086499B (en) | Water quality multi-parameter detection optical fiber sensing system and method based on FMCW |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230407 |
|
CF01 | Termination of patent right due to non-payment of annual fee |