CN114607944A - A kind of natural gas pipeline leakage monitoring device and method - Google Patents

A kind of natural gas pipeline leakage monitoring device and method Download PDF

Info

Publication number
CN114607944A
CN114607944A CN202210170692.9A CN202210170692A CN114607944A CN 114607944 A CN114607944 A CN 114607944A CN 202210170692 A CN202210170692 A CN 202210170692A CN 114607944 A CN114607944 A CN 114607944A
Authority
CN
China
Prior art keywords
natural gas
pipeline
signal
sensing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210170692.9A
Other languages
Chinese (zh)
Inventor
吴越
张迪鸣
杨文剑
唐照建
徐中原
何佳妮
魏雅哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lab
Original Assignee
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lab filed Critical Zhejiang Lab
Priority to CN202210170692.9A priority Critical patent/CN114607944A/en
Publication of CN114607944A publication Critical patent/CN114607944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/005Protection or supervision of installations of gas pipelines, e.g. alarm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/04Preventing, monitoring, or locating loss by means of a signalling fluid enclosed in a double wall

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明属于天然气管道泄漏检测技术领域,公开了一种天然气管道泄漏监测装置及方法,包括传感管道,传感管道沿着地下天然气管道上方平行与天然气管道铺设,天然气管道中泄漏的气体可进入传感管道内,传感管道内具有多个气体探测单元,传感管道端部伸出地面并连接抽气泵,标准光纤从地面伸入土壤连接每个气体检测单元后再从地面伸出连接信号分析单元,所述标准光纤输送激光光束到气体检测单元,信号分析单元分析气体检测单元的激光信号强度从而判断出是否存在甲烷泄漏。本发明能够对轻微泄漏的气体泄漏提供更高的检测精确度和灵敏度,更早的预警检修,降低事故发生概率。具有体积小、成本低、功耗较低、稳定性和可靠性高的优点。

Figure 202210170692

The invention belongs to the technical field of natural gas pipeline leakage detection, and discloses a natural gas pipeline leakage monitoring device and method, comprising a sensing pipeline, the sensing pipeline is laid parallel to the natural gas pipeline along the top of the underground natural gas pipeline, and the gas leaked in the natural gas pipeline can enter In the sensing pipe, there are multiple gas detection units in the sensing pipe. The end of the sensing pipe extends out of the ground and is connected to the air pump. The standard optical fiber extends from the ground into the soil to connect each gas detection unit and then extends from the ground to connect the signal. The analysis unit, the standard optical fiber transmits the laser beam to the gas detection unit, and the signal analysis unit analyzes the laser signal intensity of the gas detection unit to determine whether there is a methane leakage. The invention can provide higher detection accuracy and sensitivity for gas leakage with slight leakage, early warning maintenance, and reduce accident probability. It has the advantages of small size, low cost, low power consumption, high stability and reliability.

Figure 202210170692

Description

一种天然气管道泄漏监测装置及方法A kind of natural gas pipeline leakage monitoring device and method

技术领域technical field

本发明属于天然气管道泄漏检测技术领域,尤其涉及一种天然气管道泄漏监测装置及方法。The invention belongs to the technical field of natural gas pipeline leakage detection, and in particular relates to a natural gas pipeline leakage monitoring device and method.

背景技术Background technique

管道输送是天然气运输最常用的方式,具有安全可靠、能耗低、无污染且基本不受气候影响的优势。长输天然气管道经常穿越河流、山地、采空区等地形复杂的地区,管道极易遭受第三方损坏导致管道泄漏。如果不能及时发现管道裸露或泄漏并采取相应措施,必将对管道运营单位造成一定的经济损失,严重时可能会造成人员伤亡等重大事故。Pipeline transportation is the most common way of natural gas transportation, which has the advantages of safety and reliability, low energy consumption, no pollution and basically not affected by climate. Long-distance natural gas pipelines often pass through areas with complex terrain such as rivers, mountains, and goafs. The pipelines are easily damaged by third parties and lead to pipeline leakage. If the exposed pipelines or leaks cannot be found in time and corresponding measures are taken, certain economic losses will be caused to the pipeline operators, and serious accidents such as casualties may be caused.

管道泄漏通常会引起管道内部压力、流量、声波等特性的变化。因此,可以通过监测相关量的变化来检测管道泄漏。在过去的几十年里,科研人员提出了多种检测天然气管道泄漏的技术,常用的有声学传感技术、热成像技术、分布式光纤传感技术等。此外,中国专利CN105299477A公开了一种油气管道泄漏监控系统,包括监控中心、多个监控子站、光纤传感分析仪、激光器、传感光缆和分布式器气敏传感阵列,能够有效地监测油气泄漏现象、及时定位泄漏地点,减少人工排查的麻烦,减少损失和危害。Pipe leakage usually causes changes in the characteristics of the internal pressure, flow, and sound waves of the pipeline. Thus, pipeline leaks can be detected by monitoring changes in the relevant quantities. In the past few decades, researchers have proposed a variety of technologies for detecting natural gas pipeline leakage, commonly used acoustic sensing technology, thermal imaging technology, distributed optical fiber sensing technology, etc. In addition, Chinese patent CN105299477A discloses an oil and gas pipeline leakage monitoring system, including a monitoring center, multiple monitoring sub-stations, optical fiber sensing analyzers, lasers, sensing optical cables and distributor gas sensing arrays, which can effectively monitor Oil and gas leakage phenomenon, timely location of leakage locations, reduce the trouble of manual inspection, reduce losses and hazards.

声学传感技术是利用泄漏源的声学特征和声波在管道中的传播规律进行管道的检测,但轻微的泄漏会产生很小的声音信号,系统无法检测到背景噪声,导致系统中出现许多误报。基于红外热像技术的管道泄漏检测难以区分正常压力波和泄漏,该方法仅对大规模瞬时泄漏有效,容易导致误报。采用分布式光纤声学传感技术在多点检测、抗环境干扰、定位精度提高、振动源类型自动识别等方面仍存在很多问题。Acoustic sensing technology uses the acoustic characteristics of the leak source and the propagation law of sound waves in the pipeline to detect the pipeline, but a slight leak will generate a small sound signal, and the system cannot detect the background noise, resulting in many false alarms in the system . Pipeline leak detection based on infrared thermal imaging technology is difficult to distinguish between normal pressure waves and leaks. This method is only effective for large-scale instantaneous leaks, which easily lead to false alarms. There are still many problems in multi-point detection, anti-environmental interference, improved positioning accuracy and automatic identification of vibration source types using distributed optical fiber acoustic sensing technology.

发明内容SUMMARY OF THE INVENTION

本发明目的在于提供一种天然气管道泄漏监测装置及方法,以解决上述技术问题。The purpose of the present invention is to provide a natural gas pipeline leakage monitoring device and method to solve the above technical problems.

为解决上述技术问题,本发明的一种天然气管道泄漏监测装置及方法的具体技术方案如下:In order to solve the above-mentioned technical problems, the specific technical scheme of a natural gas pipeline leakage monitoring device and method of the present invention is as follows:

一种天然气管道泄漏监测装置,包括传感管道,所述传感管道沿着地下天然气管道上方平行与天然气管道铺设,所述传感管道为可渗透气体,但不可渗透液体材料,天然气管道中泄漏的气体可进入传感管道内,所述传感管道内具有多个气体探测单元,所述气体探测单元与传感管道相嵌套并密封,所述气体探测单元用于探测传感管道中收集到泄漏气体的信号,所述传感管道端部伸出地面并连接抽气泵,所述抽气泵用于将传感管道中的气体往气体探测单元进行输送,标准光纤从地面伸入土壤连接每个气体检测单元后再从地面伸出连接信号分析单元,所述标准光纤输送激光光束到气体检测单元,信号分析单元分析气体检测单元的激光信号强度从而判断出是否存在甲烷泄漏。A natural gas pipeline leakage monitoring device, comprising a sensing pipeline, the sensing pipeline is laid parallel to the natural gas pipeline along the top of the underground natural gas pipeline, the sensing pipeline is a gas permeable, but impermeable liquid material, and the natural gas pipeline leaks The gas can enter the sensing pipeline, and the sensing pipeline has a plurality of gas detection units. The gas detection units are nested and sealed with the sensing pipeline. The gas detection units are used to detect the collected gas in the sensing pipeline. To the signal of leaking gas, the end of the sensing pipe extends out of the ground and is connected to an air pump, the air pump is used to transport the gas in the sensing pipe to the gas detection unit, and the standard optical fiber extends from the ground into the soil to connect each After each gas detection unit is connected to the signal analysis unit, the standard optical fiber transmits the laser beam to the gas detection unit, and the signal analysis unit analyzes the laser signal intensity of the gas detection unit to determine whether there is a methane leak.

进一步的,所述传感管道沿着天然气管道上方10-20cm平行与天然气管道铺设。Further, the sensing pipeline is laid parallel to the natural gas pipeline along 10-20 cm above the natural gas pipeline.

进一步的,所述传感管道包括一根带孔阵列的聚氯乙烯管,聚氯乙烯管外覆盖一层乙烯-醋酸乙烯酯膜,所述乙烯-醋酸乙烯酯膜可渗透气体,但不可渗透液体,乙烯-醋酸乙烯酯膜外部包裹聚乙烯编织物。Further, the sensing pipeline includes a polyvinyl chloride pipe with a perforated array, and the polyvinyl chloride pipe is covered with a layer of ethylene-vinyl acetate film, and the ethylene-vinyl acetate film is permeable to gas, but impermeable. A liquid, ethylene-vinyl acetate film wrapped around a polyethylene braid.

进一步的,每个所述气体检测单元之间的间隔为5-10m。Further, the interval between each of the gas detection units is 5-10m.

进一步的,包括电流控制器、温度控制器、分布式反馈激光器和掺铋光纤功率放大器,所述电流控制器和温度控制器连接分布式反馈激光器,所述分布式反馈激光器连接掺铋光纤功率放大器,所述掺铋光纤功率放大器连接标准光纤;所述电流控制器用于控制分布式反馈激光器的输出电流;所述温度控制器用于控制分布式反馈激光器的工作温度;所述分布式反馈激光器用于发射激光光束;所述掺铋光纤功率放大器用于将分布式反馈激光器的输出功率进行放大。Further, it includes a current controller, a temperature controller, a distributed feedback laser and a bismuth-doped fiber power amplifier, the current controller and the temperature controller are connected to a distributed feedback laser, and the distributed feedback laser is connected to a bismuth-doped fiber power amplifier , the bismuth-doped fiber power amplifier is connected to a standard fiber; the current controller is used to control the output current of the distributed feedback laser; the temperature controller is used to control the operating temperature of the distributed feedback laser; the distributed feedback laser is used for A laser beam is emitted; the bismuth-doped fiber power amplifier is used to amplify the output power of the distributed feedback laser.

进一步的,所述气体探测单元包括第一光纤耦合器、空芯光子带隙型光纤和第二光纤耦合器;所述标准光纤连接第一光纤耦合器,所述第一光纤耦合器连接空芯光子带隙型光纤,所述空芯光子带隙型光纤连接第二光纤耦合器,所述第二光纤耦合器连接下一段标准光纤,下一段标准光纤连接下一个气体探测单元。Further, the gas detection unit includes a first fiber coupler, a hollow-core photonic bandgap fiber, and a second fiber coupler; the standard fiber is connected to the first fiber coupler, and the first fiber coupler is connected to the hollow core A photonic bandgap fiber, the hollow-core photonic bandgap fiber is connected to a second fiber coupler, the second fiber coupler is connected to the next standard fiber, and the next standard fiber is connected to the next gas detection unit.

进一步的,所述信号分析单元包括光电探测器、锁相放大器和数据处理中心,所述标准光纤伸出地面后连接光电探测器,所述光电探测器连接锁相放大器,所述锁相放大器连接数据处理中心;所述光电探测器根据检测到的激光信号强度输出相应的电信号,所述锁相放大器用于检测光电探测器输出的电信号中的二次谐波信号;所述数据处理中心用于数据处理及显示,包括显示是否存在甲烷泄漏,甲烷泄漏浓度大小及根据二次谐波信号响应时间计算泄漏位置。Further, the signal analysis unit includes a photodetector, a lock-in amplifier and a data processing center, the standard optical fiber is connected to the photodetector after extending out of the ground, the photodetector is connected to the lock-in amplifier, and the lock-in amplifier is connected to the a data processing center; the photodetector outputs a corresponding electrical signal according to the intensity of the detected laser signal, and the lock-in amplifier is used to detect the second harmonic signal in the electrical signal output by the photodetector; the data processing center It is used for data processing and display, including displaying whether there is methane leakage, the concentration of methane leakage, and calculating the leakage position according to the response time of the second harmonic signal.

进一步的,所述空芯光子带隙型光纤长1m,一侧开有多个气孔。Further, the hollow-core photonic bandgap optical fiber is 1 m long, and a plurality of air holes are opened on one side.

本发明还公开了一种天然气管道泄漏监测的方法,包括如下步骤:The invention also discloses a method for monitoring natural gas pipeline leakage, comprising the following steps:

步骤1:将抽气泵与传感管道相连接,打开抽气泵将传感管道中的气体从左往右进行输送;Step 1: Connect the air pump to the sensing pipeline, turn on the air pump to transport the gas in the sensing pipeline from left to right;

步骤2:将一个组合调制信号加载到电流控制器,然后设置温度控制器为27-30℃,控制分布式反馈激光器输出激光光束;Step 2: Load a combined modulation signal into the current controller, and then set the temperature controller to 27-30°C to control the distributed feedback laser to output the laser beam;

步骤3:将分布式反馈激光器连接到掺铋光纤功率放大器,将分布式反馈激光器输出功率放大至160-200mW;Step 3: connect the distributed feedback laser to the bismuth-doped fiber power amplifier, and amplify the output power of the distributed feedback laser to 160-200mW;

步骤4:然后将通过掺铋光纤功率放大器后的激光通过标准光纤射入到气体探测单元,使得分布式反馈激光器的激光光束进入到空芯光子带隙型光纤9内;Step 4: then inject the laser light after passing through the bismuth-doped fiber power amplifier into the gas detection unit through the standard fiber, so that the laser beam of the distributed feedback laser enters the hollow-core photonic bandgap fiber 9;

步骤5:当天然气管道发生泄漏时,传感管道将泄漏的甲烷气体收集到传感管道内并从左往右开始输送;Step 5: When the natural gas pipeline leaks, the sensing pipeline collects the leaked methane gas into the sensing pipeline and starts to transport it from left to right;

步骤6:泄漏的甲烷气体进入空芯光子带隙型光纤内部时,根据朗伯-比尔定律,标准光纤输送分布式反馈激光器的激光光束与空芯光子带隙型光纤内部的甲烷气体接触并被吸收,激光强度变弱,此时光电探测器根据检测到的激光信号强度输出相应的电信号,其中,电信号中二次谐波项与泄漏气体的浓度成正比,锁相放大器检测出光电探测器输出的电信号中的二次谐波信号,根据二次谐波信号强度来确定泄漏气体浓度的大小;Step 6: When the leaked methane gas enters the hollow-core photonic bandgap fiber, according to the Lambert-Beer law, the laser beam of the standard fiber-delivered distributed feedback laser contacts the methane gas inside the hollow-core photonic bandgap fiber and is absorbed by the methane gas. Absorption, the laser intensity becomes weak, and the photodetector outputs a corresponding electrical signal according to the detected laser signal intensity. The second harmonic signal in the electrical signal output by the detector, and the concentration of the leaked gas is determined according to the strength of the second harmonic signal;

步骤7:最后数据处理中心根据锁相放大器检测出的二次谐波信号显示是否泄漏,根据二次谐波信号的幅值来反演甲烷泄漏浓度大小及根据二次谐波信号响应时间计算泄漏位置。Step 7: Finally, the data processing center displays whether there is leakage according to the second harmonic signal detected by the lock-in amplifier, inverts the methane leakage concentration according to the amplitude of the second harmonic signal, and calculates the leakage according to the response time of the second harmonic signal. Location.

进一步地,所述步骤的调制信号包括一个幅值为800mV,5kHz的高频正弦信号和10Hz的锯齿波扫描信号,所述控制分布式反馈激光器输出中心波长1650nm的激光光束,功率为 3-5mw,线宽小于10MHz。Further, the modulation signal of the step includes an amplitude of 800mV, a high-frequency sinusoidal signal of 5kHz and a sawtooth wave scan signal of 10Hz, and the control distributed feedback laser outputs a laser beam with a center wavelength of 1650nm, and the power is 3-5mw. , the line width is less than 10MHz.

本发明的一种天然气管道泄漏监测装置及方法具有以下优点:本发明利用空芯光纤气体传感的优势,提供了一种空芯光子带隙型光纤气体传感的天然气管道泄漏监测方法,利用空芯光子带隙型光纤为气体吸收池来吸收传感管道中收集的痕量泄漏气体,然后通过光电探测器探测天然气管道泄漏的甲烷气体吸收信号,从而及时确定管道泄漏位置,在简化操作和降低成本的同时,能够对轻微泄漏的气体泄漏提供更高的检测精确度和灵敏度,更早的预警检修,降低事故发生概率。本发明提出的天然气管道泄漏检测方法比传统分布式光纤检测方法体积小、成本低、功耗较低,提高了仪器的稳定性和可靠性,同时也降低了设备的维护成本。A natural gas pipeline leakage monitoring device and method of the present invention has the following advantages: the invention utilizes the advantages of hollow-core optical fiber gas sensing to provide a natural gas pipeline leakage monitoring method of hollow-core photonic bandgap optical fiber gas sensing, which utilizes the advantages of hollow-core optical fiber gas sensing. The hollow-core photonic bandgap optical fiber is a gas absorption cell to absorb the trace leakage gas collected in the sensing pipeline, and then detects the absorption signal of the methane gas leaked from the natural gas pipeline through the photoelectric detector, so as to determine the pipeline leakage position in time, which can simplify the operation and While reducing costs, it can provide higher detection accuracy and sensitivity for gas leaks with slight leaks, early warning maintenance, and reduce the probability of accidents. Compared with the traditional distributed optical fiber detection method, the natural gas pipeline leakage detection method proposed by the invention has smaller volume, lower cost and lower power consumption, improves the stability and reliability of the instrument, and also reduces the maintenance cost of the equipment.

附图说明Description of drawings

图1为本发明的天然气管道泄漏监测装置结构示意图;1 is a schematic structural diagram of a natural gas pipeline leakage monitoring device of the present invention;

图中标记说明:1.抽气泵;2.掺铋光纤功率放大器;3.分布式反馈激光器;4.电流控制器;5.温度控制器;6.气体探测单元;7.标准光纤;8.第一光纤耦合器;9.空芯光子带隙型光纤;10.第二光纤耦合器;11.光电探测器;12.锁相放大器;13.数据处理中心;14.传感管道;15.泄漏点;16.天然气管道;17.地下土壤。Description of symbols in the figure: 1. Air pump; 2. Bi-doped fiber power amplifier; 3. Distributed feedback laser; 4. Current controller; 5. Temperature controller; 6. Gas detection unit; 7. Standard fiber; 8. 1st fiber coupler; 9. Hollow-core photonic bandgap fiber; 10. Second fiber coupler; 11. Photodetector; 12. Lock-in amplifier; 13. Data processing center; 14. Sensing pipeline; 15. Leak point; 16. Natural gas pipeline; 17. Underground soil.

具体实施方式Detailed ways

为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明一种天然气管道泄漏监测装置及方法做进一步详细的描述。In order to better understand the purpose, structure and function of the present invention, a natural gas pipeline leakage monitoring device and method of the present invention will be described in further detail below with reference to the accompanying drawings.

如图1所示,天然气管道16埋在地下土壤17中,本发明的一种天然气管道泄漏监测装置包括传感管道14,传感管道14沿着天然气管道16上方10-20cm处平行于天然气管道16铺设,传感管道14由三部分组成,包括一根带孔阵列的聚氯乙烯管,聚氯乙烯管外覆盖一层薄的乙烯-醋酸乙烯酯膜,该膜可渗透气体,但不可渗透液体,最后外部用聚乙烯编织物保护。传感管道14的透气结构可以使天然气管道泄漏出来的气体容易进入传感管道内部。传感管道14端部伸出地面并连接一个抽气泵1,抽气泵1用于将传感管道中的气体从左往右进行输送。传感管道14内具有多个气体探测单元6,气体探测单元6与传感管道14相嵌套并密封,气体探测单元6用于探测传感管道14中收集到泄漏气体的信号,每个气体检测单元6之间的间隔约为5-10m。电流控制器4和温度控制器5连接分布式反馈激光器3,分布式反馈激光器3连接掺铋光纤功率放大器2,掺铋光纤功率放大器2连接标准光纤7,标准光纤7从地面伸入土壤连接每个气体检测单元6后再从地面伸出后连接信号分析单元。信号分析单元包括光电探测器11、锁相放大器12和数据处理中心13。标准光纤7伸出地面后连接光电探测器11,光电探测器11连接锁相放大器12,锁相放大器12连接数据处理中心13。标准光纤7用于将分布式反馈激光器3的激光光束导出。电流控制器4用于控制分布式反馈激光器3的输出电流。温度控制器5用于控制分布式反馈激光器3的工作温度。分布式反馈激光器3用于发射激光光束。掺铋光纤功率放大器2用于将分布式反馈激光器3的输出功率进行放大。光电探测器11根据检测到的激光信号强度输出相应的电信号,锁相放大器12用于检测光电探测器11输出的电信号中的二次谐波信号。数据处理中心13为计算机,用于数据处理及显示,包括显示是存在甲烷否泄漏,甲烷泄漏浓度大小及根据响应时间计算泄漏位置。As shown in FIG. 1 , the natural gas pipeline 16 is buried in the underground soil 17 . A natural gas pipeline leakage monitoring device of the present invention includes a sensing pipeline 14 , and the sensing pipeline 14 is parallel to the natural gas pipeline 10-20 cm above the natural gas pipeline 16 . 16 Lay, the sensing pipe 14 consists of three parts, including a polyvinyl chloride pipe with a perforated array covered with a thin ethylene-vinyl acetate membrane that is gas permeable but impermeable Liquid, finally externally protected with a polyethylene braid. The gas permeable structure of the sensing pipe 14 can allow the gas leaked from the natural gas pipe to easily enter the interior of the sensing pipe. The end of the sensing pipe 14 protrudes from the ground and is connected to an air pump 1, which is used to transport the gas in the sensing pipe from left to right. There are a plurality of gas detection units 6 in the sensing pipe 14. The gas detection units 6 are nested and sealed with the sensing pipe 14. The gas detection units 6 are used to detect the signal of the leaked gas collected in the sensing pipe 14. Each gas The interval between the detection units 6 is about 5-10m. The current controller 4 and the temperature controller 5 are connected to the distributed feedback laser 3, the distributed feedback laser 3 is connected to the bismuth-doped fiber power amplifier 2, the bismuth-doped fiber power amplifier 2 is connected to the standard optical fiber 7, and the standard optical fiber 7 extends from the ground into the soil to connect each After the gas detection unit 6 is extended from the ground, the signal analysis unit is connected. The signal analysis unit includes a photodetector 11 , a lock-in amplifier 12 and a data processing center 13 . The standard optical fiber 7 is connected to the photodetector 11 after extending out of the ground. The photodetector 11 is connected to the lock-in amplifier 12 , and the lock-in amplifier 12 is connected to the data processing center 13 . A standard optical fiber 7 is used to export the laser beam of the distributed feedback laser 3 . The current controller 4 is used to control the output current of the distributed feedback laser 3 . The temperature controller 5 is used to control the working temperature of the distributed feedback laser 3 . The distributed feedback laser 3 is used for emitting a laser beam. The bismuth-doped fiber power amplifier 2 is used to amplify the output power of the distributed feedback laser 3 . The photodetector 11 outputs a corresponding electrical signal according to the detected intensity of the laser signal, and the lock-in amplifier 12 is used to detect the second harmonic signal in the electrical signal output by the photodetector 11 . The data processing center 13 is a computer for data processing and display, including displaying whether there is a methane leakage, the concentration of methane leakage, and calculating the leakage position according to the response time.

当天然气管道16发生泄漏时,传感管道14吸收甲烷气体,并在抽气泵1的作用下使得气体在传感管道14内从左往右开始输送。泄漏的甲烷气体进入气体探测单元6,标准光纤7传送过来的激光被泄露气体吸收后强度减弱,光电探测器11根据气体探测单元6内的激光强度输出相应的电信号(包含各种噪声和各次谐波信号混合),锁相放大器12将光电探测器11输出的电信号中的二次谐波信号检测出,最后通过数据处理中心13得到甲烷泄漏浓度大小并根据二次谐波信号响应时间计算出泄漏位置。When the natural gas pipeline 16 leaks, the sensing pipeline 14 absorbs methane gas, and under the action of the suction pump 1 , the gas starts to be transported from left to right in the sensing pipeline 14 . The leaked methane gas enters the gas detection unit 6, and the laser light transmitted from the standard optical fiber 7 is absorbed by the leaked gas and then weakens in intensity. The photodetector 11 outputs a corresponding electrical signal (including various noises and The lock-in amplifier 12 detects the second harmonic signal in the electrical signal output by the photodetector 11, and finally obtains the methane leakage concentration through the data processing center 13 and responds according to the second harmonic signal. Calculate the leak location.

具体的,气体探测单元6包括第一光纤耦合器8、空芯光子带隙型光纤9和第二光纤耦合器10。标准光纤7连接第一光纤耦合器8,第一光纤耦合器8连接空芯光子带隙型光纤9,空芯光子带隙型光纤9连接第二光纤耦合器10,第二光纤耦合器10连接下一段标准光纤7,下一段标准光纤7连接下一个气体探测单元6。空芯光子带隙型光纤9长1m,并在一侧开有10个直径微小的气孔,使得气体更充分的进入空芯光子带隙型光纤9内部。Specifically, the gas detection unit 6 includes a first fiber coupler 8 , a hollow-core photonic bandgap fiber 9 and a second fiber coupler 10 . The standard fiber 7 is connected to the first fiber coupler 8, the first fiber coupler 8 is connected to the hollow-core photonic bandgap fiber 9, the hollow-core photonic bandgap fiber 9 is connected to the second fiber coupler 10, and the second fiber coupler 10 is connected The next segment of standard optical fiber 7 is connected to the next gas detection unit 6 . The hollow-core photonic bandgap fiber 9 is 1 m long, and has 10 air holes with tiny diameters on one side, so that the gas can enter the hollow-core photonic bandgap fiber 9 more fully.

分布式反馈激光器采用的是Nanoplus公司生产的NP-ICL-1650-T066,中心输出波长为1650nm,功率为3-5mw, 线宽小于10MHz。The distributed feedback laser adopts NP-ICL-1650-T066 produced by Nanoplus Company, the central output wavelength is 1650nm, the power is 3-5mw, and the line width is less than 10MHz.

光电探测器采用的是VIGO system公司生产的MCT光电探测器。The photodetector adopts the MCT photodetector produced by VIGO system.

锁相放大器采用STANFORD公司生产的SR830。The lock-in amplifier adopts SR830 produced by STANFORD Company.

本装置的检测方法步骤为:The steps of the detection method of this device are:

步骤1:将抽气泵1与传感管道14相连接,打开抽气泵1将传感管道14中的气体从左往右进行输送。Step 1: Connect the air pump 1 to the sensing pipe 14, turn on the air pump 1 to transport the gas in the sensing pipe 14 from left to right.

步骤2:将一个组合调制信号,包括一个幅值为800mV,5kHz的高频正弦信号和10Hz的锯齿波扫描信号,加载到电流控制器4,然后设置温度控制器5为27-30℃,控制分布式反馈激光器3输出中心波长1650nm的激光光束,功率大于 3-5mw,线宽小于10MHz。Step 2: Load a combined modulation signal, including a high-frequency sine signal with an amplitude of 800mV, a 5kHz sine wave and a 10Hz sawtooth sweep signal, into the current controller 4, and then set the temperature controller 5 to 27-30°C, control The distributed feedback laser 3 outputs a laser beam with a center wavelength of 1650 nm, the power is greater than 3-5 mw, and the line width is less than 10 MHz.

步骤3:将分布式反馈激光器3连接到掺铋光纤功率放大器2,将分布式反馈激光器3输出功率放大至160-200mW。Step 3: Connect the distributed feedback laser 3 to the bismuth-doped fiber power amplifier 2, and amplify the output power of the distributed feedback laser 3 to 160-200 mW.

步骤4:然后将通过掺铋光纤功率放大器2后的激光通过标准光纤7射入到气体探测单元6,使得分布式反馈激光器3的激光光束进入到空芯光子带隙型光纤9内。Step 4: Then, the laser light passing through the bismuth-doped fiber power amplifier 2 is injected into the gas detection unit 6 through the standard fiber 7, so that the laser beam of the distributed feedback laser 3 enters the hollow-core photonic bandgap fiber 9.

步骤5:当天然气管道泄漏点15发生泄漏时,传感管道14将泄漏的甲烷气体收集到传感管道14内并从左往右开始输送。Step 5: When the natural gas pipeline leakage point 15 leaks, the sensing pipeline 14 collects the leaked methane gas into the sensing pipeline 14 and starts to transport it from left to right.

步骤6:泄漏的甲烷气体进入空芯光子带隙型光纤9内部时,根据朗伯-比尔定律,标准光纤7输送分布式反馈激光器3的激光光束与空芯光子带隙型光纤9内部的甲烷气体接触并被吸收,激光强度变弱,此时光电探测器11根据检测到的激光信号强度输出相应的电信号(包含各种噪声和各次谐波信号混合),其中,输出的电信号中二次谐波项与泄漏气体的浓度成正比,锁相放大器12检测出电信号中的二次谐波信号,根据二次谐波信号强度来确定泄漏气体浓度的大小。Step 6: When the leaked methane gas enters the hollow-core photonic bandgap fiber 9, according to the Lambert-Beer law, the standard fiber 7 transmits the laser beam of the distributed feedback laser 3 and the methane inside the hollow-core photonic bandgap fiber 9 The gas contacts and is absorbed, and the laser intensity becomes weak. At this time, the photodetector 11 outputs a corresponding electrical signal (including a mixture of various noises and various harmonic signals) according to the detected laser signal intensity. The second harmonic term is proportional to the concentration of the leaking gas. The lock-in amplifier 12 detects the second harmonic signal in the electrical signal, and determines the concentration of the leaking gas according to the strength of the second harmonic signal.

步骤7:最后数据处理中心13可以根据锁相放大器12检测出的二次谐波信号显示是否泄漏,根据二次谐波信号的幅值来反演甲烷泄漏浓度大小及根据二次谐波信号响应时间计算泄漏位置。Step 7: Finally, the data processing center 13 can display whether there is leakage according to the second harmonic signal detected by the lock-in amplifier 12, and invert the methane leakage concentration according to the amplitude of the second harmonic signal and respond according to the second harmonic signal. Time to calculate leak location.

可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。It can be understood that the present invention is described by some embodiments, and those skilled in the art know that various changes or equivalent substitutions can be made to these features and embodiments without departing from the spirit and scope of the present invention. In addition, in the teachings of this invention, these features and embodiments may be modified to adapt a particular situation and material without departing from the spirit and scope of the invention. Therefore, the present invention is not limited by the specific embodiments disclosed herein, and all embodiments falling within the scope of the claims of the present application fall within the protection scope of the present invention.

Claims (10)

1.一种天然气管道泄漏监测装置,包括传感管道(14),所述传感管道(14)沿着地下天然气管道(16)上方平行与天然气管道(16)铺设,所述传感管道(14)为可渗透气体,但不可渗透液体材料,天然气管道(16)中泄漏的气体可进入传感管道(14)内,其特征在于,所述传感管道(14)内具有多个气体探测单元(6),所述气体探测单元(6)与传感管道(14)相嵌套并密封,所述气体探测单元(6)用于探测传感管道(14)中收集到泄漏气体的信号,所述传感管道(14)端部伸出地面并连接抽气泵(1),所述抽气泵(1)用于将传感管道(14)中的气体往气体探测单元(6)进行输送,标准光纤(7)从地面伸入土壤连接每个气体检测单元(6)后再从地面伸出连接信号分析单元,所述标准光纤(7)输送激光光束到气体检测单元(6),信号分析单元分析气体检测单元(6)的激光信号强度从而判断出是否存在甲烷泄漏。1. A natural gas pipeline leakage monitoring device, comprising a sensing pipeline (14), the sensing pipeline (14) being laid parallel to the natural gas pipeline (16) along the top of the underground natural gas pipeline (16), and the sensing pipeline (16). 14) is a gas permeable, but impermeable liquid material, the gas leaked in the natural gas pipeline (16) can enter the sensing pipeline (14), characterized in that the sensing pipeline (14) has a plurality of gas detectors A unit (6), the gas detection unit (6) is nested and sealed with the sensing pipe (14), and the gas detection unit (6) is used for detecting the signal of leaking gas collected in the sensing pipe (14) , the end of the sensing pipe (14) protrudes from the ground and is connected to an air pump (1), the air pump (1) is used to transport the gas in the sensing pipe (14) to the gas detection unit (6) , the standard optical fiber (7) extends from the ground into the soil to connect each gas detection unit (6) and then extends from the ground to connect the signal analysis unit, the standard optical fiber (7) transmits the laser beam to the gas detection unit (6), the signal The analysis unit analyzes the laser signal intensity of the gas detection unit (6) to determine whether there is a methane leak. 2.根据权利要求1所述的天然气管道泄漏监测装置,其特征在于,所述传感管道(14)沿着天然气管道(16)上方10-20cm平行与天然气管道(16)铺设。2 . The natural gas pipeline leakage monitoring device according to claim 1 , wherein the sensing pipeline ( 14 ) is laid parallel to the natural gas pipeline ( 16 ) 10-20 cm above the natural gas pipeline ( 16 ). 3 . 3.根据权利要求1所述的天然气管道泄漏监测装置,其特征在于,所述传感管道(14)包括一根带孔阵列的聚氯乙烯管,聚氯乙烯管外覆盖一层乙烯-醋酸乙烯酯膜,所述乙烯-醋酸乙烯酯膜可渗透气体,但不可渗透液体,乙烯-醋酸乙烯酯膜外部包裹聚乙烯编织物。3. The natural gas pipeline leakage monitoring device according to claim 1, wherein the sensing pipeline (14) comprises a polyvinyl chloride pipe with an array of holes, and the polyvinyl chloride pipe is covered with a layer of ethylene-acetic acid Vinyl ester film, the ethylene-vinyl acetate film is gas permeable but liquid impermeable, the ethylene-vinyl acetate film is wrapped with polyethylene braid on the outside. 4.根据权利要求1所述的天然气管道泄漏监测装置,其特征在于,每个所述气体检测单元(6)之间的间隔为5-10m。4 . The natural gas pipeline leakage monitoring device according to claim 1 , wherein the interval between each of the gas detection units ( 6 ) is 5-10 m. 5 . 5.根据权利要求1所述的天然气管道泄漏监测装置,其特征在于,包括电流控制器(4)、温度控制器(5)、分布式反馈激光器(3)和掺铋光纤功率放大器(2),所述电流控制器(4)和温度控制器(5)连接分布式反馈激光器(3),所述分布式反馈激光器(3)连接掺铋光纤功率放大器(2),所述掺铋光纤功率放大器(2)连接标准光纤(7);所述电流控制器(4)用于控制分布式反馈激光器(3)的输出电流;所述温度控制器(5)用于控制分布式反馈激光器(3)的工作温度;所述分布式反馈激光器(3)用于发射激光光束;所述掺铋光纤功率放大器(2)用于将分布式反馈激光器(3)的输出功率进行放大。5. The natural gas pipeline leakage monitoring device according to claim 1, characterized in that it comprises a current controller (4), a temperature controller (5), a distributed feedback laser (3) and a bismuth-doped fiber power amplifier (2) , the current controller (4) and the temperature controller (5) are connected to a distributed feedback laser (3), the distributed feedback laser (3) is connected to a bismuth-doped fiber power amplifier (2), and the bismuth-doped fiber power The amplifier (2) is connected to a standard optical fiber (7); the current controller (4) is used to control the output current of the distributed feedback laser (3); the temperature controller (5) is used to control the distributed feedback laser (3) ); the distributed feedback laser (3) is used for emitting a laser beam; the bismuth-doped fiber power amplifier (2) is used for amplifying the output power of the distributed feedback laser (3). 6.根据权利要求1所述的天然气管道泄漏监测装置,其特征在于,所述气体探测单元(6)包括第一光纤耦合器(8)、空芯光子带隙型光纤(9)和第二光纤耦合器(10);所述标准光纤(7)连接第一光纤耦合器(8),所述第一光纤耦合器(8)连接空芯光子带隙型光纤(9),所述空芯光子带隙型光纤(9)连接第二光纤耦合器(10),所述第二光纤耦合器(10)连接下一段标准光纤(7),下一段标准光纤(7)连接下一个气体探测单元(6)。6. The natural gas pipeline leakage monitoring device according to claim 1, wherein the gas detection unit (6) comprises a first fiber coupler (8), a hollow-core photonic bandgap fiber (9) and a second fiber An optical fiber coupler (10); the standard optical fiber (7) is connected to a first optical fiber coupler (8), and the first optical fiber coupler (8) is connected to a hollow-core photonic bandgap optical fiber (9), the hollow-core optical fiber (9) The photonic bandgap optical fiber (9) is connected to a second optical fiber coupler (10), the second optical fiber coupler (10) is connected to the next standard optical fiber (7), and the next standard optical fiber (7) is connected to the next gas detection unit (6). 7.根据权利要求1所述的天然气管道泄漏监测装置,其特征在于,所述信号分析单元包括光电探测器(11)、锁相放大器(12)和数据处理中心(13),所述标准光纤(7)伸出地面后连接光电探测器(11),所述光电探测器(11)连接锁相放大器(12),所述锁相放大器(12)连接数据处理中心(13);所述光电探测器(11)根据检测到的激光信号强度输出相应的电信号,所述锁相放大器(12)用于检测光电探测器(11)输出的电信号中的二次谐波信号;所述数据处理中心(13)用于数据处理及显示,包括显示是否存在甲烷泄漏,甲烷泄漏浓度大小及根据二次谐波信号响应时间计算泄漏位置。7. The natural gas pipeline leakage monitoring device according to claim 1, wherein the signal analysis unit comprises a photodetector (11), a lock-in amplifier (12) and a data processing center (13), the standard optical fiber (7) Connect the photodetector (11) after sticking out of the ground, the photodetector (11) is connected to the lock-in amplifier (12), and the lock-in amplifier (12) is connected to the data processing center (13); the photoelectric The detector (11) outputs a corresponding electrical signal according to the detected intensity of the laser signal, and the lock-in amplifier (12) is used to detect the second harmonic signal in the electrical signal output by the photodetector (11); the data The processing center (13) is used for data processing and display, including displaying whether there is methane leakage, the concentration of methane leakage, and calculating the leakage position according to the response time of the second harmonic signal. 8.根据权利要求6所述的天然气管道泄漏监测装置,其特征在于,所述空芯光子带隙型光纤(9)长1m,一侧开有多个气孔。8 . The natural gas pipeline leakage monitoring device according to claim 6 , wherein the hollow-core photonic bandgap optical fiber ( 9 ) is 1 m long and has a plurality of air holes on one side. 9 . 9.一种利用如权利要求1-8任一项所述的天然气管道泄漏监测装置进行天然气管道泄漏监测的方法,其特征在于,包括如下步骤:9. A method for monitoring natural gas pipeline leakage by utilizing the natural gas pipeline leakage monitoring device according to any one of claims 1-8, characterized in that, comprising the steps of: 步骤1:将抽气泵(1)与传感管道(14)相连接,打开抽气泵(1)将传感管道(14)中的气体从左往右进行输送;Step 1: Connect the air pump (1) to the sensing pipe (14), turn on the air pump (1) to transport the gas in the sensing pipe (14) from left to right; 步骤2:将一个组合调制信号加载到电流控制器4,然后设置温度控制器(5)为27-30℃,控制分布式反馈激光器(3)输出激光光束;Step 2: Load a combined modulation signal into the current controller 4, then set the temperature controller (5) to 27-30°C, and control the distributed feedback laser (3) to output the laser beam; 步骤3:将分布式反馈激光器(3)连接到掺铋光纤功率放大器(2),将分布式反馈激光器(3)输出功率放大至160-200mW;Step 3: connect the distributed feedback laser (3) to the bismuth-doped fiber power amplifier (2), and amplify the output power of the distributed feedback laser (3) to 160-200mW; 步骤4:然后将通过掺铋光纤功率放大器(2)后的激光通过标准光纤(7)射入到气体探测单元(6),使得分布式反馈激光器(3)的激光光束进入到空芯光子带隙型光纤(9)内;Step 4: Then, the laser light passing through the bismuth-doped fiber power amplifier (2) is injected into the gas detection unit (6) through the standard fiber (7), so that the laser beam of the distributed feedback laser (3) enters the hollow-core photonic band. Inside the gap fiber (9); 步骤5:当天然气管道发生泄漏时,传感管道(14)将泄漏的甲烷气体收集到传感管道(14)内并从左往右开始输送;Step 5: When the natural gas pipeline leaks, the sensing pipeline (14) collects the leaked methane gas into the sensing pipeline (14) and starts to transport it from left to right; 步骤6:泄漏的甲烷气体进入空芯光子带隙型光纤(9)内部时,根据朗伯-比尔定律,标准光纤(7)输送分布式反馈激光器3的激光光束与空芯光子带隙型光纤(9)内部的甲烷气体接触并被吸收,激光强度变弱,此时光电探测器(11)根据检测到的激光信号强度输出相应的电信号,其中,电信号中二次谐波项与泄漏气体的浓度成正比,锁相放大器(12)检测出光电探测器(11)输出的电信号中的二次谐波信号,根据二次谐波信号强度来确定泄漏气体浓度的大小;Step 6: When the leaked methane gas enters the hollow-core photonic bandgap fiber (9), according to the Lambert-Beer law, the standard fiber (7) transmits the laser beam of the distributed feedback laser 3 and the hollow-core photonic bandgap fiber (9) The internal methane gas contacts and is absorbed, and the laser intensity becomes weak. At this time, the photodetector (11) outputs a corresponding electrical signal according to the detected laser signal intensity, wherein the second harmonic term in the electrical signal is related to the leakage. The concentration of the gas is proportional, the lock-in amplifier (12) detects the second harmonic signal in the electrical signal output by the photodetector (11), and determines the concentration of the leaked gas according to the strength of the second harmonic signal; 步骤7:最后数据处理中心(13)根据锁相放大器(12)检测出的二次谐波信号显示是否泄漏,根据二次谐波信号的幅值来反演甲烷泄漏浓度大小及根据二次谐波信号响应时间计算泄漏位置。Step 7: Finally, the data processing center (13) displays whether there is leakage according to the second harmonic signal detected by the lock-in amplifier (12), inverts the methane leakage concentration according to the amplitude of the second harmonic signal, and according to the second harmonic signal The wave signal response time calculates the leak location. 10.根据权利要求9所述的天然气管道泄漏监测方法,其特征在于,所述步骤2的调制信号包括一个幅值为800mV,5kHz的高频正弦信号和10Hz的锯齿波扫描信号,所述控制分布式反馈激光器(3)输出中心波长1650nm的激光光束,功率为 3-5mw,线宽小于10MHz。10. The method for monitoring natural gas pipeline leakage according to claim 9, wherein the modulated signal in step 2 comprises an amplitude of 800mV, a high-frequency sinusoidal signal of 5kHz and a sawtooth sweep signal of 10Hz, and the control The distributed feedback laser (3) outputs a laser beam with a center wavelength of 1650nm, a power of 3-5mw, and a line width of less than 10MHz.
CN202210170692.9A 2022-02-24 2022-02-24 A kind of natural gas pipeline leakage monitoring device and method Pending CN114607944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210170692.9A CN114607944A (en) 2022-02-24 2022-02-24 A kind of natural gas pipeline leakage monitoring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210170692.9A CN114607944A (en) 2022-02-24 2022-02-24 A kind of natural gas pipeline leakage monitoring device and method

Publications (1)

Publication Number Publication Date
CN114607944A true CN114607944A (en) 2022-06-10

Family

ID=81858982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210170692.9A Pending CN114607944A (en) 2022-02-24 2022-02-24 A kind of natural gas pipeline leakage monitoring device and method

Country Status (1)

Country Link
CN (1) CN114607944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773098A (en) * 2023-08-24 2023-09-19 山东冠卓重工科技有限公司 Gas leakage detection equipment of loading and unloading arm rotary joint
CN118482347A (en) * 2024-07-04 2024-08-13 山东恒光电子科技有限公司 Methane leakage detection device and detection method

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1431269A (en) * 1972-11-28 1976-04-07 Amg Zzrbier Ltdbird T J Detection of gas leakage
JP2007033049A (en) * 2005-07-22 2007-02-08 Tokyo Electric Power Co Inc:The Multipoint optical detection system for gas concentration
CN201575308U (en) * 2009-09-02 2010-09-08 胜利油田胜利工程设计咨询有限责任公司 Tunnel open space natural gas leakage laser monitoring device
CN102997043A (en) * 2011-09-14 2013-03-27 中国石油天然气集团公司 Method and system for multiplexing/de-multiplexing natural gas pipe leakage optical fiber monitoring sensor
CN203604997U (en) * 2013-12-10 2014-05-21 苏州苏净保护气氛有限公司 Buried gas pipeline leakage monitoring and alarming system
CN105403373A (en) * 2015-12-20 2016-03-16 安徽中科智泰光电测控科技有限公司 Diffusion type natural gas station gas leakage laser online monitoring early warning apparatus
CN106290248A (en) * 2016-10-08 2017-01-04 山东微感光电子有限公司 Oil-gas mining and accumulating dangerous leakage gas optical fiber sensing system device
CN106895267A (en) * 2015-12-21 2017-06-27 西安天衡计量仪表有限公司 A kind of device for monitoring underground gas pipeline leakage
CN109000712A (en) * 2018-05-24 2018-12-14 国网山东省电力公司济南供电公司 Cable tunnel multi-parameter distributed fiber-optic sensor measuring device and measuring method
CN110376131A (en) * 2019-08-05 2019-10-25 江苏禾吉新材料科技有限公司 A kind of distribution many reference amounts fiber-optic fiber gas detection system and detection method
CN209540526U (en) * 2018-09-30 2019-10-25 上海电器科学研究所(集团)有限公司 A kind of underground pipe gallery natural gas cabin leakage monitoring system
CN209621401U (en) * 2019-01-28 2019-11-12 长安大学 A kind of early warning system based on thermo parameters method formula fiber-optic monitoring
CN110470625A (en) * 2019-08-26 2019-11-19 中国计量大学 A kind of concentration of methane gas detection device
CN210462475U (en) * 2019-07-18 2020-05-05 中海石油气电集团有限责任公司 Defeated natural gas of pipe trace leaks continuous monitoring device based on detecting tube
CN112033908A (en) * 2020-07-30 2020-12-04 大连理工大学 A single light source optical fiber photoacoustic gas sensing system and method
CN112129470A (en) * 2019-06-24 2020-12-25 北京工业大学 A simulation experiment system for monitoring micro-leakage of pipelines in underground integrated pipeline gallery
CN113757570A (en) * 2021-07-28 2021-12-07 北京市燃气集团有限责任公司 Natural gas line methane leak testing device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1431269A (en) * 1972-11-28 1976-04-07 Amg Zzrbier Ltdbird T J Detection of gas leakage
JP2007033049A (en) * 2005-07-22 2007-02-08 Tokyo Electric Power Co Inc:The Multipoint optical detection system for gas concentration
CN201575308U (en) * 2009-09-02 2010-09-08 胜利油田胜利工程设计咨询有限责任公司 Tunnel open space natural gas leakage laser monitoring device
CN102997043A (en) * 2011-09-14 2013-03-27 中国石油天然气集团公司 Method and system for multiplexing/de-multiplexing natural gas pipe leakage optical fiber monitoring sensor
CN203604997U (en) * 2013-12-10 2014-05-21 苏州苏净保护气氛有限公司 Buried gas pipeline leakage monitoring and alarming system
CN105403373A (en) * 2015-12-20 2016-03-16 安徽中科智泰光电测控科技有限公司 Diffusion type natural gas station gas leakage laser online monitoring early warning apparatus
CN106895267A (en) * 2015-12-21 2017-06-27 西安天衡计量仪表有限公司 A kind of device for monitoring underground gas pipeline leakage
CN106290248A (en) * 2016-10-08 2017-01-04 山东微感光电子有限公司 Oil-gas mining and accumulating dangerous leakage gas optical fiber sensing system device
CN109000712A (en) * 2018-05-24 2018-12-14 国网山东省电力公司济南供电公司 Cable tunnel multi-parameter distributed fiber-optic sensor measuring device and measuring method
CN209540526U (en) * 2018-09-30 2019-10-25 上海电器科学研究所(集团)有限公司 A kind of underground pipe gallery natural gas cabin leakage monitoring system
CN209621401U (en) * 2019-01-28 2019-11-12 长安大学 A kind of early warning system based on thermo parameters method formula fiber-optic monitoring
CN112129470A (en) * 2019-06-24 2020-12-25 北京工业大学 A simulation experiment system for monitoring micro-leakage of pipelines in underground integrated pipeline gallery
CN210462475U (en) * 2019-07-18 2020-05-05 中海石油气电集团有限责任公司 Defeated natural gas of pipe trace leaks continuous monitoring device based on detecting tube
CN110376131A (en) * 2019-08-05 2019-10-25 江苏禾吉新材料科技有限公司 A kind of distribution many reference amounts fiber-optic fiber gas detection system and detection method
CN110470625A (en) * 2019-08-26 2019-11-19 中国计量大学 A kind of concentration of methane gas detection device
CN112033908A (en) * 2020-07-30 2020-12-04 大连理工大学 A single light source optical fiber photoacoustic gas sensing system and method
CN113757570A (en) * 2021-07-28 2021-12-07 北京市燃气集团有限责任公司 Natural gas line methane leak testing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773098A (en) * 2023-08-24 2023-09-19 山东冠卓重工科技有限公司 Gas leakage detection equipment of loading and unloading arm rotary joint
CN116773098B (en) * 2023-08-24 2023-11-03 山东冠卓重工科技有限公司 Gas leakage detection equipment of loading and unloading arm rotary joint
CN118482347A (en) * 2024-07-04 2024-08-13 山东恒光电子科技有限公司 Methane leakage detection device and detection method

Similar Documents

Publication Publication Date Title
CN114607944A (en) A kind of natural gas pipeline leakage monitoring device and method
US11823805B2 (en) Acousto-optic leakage monitoring system for nuclear power plant main steam pipeline
CN104565826B (en) Pipeline optical fiber safety monitoring and early warning method and system
CN112576942A (en) Real-time monitoring system for hydrogen leakage
CN101619807A (en) System and method for monitoring airborne natural gas line leakage
CN101858488A (en) Oil and gas pipeline leakage monitoring method and monitoring system
CN209621401U (en) A kind of early warning system based on thermo parameters method formula fiber-optic monitoring
CN103884666A (en) Distributed-type laser combustible gas concentration monitoring method and device
CN204203091U (en) Optical fiber combustible and poisonous gas detection system
CN110608678A (en) Deep Horizontal Displacement Monitoring Device Based on Brillouin Scattering Optical Fiber
CN104061442A (en) Pipeline state detection device and detection method
CN203720081U (en) Gas parameter multipoint sensing and measurement type light path structure for laser absorption spectroscopy
CN105135215A (en) Leakage detection device for oil collecting pipeline with optical fiber method
CN108240557A (en) Natural gas transmission pipeline leakage detection system
CN116480955A (en) Underground pipe gallery gas pipeline leakage monitoring and leakage point accurate positioning system
CN201662872U (en) Active gas detection alarm system
CN202598147U (en) Natural gas pipeline leakage monitoring system based on sensing optical fiber
CN104456091B (en) Optical fiber interferometer CO2 pipeline leak detection device based on 3×3 coupler
CN204573600U (en) Based on the pipeline of nuclear power plant leakage detector of distributed optical fiber temperature measurement
CN202252874U (en) Hot fluid leakage detection and location system based on integrated optical fiber and grating cluster
CN107165677A (en) A kind of fiber grating monitoring system method for arranging for mine gas drainage
JPH0443934A (en) Leak detecting device
CN1963462A (en) Laser monitoring system for gas
CN202994656U (en) Open circuit laser methane gas detection system
CN112362546B (en) High-precision multiband portable particulate matter mass concentration measuring instrument

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination