CN114586439A - 用于移动通信中动态跨载波调度的方法及装置 - Google Patents

用于移动通信中动态跨载波调度的方法及装置 Download PDF

Info

Publication number
CN114586439A
CN114586439A CN202080073938.XA CN202080073938A CN114586439A CN 114586439 A CN114586439 A CN 114586439A CN 202080073938 A CN202080073938 A CN 202080073938A CN 114586439 A CN114586439 A CN 114586439A
Authority
CN
China
Prior art keywords
processor
control channel
pucch
transmit
physical uplink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080073938.XA
Other languages
English (en)
Inventor
乔兹瑟夫·G·纳曼斯
穆罕默德·S·阿利比·艾勒马利
阿布戴拉提夫·沙拿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Singapore Pte Ltd
Original Assignee
MediaTek Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Singapore Pte Ltd filed Critical MediaTek Singapore Pte Ltd
Publication of CN114586439A publication Critical patent/CN114586439A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

描述了移动通信中与UE和网络装置有关的动态跨载波调度的各种方案。装置可以在第一CC上接收PDCCH。装置可以在PDCCH所调度的第一CC上接收PDSCH。装置可以根据动态切换CC的配置,确定第二CC来传送PUCCH。装置可以在PDCCH所调度的第二CC上传送与PDSCH相对应的PUCCH。

Description

用于移动通信中动态跨载波调度的方法及装置
交叉引用
本发明要求2019年10月23日递交的美国临时申请案62/924,815以及2020年6月16日递交的美国临时申请案63/039,513的优先权,上述申请的全部内容以引用方式并入本发明。
技术领域
本发明有关于移动通信,且尤其有关于移动通信中与用户设备(User Equipment,UE)和网络装置有关的用于改善时延(latency)和改善上行链路控制信息(Uplink ControlInformation,UCI)传输的动态跨载波调度(cross-carrier scheduling)。
背景技术
除非另有指示,否则本部分描述的方法并非权利要求的现有技术,且不因包含在本部分中而被承认是现有技术。
在长期演进(Long-Term Evolution,LTE)或者新无线电(New Radio,NR)中,引入混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)确认(Acknowledgement,ACK)信息传输来提高传输可靠性和鲁棒性(robustness)。UE需要在HARQ-ACK码本(codebook)中针对相应的下行链路(Downlink,DL)接收来报告HARQ-ACK信息。可以在一个时隙中传送HARQ-ACK码本,其中该时隙可以由相应的下行链路控制信息(DownlinkControl Information,DCI)格式中的HARQ反馈时序指示符字段的值所指示。上述DCI格式还可以指示为HARQ-ACK信息传输所调度的物理上行链路控制信道(Physical UplinkControl Channel,PUCCH)资源。HARQ-ACK复用(multiplex)可以用于促进HARQ-ACK信息传输。对应于多个物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)传输的多个HARQ-ACK反馈可以被累积(accumulate)、复用并且被一次传送到网络装置。一个PUCCH资源可以用于承载(carry)多个HARQ-ACK反馈,以在同一个时隙中进行传送。
当前传输HARQ反馈比特的框架不适用于超可靠低时延通信(Ultra-Reliable andLow Latency Communications,URLLC)。URLLC是为针对端到端时延和可靠性有高要求的新兴应用程序而引入的。一般的URLLC要求是32个字节大小的封包应在1毫秒的端到端时延内传送,并且成功率为10-5。URLLC业务通常是零星的(sporadic)和短暂的(short),而对低时延和高可靠性的要求严格。举例来讲,URLLC的控制可靠性比数据可靠性更严格,而数据可靠性可高达10-6误块率(BLock Error Rate,BLER)。相应地,在上行链路(Uplink,UL)时隙中仅允许一个PUCCH资源用于HARQ反馈比特传输会增加传输时延。
另一方面,引入多链路操作以增加通信系统的系统容量和传输效率。多链路操作可以通过载波聚合(Carrier Aggregation,CA)或双连接(Dual Connectivity,DC)来实现,其中附加的链路可以用来增加能够向UE转移(transfer)或从UE转移的数据量。UE可以被配置有一个以上的无线电链路(比如,分量载波(Component Carrier,CC)),并且可以连接到一个以上的网络节点(比如,服务小区)。在CA框架下,支持跨载波调度以提高传输效率和降低时延。跨载波调度可以使UE能够连接到不同的网络节点以在不同的载波上接收下行链路数据。跨载波调度也可以用来平衡在不同分量载波上调度的业务的负载。在没有跨载波调度的情况下,物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)上的下行链路调度分配(assignment)仅对传输它们的分量载波有效。通过跨载波调度,可以在与接收PDCCH的分量载波不同的分量载波上接收下行链路调度分配。
然而,在当前的NR框架中,不支持用于UCI传输(比如PUCCH)的跨载波调度。在第3代合作伙伴计划(3rd Generation Partnership Project,3GPP)第16版(Release-16)中,PUCCH载波被半静态地配置给PUCCH小区组中的单个小区。在时分双工(Time DivisionDuplex,TDD)系统中,上行链路/下行链路TDD样式(pattern)是URLLC时延的瓶颈。TDD允许上行链路和下行链路使用整个频谱,但是上行链路和下行链路在不同的时隙中。时间可以被分成短时隙,一些可以被指定用于上行链路,而另一些可以被指定用于下行链路。这种方法支持不对称业务和随时间变化的上行链路和下行链路需求。然而,由于仅能在上行链路时隙中调度PUCCH,所以在TDD样式分配更多时隙作为下行链路时隙的事件中,上行链路时隙之间的持续时间将被拉得过长,导致时延过长。最坏情况下的PUCCH对齐延迟(alignmentdelay)主要取决于下行链路和上行链路的长度,并且可能会禁止应用URLLC重传。因此,需要在PUCCH传输中引入跨载波调度,并改进URLLC的UCI传输。
相应地,如何降低对齐延迟/时延并提高可靠性是新开发的无线通信网络中的URLLC应用的重要问题。因此,当支持URLLC时,需要提供适当的跨载波调度机制和UCI传输改进以获得更好的性能。
发明内容
下述发明内容仅仅是说明性的,并不旨在以任何方式对本发明进行限制。也就是说,提供本发明内容是用来介绍本发明所描述的新颖且非显而易见的技术的概念、亮点、益处和优点。优选的实施方式将会在具体实施方式部分做进一步描述。因此,以下发明内容既不旨在标识所要求保护主题的本质特征,也不旨在确定所要求保护主题的范围。
本发明的一个目的是为解决上述与移动通信中的UE和网络装置有关的动态跨载波调度以改善时延和改善UCI传输有关的问题提出解决办法或方案。
一方面,一种方法可以包含:装置在第一CC上接收PDCCH。该方法还可以包含:装置在PDCCH所调度的第一CC上接收PDSCH。该方法还可以包含:装置根据动态切换CC的配置,确定第二CC来传送PUCCH。该方法还可以包含:装置在PDCCH所调度的第二CC上传送与PDSCH相对应的PUCCH。
一方面,一种方法可以包含:装置接收配置,该配置可用于在多个CC上配置多个SR资源。该方法还可以包含:装置发起SR进程。该方法还可以包含:装置从多个CC上的多个SR资源中确定一个SR资源来传送SR。该方法还可以包含:装置在所确定的SR资源上传送SR。
一方面,一种方法可以包含:装置确定PUCCH格式来传送HARQ-ACK信息。该方法还可以包含:装置使用两个或三个OFDM符号的长度来传送PUCCH格式。该方法还可以包含:装置以至少一个DMRS符号来开始PUCCH格式。该方法还可以包含:装置传送该PUCCH格式。该PUCCH格式可以包含PUCCH格式1、PUCCH格式3和PUCCH格式4中的至少一个。
值得注意的是,虽然本发明的描述可以是在特定的无线电接入技术、网络和网络拓扑(诸如长期演进(Long-Term Evolution,LTE)、高级LTE(LTE-Advanced)、高级LTE加强版(LTE-Advanced Pro)、第5代(5th Generation,5G)、新无线电(New Radio,NR)、物联网(Internet of Things,IoT)和窄带物联网(Narrow Band-IoT,NB-IoT))的上下文中提供的,但是本发明提出的概念、方案及其任何变形或衍生可以在、用于或由其他类型的无线电接入技术、网络和网络拓扑来实施。因此,本发明的范围不限于本发明所描述的示例。
附图说明
附图被包括在内以提供对本发明的进一步理解,附图被并入且构成本发明的一部分。附图可例示本发明的实施方式,且和描述一起用来解释本发明的原理。可以理解的是,附图不一定是按比例的,因为为了清楚地例示本发明的概念,一些组件显示的尺寸可能会与实际实施中的尺寸不成比例。
图1是示出在根据本发明实施方式的方案下的示范性场景(scenario)的示意图。
图2是在根据本发明实施方式的方案下的示范性场景的示意图。
图3是在根据本发明实施方式的方案下的示范性场景的示意图。
图4是在根据本发明实施方式的方案下的示范性场景的示意图。
图5是根据本发明实施方式的示范性通信装置和示范性网络装置的框图。
图6是根据本发明实施方式的示范性处理的流程图。
图7是根据本发明实施方式的示范性处理的流程图。
图8是根据本发明实施方式的示范性处理的流程图。
具体实施方式
本发明公开了所要求保护主题的详细实施例和实施方式。然而应该理解,本发明公开的实施例和实施方式仅仅是对要求保护的主题的说明,要求保护的主题可以以各种形式实施。然而,本发明可以以许多不同的形式来实施,并且不应该被解释为限于本发明所描述的示范性实施例和实施方式。相反,提供这些示范性实施例和实施方式,使得对本发明的描述是彻底的和完整的,以及可以把本发明的范围充分传达给本领域的技术人员。在下面的描述中,公知的特征和技术细节可能会省略,以避免不必要地模糊本发明的实施例和实施方式。
概述
根据本发明的实施方式与移动通信中与UE和网络装置有关的动态跨载波调度以改善时延相关的各种技术、方法、方案和/或解决办法有关。根据本发明,多种可能的解决办法可以单独实施或共同实施。也就是说,虽然这些可能的解决办法可以在下面单独描述,但是这些解决办法中的两种或多种可以以一种组合来实施,也可以以另一种组合来实施。
在当前的NR框架中,不支持用于UCI传输(比如PUCCH)的跨载波调度。在3GPPRelease-16中,PUCCH载波被半静态地配置给PUCCH小区组中的单个小区。在TDD系统中,上行链路/下行链路TDD样式是URLLC时延的瓶颈。TDD允许上行链路和下行链路使用整个频谱,但是上行链路和下行链路在不同的时隙中。时间可以被分成短时隙,一些可以被指定用于上行链路,而另一些可以被指定用于下行链路。这种方法支持不对称业务和随时间变化的上行链路和下行链路需求。然而,由于仅能在上行链路时隙中调度PUCCH,所以在TDD样式分配更多时隙作为下行链路时隙的事件中,上行链路时隙之间的持续时间将被拉得过长,导致时延过长。最坏情况下的PUCCH对齐延迟主要取决于下行链路和上行链路的长度,并且可能会禁止应用URLLC重传。因此,需要在PUCCH传输中引入跨载波调度,并改进URLLC的UCI传输。
鉴于上述情况,本发明提出与UE和网络装置的动态跨载波调度有关的多个方案以改善时延和改善UCI传输。根据本发明的方案可支持TDD载波的CA系统,其中TDD载波在不同CC上的上行链路时隙之间具有适当的时间偏移。UE可以被配置有动态跨载波调度以用于PUCCH。用于PUCCH的CC的动态切换有助于降低具有两个或多个载波的CA的时延,其中该两个或多个载波可具有不同的TDD样式。此外,还可以为UE配置PDSCH和/或物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)的动态跨载波调度。此外,可以支持在一个小区组内的每个CC上配置具有调度请求(Scheduling Request,SR)资源的SR。UE可以配置有多个CC上的多个SR资源。另一方面,还可以引入对PUCCH格式的改进。可以对当前的PUCCH格式1、3和4进行重新设计以提高可靠性并降低时延。相应地,通过应用本发明的方案,可以提高UCI传输的性能以降低对齐延迟/时延。有URLLC要求的应用可以受益于本发明所实现的改进。
图1可例示在根据本发明实施方式的方案下的示范性场景100。场景100可以包含UE和多个网络节点,该些网络节点可以是无线通信网络(比如LTE网络、5G网络、NR网络、IoT网络或NB-IoT网络)的一部分。场景100可例示PUCCH的动态跨载波调度的示例。UE可以配置有多个CC,例如第一CC(比如CC1)和第二CC(比如CC2)。对于上行链路/下行链路时隙来说,第一CC和第二CC可以具有不同的TDD样式。举例来讲,对于CC1来说,下行链路时隙与上行链路时隙的比例可以是3:1,对于CC2来说可以是5:1。为了降低对齐延迟,UE可以配置用于PUCCH的CC的动态切换。
特别地,UE可以在第一CC上接收PDCCH。PDCCH可以在第一CC上调度PDSCH。UE可以在PDCCH所调度的第一CC上接收PDSCH。然后,UE可以将与PDSCH相对应的HARQ-ACK信息传送给网络节点。因此,PDCCH还可以调度PUCCH以用于传送HARQ-ACK信息。为了降低时延,可以在不同的CC上调度PUCCH。举例来讲,可以在第二CC上分配用于PUCCH传输的最接近的上行链路时隙。因此,UE可以根据动态切换CC的配置确定第二CC来传送PUCCH。然后,UE可以在PDCCH所调度的第二CC上传送与PDSCH相对应的PUCCH。
本发明可提供用于配置可动态选择的多个CC选项的方法以用于携带HARQ-ACK信息的PUCCH。举例来讲,在一个小区组内,用于PUCCH的CC是可动态选择的。用于动态切换CC的配置可以包括被配置为用于传送PUCCH的多个CC。可以对可选择的CC的数量进行一些限制。举例来讲,可以仅有预定数量的CC(比如K=2个CC)用于传送PUCCH。UE可以接收用于配置小区组内能够用来传送PUCCH的多个CC的配置(比如,无线电资源控制(Radio ResourceControl,RRC)配置)。举例来讲,可以支持指定(appoint)小区组内的多个服务小区以用于PUCCH传送(比如,每个PDSCH服务小区(PDSCH-ServingCell)配置)。可以允许PDSCH-ServingCell配置的PUCCH-Cell字段最多列出K个服务小区索引(ServCellIndex)的元素。PUCCH承载的HARQ-ACK码本的内容与为PUCCH传输所选择的CC(比如CC2)可以无关。
用于动态切换CC的配置可以包括物理(Physical,PHY)层信令。在一个示例中,该配置可以包括数据字段,该数据字段可用于从多个不同的CC中选择一个CC以传送PUCCH。可以引入一个新字段,用于在K个不同的CC之间进行明确的选择。在另一示例中,该配置可以包括一个指示,该指示用于指示多个CC上最早的上行链路时隙/子时隙。可以选择任何CC上的最早的上行链路时隙/子时隙。上述行为可以通过HARQ进程进行配置,或者通过特殊的K1索引/数值来发信,或通过任何其他可用的方式来发送1个比特。在另一个示例中,该配置可以包括用来选择CC和时隙/子时隙的数据字段。CC和时隙/子时隙可以通过相同的字段K1来选择,该字段可计算(count)该时隙/子时隙在所有可以被选择用于PUCCH传输的CC上的边界。可选地,在该边界之后的时隙/子时隙包含上行链路符号或灵活的下行链路/上行链路符号的事件中,可以增加时隙/子时隙的计数。K1偏移的参考点可以是PDSCH的结束或者N1UE处理时间线的结束。
对于上述配置可以存在一些约束/规定。例如,不同的CC可以采用不同的参数集(numerology)或时隙/子时隙分割配置。尽管可能会影响K1字段能够处理的偏移的范围,但是可以不限制用于PUCCH传输的CC的数量。可以针对每个HARQ进程来启用上述所有的特征(比如用于PUCCH的动态跨载波调度)。可选地,可以支持在同一小区组内形成HARQ小区组,以允许同时构建多个HARQ-ACK码本。那么所提出的行为可以适用于HARQ小区组而不是小区组。可以引入PHY层信令方法来选择HARQ小区组。
在一些实施方式中,可以基于不同的无线电网络临时标识(Radio NetworkTemporary Identity,RNTI)(比如,小区RNTI(Cell-RNTI,C-RNTI)、调制和编码方案C-RNTI(Modulation and Coding Scheme-C-RNTI,MCS-C-RNTI)等)、搜索空间或不同的DCI格式/尺寸来配置PUCCH的动态跨载波调度,其中PUCCH的动态跨载波调度可动态指示用于承载PUCCH的载波。在另一个实施方式中,可以用任何其他的DCI字段来指示用于承载PUCCH的分量载波。在另一个实施方式中,UE特定的DCI或组公共DCI(Group Common-DCI,GC-DCI)可以用于发信通知承载PUCCH的分量载波。
在一些实施方式中,可以对PUCCH的动态跨载波调度进行一些限制。例如,用于承载动态调度的PUCCH的一组载波可以包含在PUCCH组或小区组内。用于动态跨载波调度的载波可以跨PUCCH组和/或小区组。M个载波的组(比如,PUCCH组、小区组或新定义的小区组)可以映射到能够承载PUCCH的N个载波的特定组。可以允许在M个载波和N个能够承载PUCCH的相关载波之间进行PUCCH的动态跨载波调度。如果载波指示符字段被添加到用于PUCCH载波指示的DCI中,则比特字段(bit-field)的尺寸可以由ceiling(log2(N))来确定。在另一个实施方式中,该组M个载波中的每个载波可以配置有相关联的一组N个载波,该组N个载波能够承载动态PUCCH。该组N个载波可以是该组M个载波的子组。或者,该组M个载波和该组N个载波可以重叠或者可以完全不相交。M个载波的组(比如,PUCCH组、小区组或新定义的小区组)可以被网络节点(例如,gNB)配置有PUCCH的半静态或动态跨载波调度。上述对载波子集的限制也可以应用于跨载波指示的任何方法(举例来讲,诸如DCI或搜索空间之类的明确指示,或者诸如最早可用的PUCCH之类的隐含指示)。
在一些实施方式中,可以为PUCCH的动态跨载波调度而执行UE能力报告。特别地,可以将支持PUCCH的动态跨载波调度定义为UE能力。在UE能够支持PUCCH的动态跨载波调度的事件中,UE可以被配置为向网络节点进行报告。UE可以报告其能够支持PUCCH的动态跨载波调度的组(比如PUCCH组、小区组或新定义的小区组)的数量或最大数量。在UE能够支持PUCCH的动态跨载波调度的事件中,UE还可以报告其对每个组(比如PUCCH组、小区组或新定义的小区组)的能力。在另一个实施方式中,UE可以报告其能够支持动态跨载波调度的PUCCH组的数量。在另一个实施方式中,UE可以报告其能够支持半静态跨载波调度和/或动态跨载波调度的PUCCH组的数量。在另一个实施方式中,可以定义用于动态跨载波调度的特定数量的CC,并且UE可以报告其能够支持的数量。此外,UE可以针对每个组(比如PUCCH组、小区组或新定义的小区组)来报告其能够支持PUCCH动态跨载波调度的载波的数量N。如果UE能够支持PUCCH的动态跨载波调度,则UE可以针对每个载波进行报告。UE可以报告其能够支持PUCCH的动态跨载波调度的载波总数或最大数量。
在一些实施方式中,优先级(Priority,PRI)字段和/或类似K1的其他字段可以用0进行填充(pad)以对齐DCI尺寸,使得可以动态选择承载PUCCH的载波而不改变DCI尺寸(例如,与不同优先级的情况类似)。当启用动态跨载波PUCCH时,可以启用这种特定的DCI尺寸对齐。当启用PUCCH的动态跨载波传输时,可以在PUCCH组或小区组中同时构建多个高优先级的HARQ-ACK码本。
在一些实施方式中,可以对用于PUCCH的动态跨载波调度的配置进行一些限制。举例来讲,用于PUCCH传输的动态载波选择可以限制为以下中的至少一个:承载HARQ-ACK的PUCCH、承载高优先级HARQ-ACK码本、高优先级SR和高优先级信道状态信息(Channel StateInformation,CSI)的PUCCH。可以为低优先级的HARQ配置半静态PUCCH。可以为高优先级的HARQ配置动态的PUCCH选择。在另一示例中,组(比如PUCCH组、小区组或新定义的小区组)可以配置有PUCCH的动态载波选择以用于高优先级的HARQ-ACK。在另一示例中,组(比如PUCCH组、小区组或新定义的小区组)可以配置有PUCCH的静态载波选择以用于低优先级的HARQ-ACK。在另一示例中,对PUCCH传输的动态载波选择的支持可以限制为支持基于子时隙的HARQ-ACK反馈进程的载波。在另一示例中,对于其中一些载波支持基于子时隙的HARQ-ACK反馈但是其中一些载波支持基于时隙的HARQ-ACK反馈的一组载波、PUCCH组或者小区组来说,可以不允许支持PUCCH传输的动态载波选择。
在另一示例中,可以仅允许具有相同参数集的载波用于PUCCH传输的动态载波选择。在另一示例中,可以仅允许一些PUCCH格式(比如,仅允许短PUCCH格式)用于PUCCH传输的动态载波选择。在另一示例中,当启用PUCCH传输的动态载波选择时,可以定义默认的PUCCH载波。当PUCCH和另一个高优先级传输之间存在冲突时,默认的PUCCH载波可以用作回退(fall-back)。当通过动态载波选择调度的PUCCH与高优先级的PUSCH冲突时,在PUCCH承载高优先级HARQ/SR的事件中,PUCCH和PUSCH可以复用。当通过动态载波选择调度的PUCCH与高优先级的PUSCH冲突时,在PUCCH承载低优先级HARQ/SR的事件中,PUCCH传输可以回退到默认的PUCCH载波。在另一示例中,可以仅允许HARQ-ACK码本类型1或类型2进行PUCCH传输的动态载波选择。
在一些实施方式中,在由于冲突而丢弃PUCCH传输的事件中,网络节点可以在另一个特定载波上请求相同的PUCCH传输。
另外,还可以提出具有动态载波选择的PUCCH资源确定以用于PUCCH传输。结合以下关于K1的所有提议,当在具有不同参数集和/或上行链路子时隙分割(包括基于时隙的配置)的载波之间支持使用明确或隐含的载波指示进行PUCCH传输的动态载波选择时,在PDSCH接收结束(比如,子载波间隔(Sub-Carrier Spacing,SCS)为u1)和PUCCH传输开始(比如,SCS为u2)之间所需要的UE处理时间可以由max(T1,T2)确定。T1=N1_1x S1,N1_1是SCS为u1的单个参数集的UE处理时间,S1是SCS为u1的符号持续时间。T2=N1_2x S2,N1_2是SCS为u2的单个参数集的UE处理时间,S2是SCS为u2的符号持续时间。当通过规则隐含地选择目标载波时,可以针对每个假设的目标载波单独评估max(T1,T2)。
在一些实施方式中,当在具有不同参数集和/或上行链路子时隙分割(包括基于时隙的配置)的载波之间支持使用明确或隐含的载波指示来进行PUCCH传输的动态载波选择时,K1可以对允许进行跨载波调度的一组载波应用共同的单位(common unit)。方便的是,K1可以是CC中所配置的最短子时隙长度,以CC和所配置的或活动的带宽部分(BandwidthPart,BWP)中最高SCS的参数集来表示。在另一实施方式中,对于可能参与跨载波调度及其角色的每对载波来说,K1可以应用特定于每对载波的灵活单位(flexible unit)。方便的是,可以通过尝试用于PUCCH的所有假设的CC并使用二维(2D)表格来评估K1,其中该2D表格可以为排序的每对CC(比如,第一CC:PDCCH,第二CC:PUCCH)定义K1的单位。在另一实施方式中,K1可以应用为所指示的用于PUCCH的目标载波所配置的单位。
在另一方面中,对于TDD系统来说,PDSCH/PUSCH对齐延迟的最坏情况可主要取决于下行链路和上行链路的长度,并且可能会禁止应用URLLC重传。因此,为了降低对齐延迟,可以采用TDD载波的CA系统,其中TDD载波在不同CC的上行链路时隙之间具有适当的时间偏移,并且可以引入PDSCH/PUSCH的动态跨载波调度。图2可例示在根据本发明实施方式的方案下的示范性场景200。场景200可以包含UE和多个网络节点,该多个网络节点可以是无线通信网络(比如LTE网络、5G网络、NR网络、IoT网络或NB-IoT网络)的一部分。场景200可例示PDSCH和/或PUSCH的动态跨载波调度的示例。UE可以被配置有多个CC,例如第一CC(比如CC1)和第二CC(比如CC2)。对于上行链路/下行链路时隙来说,第一CC和第二CC可以具有不同的TDD样式。举例来讲,CC1和CC2可以具有相反的下行链路/上行链路时隙分布。为了降低对齐延迟,UE可以被配置为动态切换用于PDSCH和/或PUSCH的CC。
特别地,UE可以在第一CC上接收用于调度PDSCH的第一PDCCH。第一PDCCH可以在第一CC上调度PDSCH。UE可以在由第一PDCCH调度的第一CC上接收PDSCH。UE还可以在第一CC上接收用于调度PUSCH的第二PDCCH。为了降低时延,可以在具有最接近的上行链路时隙的不同CC(比如第二CC)上调度PUSCH。因此,UE可以根据动态切换CC的配置确定第二CC来传送PUSCH。然后,UE可以在第二PDCCH所调度的第二CC上传送PUSCH。
类似地,第二CC也能够在不同的CC(比如第一CC)上调度PUSCH/PUCCH,并且可以监测多个载波以用于PDCCH。如图2所示,UE可以在第二CC上接收第一PDCCH以调度PDSCH。第一PDCCH可以在第二CC上调度PDSCH。UE可以在由第一PDCCH所调度的第二CC上接收PDSCH。UE还可以在第二CC上接收用于调度PUSCH的第二PDCCH。为了降低时延,可以在具有最接近的上行链路时隙的不同CC(比如第一CC)上调度PUSCH。因此,UE可以根据动态切换CC的配置确定第一CC来传送PUSCH。然后,UE可以在第二PDCCH所调度的第一CC上传送PUSCH。
在一些实施方式中,动态跨载波调度也可以应用于PDSCH。UE可以在第一CC上接收用于调度PDSCH的PDCCH。第一PDCCH可以在不同的CC(比如第二CC)上调度PDSCH。UE可以根据动态切换CC的配置确定在第二CC上接收PDSCH。UE可以在PDCCH所调度的第二CC上接收PDSCH。
本发明可提供用于配置可动态选择的多个CC选项的方法,可在该多个CC上传送用于PDSCH/PUSCH的调度信息。举例来讲,可以对可选择的CC的数量进行一些限制。在另一个示例中,可以仅当从PDSCH或为PDSCH所分配的资源中检测到URLLC或高优先级业务的物理指示时而启用上述行为。在另一示例中,PDCCH监测可以被限制为单个载波上的每个监测时机或者CC上的一组监测时机。当多个CC包含下行链路和监测时机时,可以使用一些优先级规则(例如,小区组内的主小区可以具有更高的优先级)。多个CC可以被配置有不同的参数集。
在另一方面中,对于TDD系统来说,SR对齐延迟的最坏情况可主要取决于下行链路和上行链路的长度,并且可能会禁止应用URLLC重传。因此,为了降低对齐延迟,可以采用TDD载波的CA系统,其中TDD载波的CC之间具有适当的时间偏移,并且可以支持在小区组内的每个CC上配置具有SR资源的SR。图3可例示在根据本发明实施方式的方案下的示范性场景300。场景300可包含UE和多个网络节点,该多个网络节点可以是无线通信网络(比如LTE网络、5G网络、NR网络、IoT网络或NB-IoT网络)的一部分。场景300可例示在多个CC上配置的多个SR资源的示例。UE可以被配置有多个CC,例如第一CC(比如CC1)和第二CC(比如CC2)。对于上行链路/下行链路时隙来说,第一CC和第二CC可以具有不同的TDD样式。举例来讲,对于CC1来说,下行链路时隙与上行链路时隙的比例可以是3:1,对于CC2来说可以是5:1。为了降低对齐延迟,UE可以被配置有分布在每个CC上的多个SR资源。举例来讲,可以在小区组内的每个CC上配置至少一个SR资源。
特别地,UE可以接收配置,该配置可以配置多个CC上的多个SR资源。该配置可以包括逻辑信道配置、调度请求配置、调度请求资源配置、PUCCH配置或PUCCH资源配置。当UE尝试发起SR进程时,UE可以从多个CC上的多个SR资源中确定一个SR资源来传送SR。举例来讲,UE可以确定多个CC上最早的SR资源来传送SR。然后,UE可以在所确定的SR资源上传送SR。一个SR可以有多个SR资源(例如,PUCCH、周期和偏移),可以利用共同禁止定时器(commonprohibition timer)来操作该多个SR资源。分配给同一SR的SR资源可以位于一个小区组内的不同CC和上行链路BWP上。
为了进一步改进PUCCH传输以降低延迟和/或提高HARQ反馈的可靠性,还可以引入对PUCCH格式的一些改进。图4可例示在根据本发明实施方式的方案下的示范性场景400。场景400可以包含UE和多个网络节点,多个网络节点可以是无线通信网络(比如LTE网络、5G网络、NR网络、IoT网络或NB-IoT网络)的一部分。3GPP Release-15中的传统PUCCH格式1包含4个符号,并且在N1 UE处理时间线之后开始。因此,PUCCH传输时延可以包括N1+对齐+PUCCH持续时间。为了降低时延,可以提出对PUCCH格式的一些改进。UE可以被配置为支持2个、3个、4个等数量的符号长度格式。PUCCH格式的长度可以由M+N的长度来确定,其中N个解调参考信号(Demodulation Reference Signal,DMRS)符号之后可以是M个长的ACK和DMRS符号的混合。
特别地,UE可以被配置为确定PUCCH格式以传送HARQ-ACK信息。UE可以使用两个或三个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的长度来传送PUCCH格式。举例来讲,PUCCH格式可以包括2个或3个符号。因此,可以降低PUCCH持续时间以改善时延。此外,UE可以通过以至少一个(比如一个或多个)DMRS符号来开始PUCCH格式以变换(shuffle)PUCCH符号。UE可以通过在多个DMRS符号之后跟着至少一个HARQ-ACK信息符号来布置(arrange)PUCCH格式。举例来讲,PUCCH格式可以以一个DMRS符号开始,之后跟着一个HARQ-ACK数据符号。在另一示例中,PUCCH格式可以以两个DMRS符号开始,之后跟着一个HARQ-ACK数据符号。然后,UE可以传送具有改进格式的PUCCH格式。PUCCH格式可以包括PUCCH格式1、PUCCH格式3和PUCCH格式4中的至少一个。
另一方面,为了进一步降低时延,UE可以被配置为支持与N1 UE处理时间线相重叠的DMRS。通常,PUCCH传输可能仅能在UE处理时间线N1结束之后调度,从PDSCH传输的最后一个符号开始测量。然而,利用本发明提出的新格式,当识别出了PUCCH资源时,可以开始传输预先计算的DMRS符号(可能与PDSCH传输的解码重叠)。识别出PUCCH资源意味着后面的调度PUCCH的DCI不能覆盖(override)当前的传输。因此,UE可以将至少一个DMRS符号(比如1个或2个DMRS符号)与N1 UE处理时间线重叠。也可以说,UE可以在N1 UE处理时间期间传送DMRS符号以节省时间。N1 UE处理时间的一部分可以同时用于传送DMRS符号。UE可以在N1UE处理时间之后立即开始传送HARQ-ACK数据。因此,可以降低总的PUCCH传输时延(比如,N1+对齐+PUCCH持续时间)。
在一些实施方式中,UE可以被配置为在两个传送天线上支持2个循环延迟分集(Cyclic-Delay Diversity,CDD)。UE可以通过CDD在两个传送天线上传送PUCCH格式。循环延迟量是预定义或配置的,因此,可以以对网络节点不透明的方式来应用循环延迟量。在另一种实施方式中,为了支持使用上述新的PUCCH格式来进行跳频(frequency hopping),本发明提出可以在非连续符号上建立在相同频率上传送的DMRS和UCI符号之间的关联。UE可以被配置为支持在同一跳频上发生时间不相邻的DMRS和ACK符号。UE可以在非连续OFDM符号上传送DMRS符号和HARQ-ACK信息。
例示性实施方式
图5例示根据本发明实施方式的示范性通信装置510和示范性网络装置520的框图500。通信装置510和网络装置520可以执行各种功能,来实施本发明描述的无线通信中与UE和网络装置有关的有动态跨载波调度以改善时延和改善UCI传输有关的方案、技术、处理和方法,包括上述的场景/方案以及下述的处理600、700和800。
通信装置510可以是电子装置的一部分,其中电子装置可以是UE,诸如便携式或移动装置、可穿戴装置、无线通信装置或计算装置。例如,通信装置510可以在智能手机、智能手表、个人数字助理、数码相机或计算设备(诸如平板电脑、手提电脑或笔记本电脑)中实施。通信装置510也可以是机器型装置的一部分,其中机器型装置可以是IoT、NB-IoT或IIoT装置,诸如固定或静态装置、家庭装置、有线通信装置或计算装置。举例来讲,通信装置510可以在智能恒温器(thermostat)、智能冰箱、智能门锁、无线扬声器或者家庭控制中心中实施。或者,通信装置510可以以一个或多个集成电路(Integrated-Circuit,IC)芯片的形式实施,诸如包括但不限于一个或多个单核处理器、一个或多个多核处理器、一个或多个精简指令集计算(Reduced-Instruction Set Computing,RISC)处理器或者一个或多个复杂指令集计算(Complex-Instruction-Set-Computing,CISC)处理器。通信装置510可以包含图5所示组件的至少一些,诸如处理器512。通信装置510还可以包含一个或多个与本发明提出的方案不相关的其他组件(比如外部电源、显示设备和/或用户界面设备),因此为了简洁起见,通信装置510的这类组件既不在图5中示出,也不在下面进行描述。
网络装置520可以是电子装置的一部分,其中电子装置可以是网络节点,诸如基站、小小区(small cell)、路由器或者网关(gateway)。例如,网络装置520可以在LTE、高级LTE或者高级LTE加强版网络中的演进型节点B(evolved Node B,eNB)或者5G、NR、NR-U、IoT、NB-IoT或IIoT网络中的下一代节点B(next generation Node B,gNB)中实施。或者,网络装置520可以以一个或多个IC芯片的形式实施,诸如包括但不限于一个或多个单核处理器、一个或多个多核处理器、一个或多个RISC处理器或者CISC处理器。网络装置520可以包含图5所示组件的至少一些,诸如处理器522。网络装置520还可以包含一个或多个与本发明提出的方案不相关的其他组件(比如外部电源、显示设备和/或用户界面设备),因此为了简洁起见,网络装置520的这类组件既不在图5中示出,也不在下面进行描述。
一方面,各处理器512和处理器522可以以一个或多个单核处理器、一个或多个多核处理器或一个或多个CISC处理器的形式实施。也就是说,虽然本发明可使用单数术语“处理器”来表示处理器512和处理器522,但是根据本发明,各处理器512和处理器522可以在一些实施方式中包含多个处理器,而在其他实施方式中包含单个处理器。另一方面,各处理器512和处理器522可以以具有电子组件的硬件(和固件,可选)的形式实施,其中电子组件包括但不限于一个或多个晶体管、一个或多个二极管、一个或多个电容、一个或多个电阻、一个或多个电感、一个或多个忆阻器(memristor)和/或一个或多个变容二极管(varactor),上述电子组件可以经过配置和布置来实现根据本发明的特定目的。换句话讲,在至少一些实施方式中,各处理器512和处理器522可以是专门设计、布置和配置来在设备(比如,以通信装置510为代表)和网络(比如,以网络装置520为代表)中执行根据本发明各种实施方式的特定任务(包括降低功耗)的专用机器。
在一些实施方式中,通信装置510也可以包含收发器516,收发器516可与处理器512耦接(couple),并且能够无线传送和接收数据。在一些实施方式中,通信装置510还可以包含存储介质514,存储介质514可与处理器512耦接,并且能够由处理器512访问并在其中存储数据。在一些实施方式中,网络装置520也可以包含收发器526,收发器526可与处理器522耦接,并且能够无线传送和接收数据。在一些实施方式中,网络装置520还可以包含存储介质524,存储介质524可与处理器522耦接,并且能够由处理器522访问并在其中存储数据。相应地,通信装置510和网络装置520可以分别经由收发器516和收发器526互相进行无线通信。为了帮助更好地理解,下面对各通信装置510和网络装置520的操作、功能和能力的描述是在移动通信环境的上下文中提供的,在移动通信环境中,通信装置510可以在通信装置或UE中实施或者作为通信装置或UE实施,网络装置520可以在通信网络的网络节点中实施或者作为通信网络的网络节点实施。
在一些实施方式中,处理器512可以经由收发器516在第一CC上接收PDCCH。PDCCH可以在第一CC上调度PDSCH。处理器512可以经由收发器516在PDCCH所调度的第一CC上接收PDSCH。然后,处理器512可以将与PDSCH相对应的HARQ-ACK信息传送给网络节点。因此,PDCCH还可以调度PUCCH以用于传送HARQ-ACK信息。为了降低时延,可以在不同的CC上调度PUCCH。举例来讲,可以在第二CC上分配用于PUCCH传输的最接近的上行链路时隙。因此,处理器512可以根据动态切换CC的配置确定第二CC来传送PUCCH。然后,处理器512可以经由收发器516在PDCCH所调度的第二CC上传送与PDSCH相对应的PUCCH。
在一些实施方式中,处理器512可以经由收发器516接收用于配置小区组内能够用来传送PUCCH的多个CC的配置(比如RRC配置)。处理器512可以经由PHY层信令接收动态切换CC的配置。
在一些实施方式中,在UE能够支持PUCCH的动态跨载波调度的事件中,处理器512可以被配置为向网络装置520进行报告。处理器512可以报告其能够支持PUCCH的动态跨载波调度的组(比如PUCCH组、小区组或新定义的小区组)的数量或最大数量。在UE能够支持PUCCH的动态跨载波调度的事件中,处理器512还可以报告其对每个组(比如PUCCH组、小区组或新定义的小区组)的能力。
在一些实施方式中,处理器512可以报告其能够支持动态跨载波调度的PUCCH组的数量。在另一个实施方式中,处理器512可以报告其能够支持半静态跨载波调度和/或动态跨载波调度的PUCCH组的数量。在另一个实施方式中,可以定义用于动态跨载波调度的特定数量的CC,并且处理器512可以报告其能够支持的数量。
在一些实施方式中,处理器512可以针对每个组(比如PUCCH组、小区组或新定义的小区组)来报告其能够支持PUCCH动态跨载波调度的载波的数量N。如果UE能够支持PUCCH的动态跨载波调度,则处理器512可以针对每个载波进行报告。处理器512可以报告其能够支持PUCCH的动态跨载波调度的载波总数或最大数量。
在一些实施方式中,处理器512可以经由收发器516在第一CC上接收用于调度PDSCH的第一PDCCH。第一PDCCH可以在第一CC上调度PDSCH。处理器512可以经由收发器516在由第一PDCCH调度的第一CC上接收PDSCH。处理器512还可以经由收发器516在第一CC上接收用于调度PUSCH的第二PDCCH。为了降低时延,可以在具有最接近的上行链路时隙的不同CC(比如第二CC)上调度PUSCH。因此,处理器512可以根据动态切换CC的配置确定第二CC来传送PUSCH。然后,处理器512可以经由收发器516在第二PDCCH所调度的第二CC上传送PUSCH。
在一些实施方式中,处理器512可以经由收发器516在第二CC上接收第一PDCCH以调度PDSCH。第一PDCCH可以在第二CC上调度PDSCH。处理器512可以经由收发器516在由第一PDCCH所调度的第二CC上接收PDSCH。处理器512还可以经由收发器516在第二CC上接收用于调度PUSCH的第二PDCCH。为了降低时延,可以在具有最接近的上行链路时隙的不同CC(比如第一CC)上调度PUSCH。因此,处理器512可以根据动态切换CC的配置确定第一CC来传送PUSCH。然后,处理器512可以经由收发器516在第二PDCCH所调度的第一CC上传送PUSCH。
在一些实施方式中,处理器512可以经由收发器516在第一CC上接收用于调度PDSCH的PDCCH。第一PDCCH可以在不同的CC(比如第二CC)上调度PDSCH。处理器512可以根据动态切换CC的配置确定在第二CC上接收PDSCH。处理器512可以经由收发器516在PDCCH所调度的第二CC上接收PDSCH。
在一些实施方式中,处理器512可以经由收发器516接收配置,该配置可以配置多个CC上的多个SR资源。当处理器512尝试发起SR进程时,处理器512可以从多个CC上的多个SR资源中确定一个SR资源来传送SR。举例来讲,处理器512可以确定多个CC上最早的SR资源来传送SR。然后,处理器512可以经由收发器516在所确定的SR资源上传送SR。
在一些实施方式中,处理器512可以被配置为确定PUCCH格式以传送HARQ-ACK信息。处理器512可以使用两个或三个OFDM符号的长度来传送PUCCH格式。此外,处理器512可以通过以至少一个(比如一个或多个)DMRS符号来开始PUCCH格式以变换(shuffle)PUCCH符号。处理器512可以通过在多个DMRS符号之后跟着至少一个HARQ-ACK信息符号来布置PUCCH格式。然后,处理器512可以经由收发器516传送具有改进格式的PUCCH格式。PUCCH格式可以包括PUCCH格式1、PUCCH格式3和PUCCH格式4中的至少一个。
在一些实施方式中,处理器512可以将至少一个DMRS符号(比如1个或2个DMRS符号)与N1处理时间线重叠。也可以说,处理器512可以在N1处理时间期间传送DMRS符号以节省时间。N1处理时间的一部分可以同时用于传送DMRS符号。处理器512可以经由收发器516在N1处理时间之后立即开始传送HARQ-ACK数据。
例示性处理
图6例示根据本发明实施方式的示范性处理600。处理600可以是上述场景/方案的示范性实施方式,其部分或全部与本发明中动态跨载波调度以改善时延有关。处理600可以代表通信装置510的特征的一方面实施方式。处理600可以包含由一个或多个方框610、620、630和640所例示的一个或多个操作、动作或功能。虽然例示为分离方框,但是根据所需要的实施方式,处理600的各种方框可以划分成额外的方框、组合成更少的方框或者消除。而且,处理600的方框可以按照图6所示的顺序执行,或者也可以按照不同的顺序执行。处理600可以由通信装置510、任何合适的UE或机器型设备实施。下面在通信装置510的上下文中对处理600进行描述,但这仅仅是例示性的,并非是限制性的。处理600可以从方框610开始。
在610,处理600可以包含:装置510的处理器512在第一CC上接收PDCCH。处理600可以从610进行到620。
在620,处理600可以包含:处理器512在PDCCH所调度的第一CC上接收PDSCH。处理600可以从620进行到630。
在630,处理600可以包含:处理器512根据动态切换CC的配置,确定第二CC来传送PUCCH。处理600可以从630进行到640。
在640,处理600可以包含:处理器512可以在PDCCH所调度的第二CC上传送与PDSCH相对应的PUCCH。
在一些实施方式中,该配置可以包括被配置用来传送PUCCH的多个CC。
在一些实施方式中,处理600可以包含:处理器512接收配置,该配置用于配置小区组内能够用来传送PUCCH的多个CC。
在一些实施方式中,PUCCH所承载的内容与确定的第二CC无关。
在一些实施方式中,该配置可以包括物理层信令。
在一些实施方式中,该配置可以包括数据字段,数据字段可用来从多个不同的CC中选择一个CC以传送PUCCH。
在一些实施方式中,该配置可以包括一个指示,该指示可用于指示多个CC上最早的上行链路子时隙。
在一些实施方式中,该配置可以包括用来选择CC和子时隙的数据字段。
在一些实施方式中,第一CC和第二CC可以包括不同的参数集或者子时隙分割配置。
在一些实施方式中,处理600可以包含:处理器512根据动态切换CC的配置,确定第二CC来传送PUSCH。处理600还可以包含:处理器512在PDCCH所调度的第二CC上传送PUSCH。
在一些实施方式中,处理600可以包含:处理器512在第二CC上接收PDCCH。处理600还可以包含:处理器512在PDCCH所调度的第二CC上接收PDSCH。处理600还可以包含:处理器512根据动态切换CC的配置,确定第一CC来传送PUCCH。处理600还可以包含:处理器512在PDCCH所调度的第一CC上传送与PDSCH相对应的PUCCH。
在一些实施方式中,处理600可以包含:处理器512根据动态切换CC的配置,确定在第二CC上接收PDSCH。处理600还可以包含:处理器512在PDCCH所调度的第二CC上接收PDSCH。
图7例示根据本发明实施方式的示范性处理700。处理700可以是上述场景/方案的示范性实施方式,其部分或全部与本发明中改善UCI传输有关。处理700可以代表通信装置510的特征的一方面实施方式。处理700可以包含由一个或多个方框710、720、730和740所例示的一个或多个操作、动作或功能。虽然例示为分离方框,但是根据所需要的实施方式,处理700的各种方框可以划分成额外的方框、组合成更少的方框或者消除。而且,处理700的方框可以按照图7所示的顺序执行,或者也可以按照不同的顺序执行。处理700可以由通信装置510、任何合适的UE或机器型设备实施。下面在通信装置510的上下文中对处理700进行描述,但这仅仅是例示性的,并非是限制性的。处理700可以从方框710开始。
在710,处理700可以包含:装置510的处理器512接收配置,该配置可用于在多个CC上配置多个SR资源。处理700可以从710进行到720。
在720,处理700可以包含:处理器512发起SR进程。处理700可以从720进行到730。
在730,处理700可以包含:处理器512从多个CC上的多个SR资源中确定一个SR资源来传送SR。处理700可以从730进行到740。
在740,处理700可以包含:处理器512在所确定的SR资源上传送SR。
在一些实施方式中,处理700可以包含:处理器512确定多个CC上最早的SR资源来传送SR。
在一些实施方式中,该配置可以包括小区组内的每个CC上的至少一个SR资源。
图8例示根据本发明实施方式的示范性处理800。处理800可以是上述场景/方案的示范性实施方式,其部分或全部与本发明中改进PUCCH格式有关。处理800可以代表通信装置510的特征的一方面实施方式。处理800可以包含由一个或多个方框810、820、830和840所例示的一个或多个操作、动作或功能。虽然例示为分离方框,但是根据所需要的实施方式,处理800的各种方框可以划分成额外的方框、组合成更少的方框或者消除。而且,处理800的方框可以按照图8所示的顺序执行,或者也可以按照不同的顺序执行。处理800可以由通信装置510、任何合适的UE或机器型设备实施。下面在通信装置510的上下文中对处理800进行描述,但这仅仅是例示性的,并非是限制性的。处理800可以从方框810开始。
在810,处理800可以包含:装置510的处理器512确定PUCCH格式来传送HARQ-ACK信息。处理800可以从810进行到820。
在820,处理800可以包含:处理器512使用两个或三个OFDM符号的长度来传送PUCCH格式。处理800可以从820进行到830。
在830,处理800可以包含:处理器512以至少一个DMRS符号来开始PUCCH格式。处理800可以从830进行到840。
在840,处理800可以包含:处理器512传送PUCCH格式。PUCCH格式可以包括PUCCH格式1、PUCCH格式3和PUCCH格式4中的至少一个。
在一些实施方式中,处理800可以包含:处理器512将至少一个DMRS符号与UE处理时间线重叠。
在一些实施方式中,处理800可以包含:处理器512通过在多个DMRS符号之后跟着至少一个HARQ-ACK信息来布置PUCCH格式。
在一些实施方式中,处理800可以包含:处理器512在非连续OFDM符号上传送DMRS符号和HARQ-ACK信息。
在一些实施方式中,处理800可以包含:处理器512通过两个传送天线上的CDD来传送PUCCH格式。
附加说明
本发明描述的主题有时例示了不同的组件包含于或连接至不同的其他组件。需要理解的是,这样描述的架构仅仅是示范性的,实际上也可以实施能够实现相同功能的其它架构。从概念上讲,实现相同功能的任何组件的布置被有效地“关联”起来,以实现期望的功能。因此,无论架构或中间组件如何,任何两个在此被组合以实现特定功能的组件可以视为彼此“关联”,以实现期望的功能。同样,任何两个如此关联的组件也可以被视为彼此“可操作地连接”或“可操作地耦接”以实现期望的功能,并且任何两个能够如此关联的组件也可以被视为彼此“可操作可耦接地”以实现期望的功能。可操作可耦接的具体示例包括但不限于物理上可匹配的和/或物理上交互的组件和/或无线可交互的和/或无线交互的组件和/或逻辑交互的和/或逻辑可交互的组件。
而且,关于本发明中基本上任何复数和/或单数术语的使用,本领域技术人员可以根据上下文和/或应用,适当地将复数变换为单数和/或将单数变换为复数。为了清楚起见,本发明可明确地阐述各种单数/复数的置换。
此外,本领域技术人员应该理解,一般来说,本发明所使用的术语,尤其是权利要求(比如权利要求的主体)中所使用的术语,通常旨在作为“开放式”术语,比如术语“包含”应当解释为“包含但不限于”,术语“具有”应当解释为“至少具有”,术语“包括”应当解释为“包括但不限于”等。本领域技术人员还应该理解,如果意图引用具体数量的权利要求陈述,则该意图将明确地记述在权利要求中,并且在不存在这种陈述的情况下,则不存在这样的意图。例如,为辅助理解,权利要求可能包含了引导性短语“至少一个”和“一个或多个”的使用以引入权利要求陈述。然而,这种短语的使用不应解释为暗指通过不定冠词“一”或“一个”引入权利要求陈述将包含该所引入的权利要求陈述的任何特定权利要求局限于仅包含一个该陈述的实施方式,即使当同一权利要求包括了引入性短语“一个或多个”或“至少一个”以及诸如不定冠词“一”或“一个”时(比如“一”和/或“一个”应当解释为表示“至少一个”或“一个或多个”);这同样适用于引导权利要求记述项的定冠词的使用。另外,即使明确地记述了被引入的权利要求陈述的具体数量,本领域技术人员应该认识到这些陈述应当解释为至少表示所陈述的数量(比如没有其它修饰语的陈述“两个陈述物”表示至少两个陈述物或两个或多个的陈述物)。此外,在使用类似于“A、B和C等中的至少一个”的习惯用法的实例中,通常这样的构造旨在表达本领域技术人员理解的该习惯用法的含义,比如“具有A、B和C中的至少一个的系统”将包括但不限于仅具有A、仅具有B、仅具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B和C等等的系统。在使用类似于“A、B或C等中的至少一个”的习惯用法的实例中,通常这样的构造旨在表达本领域技术人员理解的该习惯用法的含义,比如“具有A、B或C中的至少一个的系统”将包括但不限于仅具有A、仅具有B、仅具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B和C等等的系统。本领域技术人员还应理解,无论是在说明书、权利要求或附图中,呈现两个或多个可选项的几乎任何转折词和/或短语都应当理解为包括一项、任一项或两项的可能性。例如,术语“A或B”应当理解为包括“A”或“B”或“A和B”的可能性。
通过前面的陈述应当理解,本发明为了例示的目的描述了本发明的各种实施方式,并且可以在不偏离本发明的范围和实质的情况下进行各种修改。相应地,本发明所公开的各种实施方式不旨在限制,真正的保护范围和实质由权利要求指示。

Claims (20)

1.一种方法,包括:
由装置的处理器在第一分量载波上接收物理下行链路控制信道;
由所述处理器在所述物理下行链路控制信道所调度的所述第一分量载波上接收物理下行链路共享信道;
由所述处理器根据动态切换分量载波的配置,确定第二分量载波来传送物理上行链路控制信道;以及
由所述处理器在所述物理下行链路控制信道所调度的所述第二分量载波上传送与所述物理下行链路共享信道相对应的所述物理上行链路控制信道。
2.如权利要求1所述的方法,其特征在于,所述配置包括被配置用来传送所述物理上行链路控制信道的多个分量载波。
3.如权利要求1所述的方法,其特征在于,还包括:
由所述处理器接收配置,所述配置用于配置小区组内能够用来传送所述物理上行链路控制信道的多个分量载波。
4.如权利要求1所述的方法,其特征在于,所述物理上行链路控制信道所承载的内容与确定的所述第二分量载波无关。
5.如权利要求1所述的方法,其特征在于,所述配置包括物理层信令。
6.如权利要求1所述的方法,其特征在于,所述配置包括数据字段,所述数据字段用来从多个不同的分量载波中选择一个分量载波以传送所述物理上行链路控制信道。
7.如权利要求1所述的方法,其特征在于,所述配置包括一个指示,所述指示用于指示多个分量载波上最早的上行链路子时隙。
8.如权利要求1所述的方法,其特征在于,所述配置包括用来选择分量载波和子时隙的数据字段。
9.如权利要求1所述的方法,其特征在于,所述第一分量载波和所述第二分量载波包括不同的参数集或者子时隙分割配置。
10.如权利要求1所述的方法,其特征在于,还包括:
由所述处理器根据动态切换分量载波的所述配置,确定所述第二分量载波来传送物理上行链路共享信道;以及
由所述处理器在所述物理下行链路控制信道所调度的所述第二分量载波上传送所述物理上行链路共享信道。
11.如权利要求1所述的方法,其特征在于,还包括:
由所述处理器在所述第二分量载波上接收所述物理下行链路控制信道;
由所述处理器在所述物理下行链路控制信道所调度的所述第二分量载波上接收所述物理下行链路共享信道;
由所述处理器根据动态切换分量载波的所述配置,确定所述第一分量载波来传送所述物理上行链路控制信道;以及
由所述处理器在所述物理下行链路控制信道所调度的所述第一分量载波上传送与所述物理下行链路共享信道相对应的所述物理上行链路控制信道。
12.如权利要求1所述的方法,其特征在于,还包括:
由所述处理器根据动态切换分量载波的所述配置,确定在所述第二分量载波上接收所述物理下行链路共享信道;以及
由所述处理器在所述物理下行链路控制信道所调度的所述第二分量载波上接收所述物理下行链路共享信道。
13.一种方法,包括:
由装置的处理器接收配置,所述配置用于在多个分量载波上配置多个调度请求资源;
由所述处理器发起调度请求进程;
由所述处理器从所述多个分量载波上的所述多个调度请求资源中确定一个调度请求资源来传送调度请求;以及
由所述处理器在所确定的调度请求资源上传送所述调度请求。
14.如权利要求13所述的方法,其特征在于,所述确定包括确定所述多个分量载波上最早的调度请求资源来传送所述调度请求。
15.如权利要求13所述的方法,其特征在于,所述配置包括小区组内的每个分量载波上的至少一个调度请求资源。
16.一种方法,包括:
由装置的处理器确定物理上行链路控制信道格式来传送混合自动重传请求确认信息;
由所述处理器使用两个或三个正交频分复用符号的长度来传送所述物理上行链路控制信道格式;
由所述处理器以至少一个解调参考信号符号来开始所述物理上行链路控制信道格式;以及
由所述处理器传送所述物理上行链路控制信道格式,
其中,所述物理上行链路控制信道格式包括物理上行链路控制信道格式1、物理上行链路控制信道格式3和物理上行链路控制信道格式4中的至少一个。
17.如权利要求16所述的方法,其特征在于,还包括:
由所述处理器将所述至少一个解调参考信号符号与用户设备处理时间线重叠。
18.如权利要求16所述的方法,其特征在于,还包括:
由所述处理器通过在多个解调参考信号符号之后跟着至少一个混合自动重传请求确认信息来布置所述物理上行链路控制信道格式。
19.如权利要求16所述的方法,其特征在于,所述传送包括在非连续正交频分复用符号上传送所述解调参考信号符号和所述混合自动重传请求确认信息。
20.如权利要求16所述的方法,其特征在于,所述传送包括通过两个传送天线上的循环延迟分集来传送所述物理上行链路控制信道格式。
CN202080073938.XA 2019-10-23 2020-10-22 用于移动通信中动态跨载波调度的方法及装置 Pending CN114586439A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962924815P 2019-10-23 2019-10-23
US62/924,815 2019-10-23
US202063039513P 2020-06-16 2020-06-16
US63/039,513 2020-06-16
PCT/CN2020/122734 WO2021078189A1 (en) 2019-10-23 2020-10-22 Method and apparatus for dynamic cross-carrier scheduling in mobile communications

Publications (1)

Publication Number Publication Date
CN114586439A true CN114586439A (zh) 2022-06-03

Family

ID=75620405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080073938.XA Pending CN114586439A (zh) 2019-10-23 2020-10-22 用于移动通信中动态跨载波调度的方法及装置

Country Status (3)

Country Link
US (1) US20220338226A1 (zh)
CN (1) CN114586439A (zh)
WO (1) WO2021078189A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115801212A (zh) * 2022-11-17 2023-03-14 北京物资学院 应用于载波聚合的上行下行时隙配比指示方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871410B2 (en) * 2020-05-12 2024-01-09 Qualcomm Incorporated Joint shared channel timing allocation in downlink control information
EP4207663A1 (en) * 2020-09-25 2023-07-05 Wilus Institute of Standards and Technology Inc. Method, apparatus, and system for generating harq-ack codebook in wireless communication system
CN117378162A (zh) * 2021-05-07 2024-01-09 联发科技(新加坡)私人有限公司 移动通信中物理上行链路控制信道载波切换的方法和装置
WO2022247928A1 (en) * 2021-05-27 2022-12-01 Mediatek Singapore Pte. Ltd. Method and apparatus for scheduling of physical uplink control cnannel (pucch) carrier switching in mobile communications
EP4125233A1 (en) * 2021-07-30 2023-02-01 Panasonic Intellectual Property Corporation of America User equipment and base station involved in resource indication for control channel carrier switching
CN116137964A (zh) * 2021-09-18 2023-05-19 北京小米移动软件有限公司 一种传输和获取调度信息的方法、装置、设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923223B2 (en) * 2010-08-16 2014-12-30 Qualcomm Incorporated Physical uplink control channel resource allocation for multiple component carriers
EP3253108A4 (en) * 2015-01-28 2018-08-15 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
WO2018201488A1 (en) * 2017-05-05 2018-11-08 Zte Corporation Methods and apparatus for configuring a scheduling request
CN110351056B (zh) * 2018-04-04 2021-07-09 大唐移动通信设备有限公司 一种harq-ack消息的传输方法、终端及基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115801212A (zh) * 2022-11-17 2023-03-14 北京物资学院 应用于载波聚合的上行下行时隙配比指示方法和装置

Also Published As

Publication number Publication date
WO2021078189A1 (en) 2021-04-29
US20220338226A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
JP7228019B2 (ja) 無線通信システムにおいて信号を送信又は受信する方法及びそのための装置
US11510190B2 (en) System and method for delay scheduling
US20210266114A1 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
US10764759B2 (en) Method for transmitting and receiving wireless signal and device for same
KR101611326B1 (ko) 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국
US20190253291A1 (en) Method and user equipment for receiving dowlink channel, and method and base station for transmitting downlink channel
CN106664706B (zh) 在支持未授权带的无线接入系统中配置传输机会时段的方法和设备
US9337984B2 (en) Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
CN107241178B (zh) 在无线通信系统中接收控制信息的方法和装置
US10764880B2 (en) Configuration of downlink transmissions
US20180234998A1 (en) Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
CN114586439A (zh) 用于移动通信中动态跨载波调度的方法及装置
US20180376497A1 (en) Control information reception method and user equipment, and control information transmission method and base station
WO2013066086A1 (ko) 무선통신 시스템에서 ack/nack 수신 방법 및 장치
KR20150058146A (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
KR20150005915A (ko) 상향링크 자원 결정 방법 및 이를 이용한 상향링크 제어 신호 전송 방법, 그리고 이들을 위한 장치
WO2022247928A1 (en) Method and apparatus for scheduling of physical uplink control cnannel (pucch) carrier switching in mobile communications
EP4167515A1 (en) Method and apparatus for pucch carrier switching and pucch repetition in mobile communications
CN116746262A (zh) 移动通信中的跨载波调度的方法和装置
CN117378162A (zh) 移动通信中物理上行链路控制信道载波切换的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination