CN114581963A - 基于重构差异的oct指纹切面图像真伪检测方法 - Google Patents

基于重构差异的oct指纹切面图像真伪检测方法 Download PDF

Info

Publication number
CN114581963A
CN114581963A CN202210191133.6A CN202210191133A CN114581963A CN 114581963 A CN114581963 A CN 114581963A CN 202210191133 A CN202210191133 A CN 202210191133A CN 114581963 A CN114581963 A CN 114581963A
Authority
CN
China
Prior art keywords
image
data
images
positive
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210191133.6A
Other languages
English (en)
Inventor
王海霞
朱成芳
张怡龙
陈朋
梁荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202210191133.6A priority Critical patent/CN114581963A/zh
Publication of CN114581963A publication Critical patent/CN114581963A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

一种基于重构差异的OCT指纹切面图像真伪检测方法,包括:S1、构建全卷积神经网络模型,包括编码器、生成器、特征提取器;S2、收集OCT系统采集的图像,预处理完成后,随机选取70%的正样本图像作为训练数据;选取另外30%的正样本图像和负样本图像,数量均衡后作为测试数据;步骤S3、训练网络模型;选用划分好的训练图像作为输入数据,设定损失函数,用于优化编码器、生成器;设定对比损失,用于优化特征提取器;对所建网络模型进行多轮次训练,通过反向传播,对模型权重参数进行更新优化直到损失函数趋向收敛时,停止训练;步骤S4、测试网络模型;应用训练好的网络模型,选用测试数据输入模型进行测试,根据设定阈值对输入图像进行真伪判别。

Description

基于重构差异的OCT指纹切面图像真伪检测方法
技术领域
本发明涉及生物特征识别、异常检测技术领域,具体应用于检测伪造OCT指纹切面图像。
背景技术
光学相干断层扫描技术(OCT)的一大特点是可探得生物组织二维或三维结构图像。当应用在手指时,可以探得手指皮下信息,这除了可以用于重构指纹并识别之外,也提升了活体检测能力,具备一定程度上的防伪能力。不过,目前的基于OCT的指纹识别系统,通常在采集完图像之后,需要人工参与进行判断图像的真实性,仍然缺乏一种高效、准确的自动辨伪方法。
伪造样本检测,是异常检测中的一项具体应用。近几年,异常检测领域中相关研究,更多的选用了深度学习方法,相比传统方法,其应用过程更简单、检测性能更佳。常规的神经网络分类模型,虽然取得了较好的真伪区分力,但是模型训练时需要正、负样本,两种样本数量得均衡,此外普遍为闭环模型,如果数据量增加,准确度又会下降,缺乏良好的泛化性。这些问题,无疑增添了许多训练成本。因此,一种只使用一类数据进行训练的想法出现了,也可以称作是单类别分类模型,目的是尽可能的只识别出参与训练的这种类别,而另外类别直接归为负类。目前普遍使用自动编码器、对抗生成网络等生成模型实现,根据重构差异程度来实现类别区别。但是直接将该种网络结构应用于伪造OCT指纹切面图像检测上,效果并不理想,主要还是源于OCT指纹切面图像并非自然图像,不做很好的预处理的话,存在大量的无关噪声、背景信息,影响最终的判别结果。
发明内容
本发明要克服现有技术在OCT指纹切面图像的辨伪上的缺点,提供一种简易、自动化且不需要大量复杂预处理的用于检测伪造指纹OCT切面图像的方法。
本发明是基于OCT指纹识别系统的一部分,属于图像质量判别部分,目的是在进行指纹识别之前便能把筛选出伪造指纹,提高识别正确性。
本发明的基本实现原理是仅使用正样本(真实手指B-scan图像)训练神经网络模型,由于模型只在正样本中训练,模型自学习到的是正样本数据分布状况,包括隐空间(latent space)和图像像素两者数据分布,模型只对正样本有很好的重构效果,该类样本经过编码器、解码器后生成的图像质量高,与输入图的差异也不大,拥有较小的重构差异,但若是负样本(仿体B-scan图像),则达不到上述效果。模型训练完成,输入图像若是负样本,由于重新复原出来的图像更像真实图像,所以和输入图像比较会表现出较大的差异,根据此点差异,可以设定阈值进行真伪判别。
其中,由于输入图像中存在的噪声会增加重构后两图在像素上的差异,所以只使用像素差异来作为衡量真假的标准是不准确的,而经过神经网络提取的特征,可以更多体现主要语义信息,一定程度上解决了这个问题,故本发明方法中的差异比较主要是从特征向量层面上进行比较的。
本发明所提出的方法是基于重构差异的OCT指纹切面图像辨伪方法,具体步骤为:
步骤S1、构建全卷积神经网络模型。该模型主体由编码器、生成器、特征提取器三部分组成,如附图说明图1所示。先由编码器获取输入图像在潜空间中的数据分布的特征图,然后再使用生成器从获取的数据分布中重新构造出与输入图像相似的图像。由于需要在特征空间进行相似度评估,但是解码器最终输出的特征图信息,特征耦合度仍然较高,而且原始图像中背景占据了较大部分,这使得特征中保留了相当大部分原始图像中的背景信息,难以直接作为图像的特征表示,用于后续特征比较,所以模型中又额外加入了特征提取器,即特征提取模块,来获取输入图像更具语义信息的特征表示,该部分使用ResNet作为基本结构,为了能更准确定位到图像中感兴趣区域,减少背景内容干扰,加入了通道注意力模块以及空间注意力模块。
步骤S2:准备训练数据、测试数据。收集OCT系统采集的图像,其中来源于不同个体真人手指的B-scan图像作为正样本图像,来源于不同仿制材料所制仿体的B-scan图像作为负样本图像,此外还需收集10张OCT系统在不放置待测物体时的图像,只有背景的图像。不过由于部分原始采集图像存在质量欠佳问题,尤其是图像左右两侧无用信息过多,故需要在训练之前对图像进行增强处理。具体过程为:对原始尺寸1800*500的B-scan图像进行图像裁剪操作,分别裁去原始图像左右200像素,得到1400*500的B-scan图像,然后再对图像尺寸进行调整,使用双三次插值方法,将该裁剪后的图像大小缩放至需要的大小尺寸,实验中缩放至256*256并转换为灰度图像。在预处理方法后,仅从正样本图像中,随机选取70%的正样本图像作为训练数据。选取另外30%的正样本图像和负样本图像,数量均衡后作为测试数据。对10张只含背景的图像,进行数据增强扩充数量至100张,保存用于后续操作。数据增强具体方式包括:随机裁剪之后再重新调整成原来的大小、随机高斯模糊、随机翻转。
步骤S3、训练网络模型,整体训练流程可见附图说明图2。选用划分好的训练图像作为输入数据,每次加载数据,原始图像数据保存备份,再使用随机大小的黑色色块进行随机位置遮挡,遮挡操作后得到的图像数据记作x′,先后经过编码器E(*)、生成器G(*)得到对应重新构造出来的图像,记作G(E(x′))。计算重构图和输入原始未遮挡图在像素点上差异度,期望差异值尽量小,使得生成图分布尽量逼近原始输入图,使用L1 Loss平均绝对误差,记作重构误差Lrecon,计算方式如下:
Lrecon=||G(E(x′))-||x||1 (1)
其中,x表示原始输入图像的数据分布状况,G(E(x′))表示经由网络模型后重构复原出图像的数据分布状况。该损失函数仅应用于编码器和生成器部分,用以提升图像重构质量。
为了缓解特征提取器训练后期可能存在的过拟合问题,提升模型鲁棒性,可以使用简单的数据增强操作对数据进行扩增。需要对x和G(E(x))做垂直翻转,得到对应增强后的图像数据x^、G(E(x))^,将未增强和增强后的数据共计4组数据输入到特征提取器中,获取到的特征向量作为正特征向量,记作zpos,同时随机选取同样数量,在步骤S2中准备的增强后的背景图像数据,送入特征提取器中,该部分获得的特征向量作为负特征向量,记作zneg。先从zpos中选取一正特征向量作为锚点,记作zo,依次和同批次中另一种特征向量成对组合,在这些组合中,锚点和正特征向量组成的配对组合称为正数据对,而和负特征向量组成的配对组合称为负数据对,假设总特征向量数为M,经过上述组合操作可得3组正数据对,M-4组负数据对,合计M-1组。之后依次选取剩余的正特征向量,重复上述操作。
目标期望正数据对相似度高,而期望负数据对相似度低。数据对中的两向量的相似度由余弦相似度计算体现,其值越接近于1,表示两向量越相似,具体如下式所示:
Figure BDA0003520573800000031
其中,S(a,b)表示为向量za与向量zb数据对的余弦相似度,*T表示向量转置,||*||表示向量的模长,γ为尺度参数,用于调整余弦相似度原始[-1,1]范围。
确定相似度衡量标准之后,设定对比损失函数Lcon,该损失函数在定义上类似于softmax-交叉熵损失函数,在损失函数优化的过程中,逐渐提高正数据对相似度的占比,从而实现特征提取器部分的学习目标:正数据对相似度最大化,负数据对相似度最小化。先计算其中一种锚点组成的正数据对在所有含该锚点组合中的占比,目标期望该占比越大越好,所以损失函数需要再取负号,如下式所示:
Figure BDA0003520573800000032
其中,Lcon_anchor_n表示以第n个正特征向量为锚点的正数据对的平均损失值,M为含锚点zo_n的正数据对总数量,S(zo_n,zpos_i)表示第i个含锚点zo_n的正数据对的余弦相似度,N为含锚点zo_n的负数据对总数量,S(zo_n,zneg_j)表示第j个含锚点zo_n的负数据对的余弦相似度。
接着,计算剩余锚点组合的损失值,同样依次进行上述计算,最后对所有锚点组合取得的损失值进行求和平均操作,得到特征提取器部分最终对比损失Lcon
Figure BDA0003520573800000041
其中,N为锚点总数量,该损失函数仅应用于特征提取器部分。
设定好损失函数后,对所建网络模型进行多轮次训练,通过反向传播,对模型权重参数进行更新优化,直到损失函数趋向收敛时,可以停止训练。
步骤S4、测试网络模型,整体测试流程可见附图说明图3。选用划分好的测试数据作为输入数据,记作x,进行测试,测试过程类似于步骤S3训练过程,x经过编码器E(*)、生成器G(*)得到对应重新构造出来的图像,记作G(E(x)),输入特征提取器中,同样使用余弦相似度计算x、G(E(x))对应特征向量z1、z2的相似度并保存,通常来说正样本的相似度普遍会是高值,负样本普遍会是低值。紧接着根据所有测试数据的余弦相似性计算结果,绘制ROC曲线,综合准确率、误检率、漏检率设定合适的阈值。设定只要余弦相似性计算高于阈值,可以认定是真实手指图像,反之则认定是仿制手指图像。
本发明的优点是:
本发明所提出的网络模型,相比常规用于防伪的神经网络模型——一种典型二分类网络模型,模型训练需要真、假两类数据均衡,而本发明仅需使用一个类别的数据再增添少量的补充数据即可,在实际应用中使用真实手指B-scan图像作为主训练数据,B-scan背景图像作为补充数据,有效降低了网络模型样本训练成本。
本发明所网络模型提出的特征提取器中,使用通道、空间注意力机制,一点程度上减少了背景信息对所提特征的干扰。使用对比损失函数,使正正样本更贴近、正负样本更疏远,提升正负样本特征区分度,具有良好的泛化性。
本发明所提出的模型是一种端到端的模型,不需要复杂的预处理,不需要保存标准正样本的特征向量,使用训练好的模型,输入一张常规OCT切面图像,根据输入图像和重构图像在特征向量上的差异度,即可判断该图像的真伪。
附图说明
图1a~图1c是本发明神经网络模型结构图,其中图1a是编码器、生成器网络结构,图1b是特征提取器网络结构图,图1c特征提取器注意力模块图;
图2是本发明检测模型的训练流程图;
图3是本发明检测模型的测试流程图;
图4a~图4b是本发明实验中正样本输入以及对应模型重构出图像,其中图4a是输入图像,图4b是重构图像;
图5a~图5b是本发明实验中负样本输入以及对应模型重构出图像,其中图5a是输入图像,图5b是重构图像。
具体实施方式
为了更加清晰明确地表述本发明的目的、技术方案和优势,下面对本发明的具体实施方案进行详细描述。
本发明是一种基于重构差异的OCT指纹切面图像真伪检测方法,构建了全卷积神经网络模型,包括了编码器、生成器、特征提取器三个部分,其中编码器、生成器部分用于重构图像。重构图像与正样本表现出较小的重构差异,而面对负样本时,会表现出较大的差异。考虑到直接从像素层面上体现差异不准确,编码器的特征编码耦合度较高,故设置特征提取器,在其中加入了通道注意力以及空间注意力模块,用以提取图像更具语义信息的特征表示。使用余弦相似度,评估原始输入图像和重构图像经由特征提取器后的特征相似度,其计算结果低于设定阈值即可判定为伪造图像。
本发明的基于重构差异的OCT指纹切面图像真伪检测方法,包括如下步骤:
步骤S1、构建全卷积神经网络模型。该模型主体由编码器、生成器、特征提取器三部分组成,如附图说明图1所示。先由编码器获取输入图像在潜空间中的数据分布的特征图,然后再使用生成器从获取的数据分布中重新构造出与输入图像相似的图像。由于输入图像中存在的噪声会增加重构后两图在像素上的差异,所以只使用像素差异来作为衡量真假的标准是不准确的,而经过神经网络提取的特征,可以更多体现主要语义信息,一定程度上解决了这个问题。由于需要在特征空间进行相似度评估,但是解码器最终输出的特征图信息,特征耦合度仍然较高,保留了原始图像中背景信息,难以直接作为图像的特征表示,用于后续特征比较,所以此外又额外加入了特征提取模块,来获取输入图像更具语义信息的特征表示,该部分使用RestNet作为基本结构,为了能更准确定位到图像中主要区域,减少背景内容干扰,加入了通道注意力模块以及空间注意力模块。
1)编码器。
先使用8个大小f=3*3的卷积核,设定步长s=1,四周填充padding=1进行卷积操作,保持图像尺寸大小,将输入图像通道数扩大至8通道。
紧接着使用5层下采样卷积层,每层设定卷积核大小f=3*3,步长s=2,四周填充padding=1,使用Instance Normalization进行标准化。每经过这样的卷积层后,图像尺寸缩小一倍,通常设定输出通道数也即特征图数量为原来通道数的两倍。假定输入到第一个下采样卷积层的输入大小为BatchSize*Channel*Width*Height,其中BatchSize为每一训练批次的数量,Channel为通道数量,Width为图像宽度,Height为图像高度。模型中总共使用了5层下采样卷积层,因此到最后一层时,输出大小应该为BatchSize*(Channel*32)*Width/32*Height/32,即得到Channel*32个尺寸大小为缩放32倍后的特征图。
2)生成器。
该部分由5层上采样层组成,其中上采样层由两部分组成,包含两个过程:使用UpSample函数进行上采样,将特征图尺寸扩大一倍。再使用大小f=3*3的卷积核,设定步长s=1,四周填充padding=1进行卷积操作,调整输出通道数,通常设定输出通道数减半。整个上采样复原图像的过程,类似于编码器的逆向过程。其中第一个上采样层的输入来源于编码器主支中的最后一层输出,每经过一次,通道(特征图)数量缩小一倍,同时特征图的尺寸扩大一倍。经过5次类似过程输出大小即可恢复到输入图像大小,不过此时通道数为8,仍需要最后再使用一次卷积调整大小通道数为1,即得到了复原的图像,由此实现了从提取的特征中重新复原出图像。
3)特征提取器。
使用ResNet网络结构,本发明在其中加入通道、空间注意力机制,通道注意力的生成方式:对特征图在空间维度进行全局最大池化和全局平均池化得到两个C*1*1向量,再进行相加,用Sigmoid激活函数归一化,得到最终的通道权重矩阵。空间注意力的生成方式:特征图在通道维度上进行最大池化和平均池化,得到两个大小为1*W*H特征图,使用7x7卷积保持特征图尺寸不变,融合成一个特征图,Sigmoid归一化,得到最终的空间权重矩阵。每经过一层卷积,特征图都需依次和对应通道、空间权重矩阵加权。
步骤S2:准备训练数据、测试数据。收集OCT系统采集的B-scan(切面)指纹图像,其中B-scan图像,包括20组的真人手指B-scan图像和10组的仿体B-scan图像,每组图像各400张图像,来源于不同个体、不同仿制材料。此外还需收集10张OCT系统在不放置待测物体时的图像,即只有背景的图像。不过由于部分原始采集图像存在质量欠佳问题,尤其是图像左右两侧无用信息过多,故需要在训练之前对图像进行增强处理。具体过程为:对原始尺寸1800*500的B-scan图像进行图像裁剪操作,分别裁去原始图像左右200像素,得到1400*500的B-scan图像,然后再对图像尺寸进行调整,使用双三次插值方法,将该裁剪后的图像大小缩放至需要的大小尺寸,实验中缩放至256*256并转换为灰度图像。在预处理方法后,仅从20组真人手指B-scan图像中,随机选取10组真人手指B-scan图像作为训练数据。选取另外10组的真人手指B-scan图像和10组的仿体B-scan图像作为测试数据。对10张只含背景的图像,进行数据增强扩充数量至100张,保存用于后续操作。数据增强具体方式包括:随机裁剪之后再重新调整成原来的大小、随机高斯模糊、随机翻转。
步骤S3、训练网络模型,整体训练流程可见附图说明图2。选用划分好的训练图像作为输入数据,每次加载数据,原始图像数据保存备份,再使用随机大小的黑色色块进行随机位置遮挡,遮挡操作后得到的图像数据记作x′,先后经过编码器E(*)、生成器G(*)得到对应重新构造出来的图像,记作G(E(x′))。计算重构图和输入原始未遮挡图在像素点上差异度,期望差异值尽量小,使得生成图分布尽量逼近原始输入图,使用L1 Loss平均绝对误差,记作重构误差Lrecon,计算方式如下:
Lrecon=||G(E(x′))-x||1 (1)
其中,x表示原始输入图像的数据分布状况,G(E(x′))表示经由网络模型后重构复原出图像的数据分布状况。该损失函数仅应用于编码器和生成器部分,用以提升图像重构质量。
为了缓解特征提取器训练后期可能存在的过拟合问题,提升模型鲁棒性,可以使用简单的数据增强操作对数据进行扩增。需要对x和G(E(x))做垂直翻转,得到对应增强后的图像数据x^、G(E(x))^,将未增强和增强后的数据共计4组数据输入到特征提取器中,获取到的特征向量作为正特征向量,记作zpos,同时随机选取同样数量,在步骤S2中准备的增强后的背景图像数据,送入特征提取器中,该部分获得的特征向量作为负特征向量,记作zneg。先从zpos中选取一正特征向量作为锚点,记作zo,依次和同批次中另一种特征向量成对组合,在这些组合中,锚点和正特征向量组成的配对组合称为正数据对,而和负特征向量组成的配对组合称为负数据对,假设总特征向量数为M,经过上述组合操作可得3组正数据对,M-4组负数据对,合计M-1组。之后依次选取剩余的正特征向量,重复上述操作。
目标期望正数据对相似度高,而期望负数据对相似度低。数据对中的两向量的相似度由余弦相似度计算体现,其值越接近于1,表示两向量越相似,具体如下式所示:
Figure BDA0003520573800000071
其中,S(a,b)表示为向量za与向量zb数据对的余弦相似度,*T表示向量转置,||*||表示向量的模长,γ为尺度参数,用于调整余弦相似度原始[-1,1]范围。
确定相似度衡量标准之后,设定对比损失函数Lcon,该损失函数在定义上类似于softmax-交叉熵损失函数,在损失函数优化的过程中,逐渐提高正数据对相似度的占比,从而实现特征提取器部分的学习目标:正数据对相似度最大化,负数据对相似度最小化。先计算其中一种锚点组成的正数据对在所有含该锚点组合中的占比,目标期望该占比越大越好,所以损失函数需要再取负号,如下式所示:
Figure BDA0003520573800000081
其中,Lcon_anchor_n表示以第n个正特征向量为锚点的正数据对的平均损失值,M为含锚点zo_n的正数据对总数量,S(zo_n,zpos_i)表示第i个含锚点zo_n的正数据对的余弦相似度,N为含锚点zo_n的负数据对总数量,S(zo_n,zneg_j)表示第j个含锚点zo_n的负数据对的余弦相似度。
接着,计算剩余锚点组合的损失值,同样依次进行上述计算,最后对所有锚点组合取得的损失值进行求和平均操作,得到特征提取器部分最终对比损失Lcon
Figure BDA0003520573800000082
其中,N为设定的锚点总数量,该损失函数仅应用于特征提取器部分。
设定好损失函数后,对所建网络模型进行多轮次训练,通过反向传播,对模型权重参数进行更新优化,直到损失函数趋向收敛时,可以停止训练。
步骤S4、测试网络模型,整体测试流程可见附图说明图3。选用事先划分好的测试数据作为输入图像,同样分批次测试,每次从中随机选取20张图像数据,即每批次大小20*1*256*256,记作x,进行测试,测试过程类似于步骤S3训练过程,x经过编码器E(*)、生成器G(*)得到对应重新构造出来的图像,记作G(E(x))(实验过程中的部分重构图像可见附图说明图4、图5),输入特征提取器中,同样使用余弦相似度计算x、G(E(x))对应特征向量z1、z2的相似度并保存,通常来说正样本的相似度普遍会是高值,负样本普遍会是低值。紧接着根据所有测试数据的余弦相似性计算结果,绘制ROC曲线,综合准确率、误检率、漏检率设定合适的阈值。设定只要余弦相似性计算高于阈值,可以认定是真实手指图像,反之则认定是仿制手指图像。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (7)

1.基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,包括以下步骤:
步骤S1、构建全卷积神经网络模型,该全卷积神经网络模型的主体由包括编码器、生成器、特征提取器;编码器获取输入图像在潜空间中的数据分布的特征图;生成器从获取的数据分布中重新构造出与输入图像相似的图像;特征提取器使用ResNet网络结构,为了能更准确定位到图像中主要区域,减少背景内容干扰,加入了通道注意力模块以及空间注意力模块,加强获取输入图像更具语义信息的特征表示;
步骤S2、收集OCT系统采集的图像,将来源于不同个体真人手指的B-scan图像作为正样本图像,来源于不同仿制材料所制仿体的B-scan图像作为负样本图像,此外还收集10张OCT系统在不放置待测物体时的只有背景的图像;然后对这些图像进行预处理,预处理完成后,从正样本图像中,随机选取70%的正样本图像作为训练数据;选取另外30%的正样本图像和负样本图像,数量均衡后作为测试数据;
步骤S3、训练网络模型;选用划分好的训练图像作为输入数据,设定损失函数Lrecon,用于优化编码器、生成器,提升图像重构质量;设定对比损失Lcon,用于优化特征提取器;对所建网络模型进行多轮次训练,通过反向传播,对模型权重参数进行更新优化直到损失函数趋向收敛时,可以停止训练;
步骤S4、测试网络模型;应用训练好的网络模型,选用测试数据输入模型进行测试,综合准确率、误检率、漏检率设定合适的阈值,后续实际应用,根据设定阈值对输入图像进行真伪判别。
2.根据权利要求1所述的基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,所述步骤S1网络模型中的编码器,具体包括:
包括5层下采样卷积层,每层设定卷积核大小f=3*3,步长s=2,四周填充padding=1;每经过这样的卷积操作后,图像尺寸缩小一倍,输出通道数也即特征图数量为该层使用卷积核的数量,以此实现下采样降维。
3.根据权利要求1所述的基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,所述步骤S1中的网络模型中的生成器,具体包括:
包括5层上采样层,其中上采样层由两部分组成,包含两个过程:使用Upsample函数进行上采样,将特征图尺寸扩大一倍;再使用大小f=3*3的卷积核,设定步长s=1,四周填充padding=1进行卷积操作,保持特征图尺寸大小,调整输出通道数,通常设定输出通道数减半。
4.根据权利要求1所述的基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,所述步骤S2所述的图像预处理,具体包括:
对原始尺寸1800*500的B-scan图像进行图像裁剪操作,分别裁去原始图像左右200像素,得到1400*500的B-scan图像,然后再对图像尺寸进行调整,使用双三次插值方法,将该裁剪后的图像大小缩放到需要的大小,实验中缩放至256*256,并转换为灰度图像;对10张只含背景的图像,进行数据增强扩充数量至100张,保存用于后续操作;数据增强具体方式包括:随机裁剪之后再重新调整成原来的大小、随机高斯模糊、随机翻转。
5.根据权利要求1所述的基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,步骤S3所述设定用于优化编码器、生成器部的损失函数Lrecon,具体包括:
输入数据包括两部分:原始输入图像数据、随机遮挡后图像数据;其中随机遮挡后图像数据,在每次加载数据时,使用随机大小的黑色色块在对应图像随机位置上遮挡得到;选用遮挡图像作为训练数据送入编码器、生成器;而原始输入图像数据作为衡量指标,重构的输出图像需与其比较,即计算重构图和原始未遮挡图在像素点上差异度,期望差异值尽量小,使得生成图分布尽量逼近原始输入图,使用L1 Loss平均绝对误差,记作重构误差Lrecon,计算方式如下:
Lrecon=||G(E(x))-x||1 (1)
其中,x表示原始输入图像的数据分布状况,G(E(x))表示经由网络模型后重构复原出图像的数据分布状况。
6.根据权利要求1所述的基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,步骤S3所述设定用于优化特征提取器的损失函数Lcon,具体过程为:
对输入及重构图像x和G(E(x))做垂直翻转,得到对应增强后的图像数据x^、G(E(x))^,将未增强和增强后的数据共计4组数据输入到特征提取器中,获取到的特征向量作为正特征向量,记作zpos,同时随机选取同样数量,在步骤S2中准备的增强后的背景图像数据,送入特征提取器中,该部分获得的特征向量作为负特征向量,记作zneg;先从zpos中选取一正特征向量作为锚点,记作zo,依次和同批次中另一种特征向量成对组合,在这些组合中,锚点和正特征向量组成的配对组合称为正数据对,而和负特征向量组成的配对组合称为负数据对;之后依次选取剩余的正特征向量,重复上述操作;
数据对中的两向量的相似度由余弦相似度计算体现,其值越接近于1,表示两向量越相似,具体如下式所示:
Figure FDA0003520573790000031
其中,S(a,b)表示为向量za与向量zb数据对的余弦相似度,*T表示向量转置,||*||表示向量的模长,γ为尺度参数,调整余弦相似度原始[-1,1]范围;
确定相似度衡量标准之后,设定对比损失函数Lcon,该损失函数在定义上类似于softmax-交叉熵损失函数,在损失函数优化的过程中,逐渐提高正数据对相似度的占比,从而实现特征提取器部分的学习目标:正数据对相似度最大化,负数据对相似度最小化;先计算其中一种锚点组成的正数据对在所有含该锚点组合中的占比,目标期望该占比越大越好,所以损失函数需要再取负号,如下式所示:
Figure FDA0003520573790000032
其中,Lcon_anchor_n表示以第n个正特征向量为锚点的正数据对的平均损失值,M为含锚点zo_n的正数据对总数量,S(zo_n,zpos_i)表示第i个含锚点zo_n的正数据对的余弦相似度,N为含锚点zo_n的负数据对总数量,S(zo_n,zneg_j)表示第j个含锚点zo_n的负数据对的余弦相似度;
接着,计算剩余锚点组合的损失值,同样依次进行上述计算,最后对所有锚点组合取得的损失值进行求和平均操作,得到特征提取器部分最终对比损失Lcon
Figure FDA0003520573790000033
其中,N为锚点总数量,该损失函数仅应用于特征提取器部分。
7.根据权利要求1所述的基于重构差异的OCT指纹切面图像真伪检测方法,其特征在于,步骤S4中所述真伪判别标准,具体包括:
1)在正向传播过程中,将测试图像及重构图像x1、x2输入特征提取器中,获得特征向量z1 z2
2)选用余弦相似性计算特征向量z1 z2的相似度;
3)根据所有测试数据的余弦相似性计算结果,绘制ROC曲线,综合准确率、误检率、漏检率设定合适的阈值;
4)只要余弦相似性计算高于阈值,可以认定是真实手指图像,反之则认定是仿制手指图像。
CN202210191133.6A 2022-02-25 2022-02-25 基于重构差异的oct指纹切面图像真伪检测方法 Pending CN114581963A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210191133.6A CN114581963A (zh) 2022-02-25 2022-02-25 基于重构差异的oct指纹切面图像真伪检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210191133.6A CN114581963A (zh) 2022-02-25 2022-02-25 基于重构差异的oct指纹切面图像真伪检测方法

Publications (1)

Publication Number Publication Date
CN114581963A true CN114581963A (zh) 2022-06-03

Family

ID=81771754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210191133.6A Pending CN114581963A (zh) 2022-02-25 2022-02-25 基于重构差异的oct指纹切面图像真伪检测方法

Country Status (1)

Country Link
CN (1) CN114581963A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116884077A (zh) * 2023-09-04 2023-10-13 上海任意门科技有限公司 一种人脸图像类别确定方法、装置、电子设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116884077A (zh) * 2023-09-04 2023-10-13 上海任意门科技有限公司 一种人脸图像类别确定方法、装置、电子设备及存储介质
CN116884077B (zh) * 2023-09-04 2023-12-08 上海任意门科技有限公司 一种人脸图像类别确定方法、装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN110211045B (zh) 基于srgan网络的超分辨率人脸图像重建方法
CN111598881B (zh) 基于变分自编码器的图像异常检测方法
CN110211140B (zh) 基于3D残差U-Net和加权损失函数的腹部血管分割方法
CN110930416B (zh) 一种基于u型网络的mri图像前列腺分割方法
CN110189255B (zh) 基于两级检测的人脸检测方法
CN111242841B (zh) 一种基于语义分割和深度学习的图片背景风格迁移方法
CN109886881B (zh) 人脸妆容去除方法
CN110473142B (zh) 基于深度学习的单幅图像超分辨率重建方法
CN110543916B (zh) 一种缺失多视图数据的分类方法及系统
CN111999731B (zh) 一种基于感知生成对抗网络的电磁逆散射成像方法
CN110853009A (zh) 基于机器学习的视网膜病理图像分析系统
CN112052877B (zh) 一种基于级联增强网络的图片细粒度分类方法
CN111667445A (zh) 一种基于Attention多特征融合的图像压缩感知重建方法
CN111275686A (zh) 用于人工神经网络训练的医学图像数据的生成方法及装置
CN113642621A (zh) 基于生成对抗网络的零样本图像分类方法
CN114359629A (zh) 一种基于深度迁移学习的肺炎x胸片分类识别方法
CN111814881A (zh) 一种基于深度学习的海洋鱼类图像识别方法
CN115909172A (zh) 深度伪造视频检测分割识别系统、终端及存储介质
CN115880523A (zh) 一种图像分类模型、模型训练方法及其应用
CN114581963A (zh) 基于重构差异的oct指纹切面图像真伪检测方法
CN113420793A (zh) 一种基于改进的卷积神经网络ResNeSt50的胃印戒细胞癌分类方法
CN116030078B (zh) 多任务学习框架下结合注意力的肺叶分割方法及系统
CN110503157B (zh) 基于细粒度图像的多任务卷积神经网络的图像隐写分析方法
CN115761358A (zh) 一种基于残差胶囊网络对心肌纤维化进行分类的方法
CN114565626A (zh) 基于PSPNet改进的肺部CT图像分割算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination