CN114579934A - 单向量航姿信息提取方法 - Google Patents

单向量航姿信息提取方法 Download PDF

Info

Publication number
CN114579934A
CN114579934A CN202210490143.XA CN202210490143A CN114579934A CN 114579934 A CN114579934 A CN 114579934A CN 202210490143 A CN202210490143 A CN 202210490143A CN 114579934 A CN114579934 A CN 114579934A
Authority
CN
China
Prior art keywords
angle
value
range
extreme
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210490143.XA
Other languages
English (en)
Other versions
CN114579934B (zh
Inventor
石岗
于云华
商红蕾
陈洪帅
薛清然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongying Tongbo Petroleum Electronic Instrument Co ltd
Shandong Institute Of Petroleum And Chemical Engineering
Original Assignee
Dongying Tongbo Petroleum Electronic Instrument Co ltd
Shandong Institute Of Petroleum And Chemical Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongying Tongbo Petroleum Electronic Instrument Co ltd, Shandong Institute Of Petroleum And Chemical Engineering filed Critical Dongying Tongbo Petroleum Electronic Instrument Co ltd
Priority to CN202210490143.XA priority Critical patent/CN114579934B/zh
Publication of CN114579934A publication Critical patent/CN114579934A/zh
Application granted granted Critical
Publication of CN114579934B publication Critical patent/CN114579934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Abstract

本发明公开了一种单向量航姿信息提取方法,包括以下步骤:第一步计算初始变换矩阵,然后获取一般变换矩阵表达式,接着确定俯仰角的取值范围,再然后确定航向角的取值范围,最后确定横滚角的取值范围,本发明仅使用单一向量测量值提取航姿信息,提供了一种利用向量测量值获取航姿信息的新技术方法,依据欧拉角计算函数给出了确定全部欧拉角极值点的解析计算式,可有效提高向量航姿信息的利用率,在确保计算准确的同时明显降低计算量,具有计算成本低且计算精度高的优势。

Description

单向量航姿信息提取方法
技术领域
本发明涉及定向钻井技术领域,尤其涉及单向量航姿信息提取方法。
背景技术
在石油、天然气勘探开发工程中,使用定向钻井技术可以根据地质条件、油气藏位置等具体情况采用合理的钻井轨迹以使社会经济效益最大化。在定向钻井过程中,为监测与控制实际钻井轨迹,需要获取钻具及不同井深处井眼轨迹的航姿信息。获取航姿信息的一种常用方法是使用三轴加速度计及三轴磁传感器测量重力加速度向量及地磁向量在航姿测量单元坐标系中的坐标,并通过处理这些坐标值获取一组欧拉角,即航向角、俯仰角及横滚角,这些角度即为航姿信息参数,由航姿参数可确定定向钻井中方位角、井斜角及工具面角等工程参数。
在实际应用中,井下复杂的工作环境会对传感器测量信号造成严重干扰,或造成传感器故障,这些不利影响会导致在航姿信息参数计算过程中,部分测量分量信号不可用。针对这一问题,文献1(范光第,蒲文学,赵国山.磁力随钻测斜仪轴向磁干扰校正方法[J].石油钻探技术,2017,45(4):121-126.)利用向量模值不变条件估计不可用分量。文献2(基于非完整测量向量的航姿解算方法,发明专利ZL202110525236.7)进一步引入点积约束,提供了一种在缺失一个或两个测量向量分量情况下的航姿求解方法。文献3(一种测量向量分量缺失情况下欧拉角优化方法,发明专利ZL202111230235.6)使用遍历搜索寻优的方法确定分量缺失情况下的欧拉角最优解。上述方法均需要来自两个向量的测量值分量,当仅有单向量测量值时无法提取航姿信息。
本发明提供一种仅使用单向量测量值提取航姿信息的方法。应当指出的是,现有方法可以只使用重力加速度向量确定俯仰角与横滚角,这是由于重力加速度垂直于水平面。但其它向量,如地磁向量,并不具备这一特殊性,本发明提供的方法可以使用一般的单向量测量值缩小部分欧拉角的取值范围,提供了一种利用向量测量值获取航姿信息的新技术方法,可有效提高向量航姿信息的利用率。同时,该法使用解析计算而非遍历搜索方式确定欧拉角范围,具有计算量小且计算精度高的优点。
发明内容
本发明的目的是为了解决现有技术中问题,而提出单向量航姿信息提取方法。
为了实现上述目的,以地磁向量为可用向量的情况为例,详细说明本发明的实施方案,需要强调的是,针对地磁向量的处理方法具有一般性,可推广至其它单向量情况,具体来说,单向量航姿信息提取方法包括以下步骤:
S1、计算初始变换矩阵,
设重力加速度与地磁向量在参考坐标系中的坐标分别为与g r m r ,两向量的测量值分别为g b m b 。向量的分量使用脚标x、y、z表示,如m b 的分量形式可写为[m bx ,m by ,m bz ]T,T表示矩阵转置。归一化向量使用脚标n表示,如m b 的归一化向量为m bn 。使用式(1)可计算得到一个满足m r m b 坐标变换关系的变换矩阵,称之为初始变换矩阵Cs
Figure 100002_DEST_PATH_IMAGE002
上式中:
Figure 100002_DEST_PATH_IMAGE004
注意,由于g b 不可用,在以上计算中g bn 可取任意单位向量,其计算结果均可满足地磁向量坐标变换关系。
S2、获取一般变换矩阵表达式,
以初始变换矩阵表示的航姿状态为初始状态,以地磁向量为轴,使航姿测量单元做定轴转动。在这一转动过程中,地磁向量在三轴磁传感器坐标系中的坐标保持不变,即转动过程中的任一航姿状态均满足地磁向量坐标变换关系。因此,一般变换矩阵C b 的表达式可写为:
Figure 100002_DEST_PATH_IMAGE006
上式中φ为定轴旋转角度,其取值范围为0至360度,[m bn ×]为m bn 的反对称矩阵,其表达式为:
Figure 100002_DEST_PATH_IMAGE008
注意,一般变换矩阵表达式已将所有满足地磁向量坐标变换关系的变换矩阵表示为旋转角度φ的函数。
S3、确定俯仰角的取值范围,
使用θ表示俯仰角,使用脚标i、j表示矩阵元素,如C bij 表示变换矩阵C b 的第i行第j列元素。俯仰角的计算式为:
Figure 100002_DEST_PATH_IMAGE010
上式中
Figure 100002_DEST_PATH_IMAGE012
在俯仰角完整取值范围内反正弦函数是单调函数,因此俯仰角的极值点与C b23 的极值点相同。设俯仰角的极值点为φ θ ,将式(7)对φ求导,并令导数等于零可得极值点计算式:
Figure 100002_DEST_PATH_IMAGE014
反正切函数的值域为-90度至90度,因此在φ的取值范围内可得到两个极值点φ θ1φ θ2,其计算式为:
Figure 100002_DEST_PATH_IMAGE016
将极值点值代入式(6)可求得俯仰角的各个极值。设俯仰角最小值与最大值分别为θ min θ max ,则俯仰角的取值范围为[θ min θ max ],其计算式为:
Figure 100002_DEST_PATH_IMAGE018
S4、确定航向角的取值范围,
使用ψ表示航向角,航向角的计算式为:
Figure 100002_DEST_PATH_IMAGE020
上式中:
Figure 100002_DEST_PATH_IMAGE022
反正切函数是单调函数,因此航向角与-C b21/C b22具有相同的极值点。将-C b21/C b22φ求导,并令导数等于零可得极值点φ ψ1φ ψ2的计算式:
Figure DEST_PATH_IMAGE024
上式中:
Figure DEST_PATH_IMAGE026
由于反正弦函数的值域为-90度至90度,因此在φ的取值范围内还可获得另外两个极值点φ ψ3φ ψ4
Figure DEST_PATH_IMAGE028
将极值点值代入式(11)可求得航向角的各个极值。设航向角最小值与最大值分别为ψ min ψ max ,则航向角的取值范围为[ψ min ,ψ max ],其计算式为:
Figure DEST_PATH_IMAGE030
当a2 + c 2 - d 2< 0时,式(14)无法求得实数极值点,说明航向角是单调变化的,考虑到当φ取0度与360度时,航向角的计算值是相同的,因此航向角将在完整范围内取值,即
Figure DEST_PATH_IMAGE032
S5、确定横滚角的取值范围,
使用γ表示横滚角,横滚角的计算式为:
Figure DEST_PATH_IMAGE034
上式中:
Figure DEST_PATH_IMAGE036
反正切函数是单调函数,因此横滚角与-C b13/C b33具有相同的极值点。将-C b13/C b33φ求导,并令导数等于零可得极值点φ γ1φ γ2的计算式:
Figure DEST_PATH_IMAGE038
上式中:
Figure DEST_PATH_IMAGE040
由于反正弦函数的值域为-90度至90度,因此在φ的取值范围内还可获得另外两个极值点φ γ3φ γ4
Figure DEST_PATH_IMAGE042
将极值点值代入式(21)可求得横滚角的各个极值。设横滚角最小值与最大值分别为γ min γ max ,则横滚角的取值范围为[γ min ,γ max ],其计算式为:
Figure DEST_PATH_IMAGE044
当e2 + f2 - h 2< 0时,式(24)无法求得实数极值点,说明横滚角是单调变化的,考虑到当φ取0度与360度时,横滚角的计算值是相同的,因此横滚角将在完整范围内取值,即
Figure DEST_PATH_IMAGE046
与现有技术相比,本发明的有益效果是:
1、传统航姿参数估计方法需要至少两个向量的完整测量值,但干扰或传感器故障会造成向量测量值的部分分量不可用,从而导致传统方法不可用。针对这一问题,一些方法使用非完整测量值实现了航姿计算,但这些方法均要求测量值需包含两个向量的分量。本发明仅使用单一向量测量值提取航姿信息,提供了一种利用向量测量值获取航姿信息的新技术方法,可有效提高向量航姿信息的利用率。
2、传统遍历搜索式方法按步长递增在转动角取值范围内确定最值,计算量与计算精度受步长影响,步长越小,计算量越大但计算精度越高;步长越大计算量越小但计算精度越低。本发明依据欧拉角计算函数给出了确定全部欧拉角极值点的解析计算式,可以在确保计算准确的同时明显降低计算量,具有计算成本低且计算精度高的优势。
附图说明
图1为航姿测量示意图;
图2为单向量航姿信息提取方法示意图;
图3为航向角变化曲线;
图4为俯仰角变化曲线;
图5为横滚角变换曲线。
具体实施方式
下面将结合本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
目前,在航姿测量中广泛使用的双向量方式如附图1所示,g为重力加速度向量,m为地磁向量,r-xyz坐标系为参考坐标系,在航姿测量单元中,b 1 -xyzb 2 -xyz分别为三轴加速度计传感器坐标系及三轴磁传感器坐标系,且均与航姿测量单元坐标系平行,因此,可认为上述两种传感器的测量结果分别为重力加速度向量与地磁向量在航姿测量单元中的坐标。
使用上述双向量测量值可以计算航姿参数,但在实际应用中外界干扰或传感器故障会导致某个向量测量值不可用,即仅有单个向量可用,现有方法无法在该条件下使用。需要指出的是,使用单个向量无法唯一确定航姿参数值,但单个向量测量值中仍含有部分航姿信息,本发明提供的方法可提取单个向量测量值中包含的航姿信息,信息提取结果的表现形式为缩小部分欧拉角的取值范围。下文将以地磁向量为可用向量的情况为例,详细说明该方法的实施方案,需要强调的是,下文具体针对地磁向量的处理方法具有一般性,可推广至其它单向量情况,单向量航姿信息提取方法如附图2所示:
S1、计算初始变换矩阵,
设重力加速度与地磁向量在参考坐标系中的坐标分别为与g r m r ,两向量的测量值分别为g b m b 。向量的分量使用脚标x、y、z表示,如m b 的分量形式可写为[m bx ,m by ,m bz ]T,T表示矩阵转置。归一化向量使用脚标n表示,如m b 的归一化向量为m bn 。使用式(1)可计算得到一个满足m r m b 坐标变换关系的变换矩阵,称之为初始变换矩阵Cs
Figure DEST_PATH_IMAGE002A
上式中:
Figure DEST_PATH_IMAGE004A
注意,由于g b 不可用,在以上计算中g bn 可取任意单位向量,其计算结果均可满足地磁向量坐标变换关系。
S2、获取一般变换矩阵表达式,
以初始变换矩阵表示的航姿状态为初始状态,以地磁向量为轴,使航姿测量单元做定轴转动。在这一转动过程中,地磁向量在三轴磁传感器坐标系中的坐标保持不变,即转动过程中的任一航姿状态均满足地磁向量坐标变换关系。因此,一般变换矩阵C b 的表达式可写为:
Figure DEST_PATH_IMAGE006A
上式中φ为定轴旋转角度,其取值范围为0至360度,[m bn ×]为m bn 的反对称矩阵,其表达式为:
Figure DEST_PATH_IMAGE008A
注意,一般变换矩阵表达式已将所有满足地磁向量坐标变换关系的变换矩阵表示为旋转角度φ的函数。
S3、确定俯仰角的取值范围,
使用θ表示俯仰角,使用脚标i、j表示矩阵元素,如C bij 表示变换矩阵C b 的第i行第j列元素。俯仰角的计算式为:
Figure DEST_PATH_IMAGE010A
上式中
Figure DEST_PATH_IMAGE012A
在俯仰角完整取值范围内反正弦函数是单调函数,因此俯仰角的极值点与C b23 的极值点相同。设俯仰角的极值点为φ θ ,将式(7)对φ求导,并令导数等于零可得极值点计算式:
Figure DEST_PATH_IMAGE014A
反正切函数的值域为-90度至90度,因此在φ的取值范围内可得到两个极值点φ θ1φ θ2,其计算式为:
Figure DEST_PATH_IMAGE016A
将极值点值代入式(6)可求得俯仰角的各个极值。设俯仰角最小值与最大值分别为θ min θ max ,则俯仰角的取值范围为[θ min θ max ],其计算式为:
Figure DEST_PATH_IMAGE018A
S4、确定航向角的取值范围,
使用ψ表示航向角,航向角的计算式为:
Figure DEST_PATH_IMAGE020A
上式中:
Figure DEST_PATH_IMAGE022A
反正切函数是单调函数,因此航向角与-C b21/C b22具有相同的极值点。将-C b21/C b22φ求导,并令导数等于零可得极值点φ ψ1φ ψ2的计算式:
Figure DEST_PATH_IMAGE024A
上式中:
Figure DEST_PATH_IMAGE026A
由于反正弦函数的值域为-90度至90度,因此在φ的取值范围内还可获得另外两个极值点φ ψ3φ ψ4
Figure DEST_PATH_IMAGE028A
将极值点值代入式(11)可求得航向角的各个极值。设航向角最小值与最大值分别为ψ min ψ max ,则航向角的取值范围为[ψ min ,ψ max ],其计算式为:
Figure DEST_PATH_IMAGE030A
当a2 + c 2 - d 2< 0时,式(14)无法求得实数极值点,说明航向角是单调变化的,考虑到当φ取0度与360度时,航向角的计算值是相同的,因此航向角将在完整范围内取值,即
Figure DEST_PATH_IMAGE032A
S5、确定横滚角的取值范围,
使用γ表示横滚角,横滚角的计算式为:
Figure DEST_PATH_IMAGE034A
上式中:
Figure DEST_PATH_IMAGE036A
反正切函数是单调函数,因此横滚角与-C b13/C b33具有相同的极值点。将-C b13/C b33φ求导,并令导数等于零可得极值点φ γ1φ γ2的计算式:
Figure DEST_PATH_IMAGE038A
上式中:
Figure DEST_PATH_IMAGE040A
由于反正弦函数的值域为-90度至90度,因此在φ的取值范围内还可获得另外两个极值点φ γ3φ γ4
Figure DEST_PATH_IMAGE042A
将极值点值代入式(21)可求得横滚角的各个极值。设横滚角最小值与最大值分别为γ min γ max ,则横滚角的取值范围为[γ min ,γ max ],其计算式为:
Figure DEST_PATH_IMAGE044A
当e2 + f2 - h 2< 0时,式(24)无法求得实数极值点,说明横滚角是单调变化的,考虑到当φ取0度与360度时,横滚角的计算值是相同的,因此横滚角将在完整范围内取值,即
Figure DEST_PATH_IMAGE046A
最后需要指出的是,S3至S5分别提取了三个欧拉角的取值范围信息,这三步之间没有依赖关系,即可以按任意顺序计算或只计算其中部分欧拉角的取值范围。
为验证上述方法的效果,给出1个计算实例,该实例中首先使用重力加速度向量与地磁向量测量值确定欧拉角的参考值,然后使用本发明方法提取地磁向量包含的航姿信息,最后使用遍历搜索法确定欧拉角最小值与最大值点,以进一步验证本发明方法的准确性。具体过程如下:
实施例1
在东北天参考坐标系下g r =[0, 0, 9.8] T m r =[-3627, 29344, 44065] T ,重力加速度测量值g b =[-5.39,-8.01, 0.89] T ,地磁向量测量值m b =[913, 53204, -406] T ,其中,重力加速度向量单位为米/秒2,地磁向量单位为纳特。使用以上双向量测量值及传统TRIAD方法可得航向角参考值为:6.55度,俯仰角参考值为:-55.41度,横滚角参考值为:80.65度,航向角的完整取值范围为[-180,180]度,俯仰角的完整取值范围为[-90,90]度,横滚角的完整取值范围为[-180,180]度,以下使用本发明方法提取地磁向量航姿信息。
第一步:设g bn =[0.58,0.58, 0.58] T ,使用式(1)可计算初始变换矩阵:
Figure DEST_PATH_IMAGE048
第二步:将归一化的地磁向量测量值与第一步计算结果代入式(4),可得一般变换矩阵表达式:
Figure DEST_PATH_IMAGE050
第三步:将归一化的地磁向量测量值与第一步计算结果代入式(8),可得φ θ =69.69度,进而由式(9)可得极值点φ θ1 =69.69度,φ θ2 =249.69度。将极值点代入式(10),可得θ min =-57.21度,θ max =-55.06度,即俯仰角的取值范围为[-57.21,-55.06]度。
第四步:将归一化的地磁向量测量值与第一步计算结果代入式(14),可得极值点φ ψ1 =-21.91度,φ ψ2 =-18.71度,进而由式(18)可得另外两个极值点φ ψ3 =158.09度,φ ψ4 =198.71度。将极值点代入式(19),可得ψ min =5.12度,ψ max =8.98度,即航向角的取值范围为[5.12,8.98]度。
第五步:将归一化的地磁向量测量值与第一步计算结果代入式(24),可得e 2 =9.089×10-6,f2 =6.636×10-5h 2 =0.0963。显然e2 + f2 - h2< 0,由式(30)可得γ min =-180度,γ max =180度,即横滚角的取值范围为[-180,180]度。
由以上结果可知,在实例中本发明方法仅使用地磁向量测量值显著缩小了航向角与俯仰角的取值范围,且其确定的取值范围与相关角度的参考值相符。为进一步说明本方法确定欧拉角取值范围的准确性,使用遍历搜索法将φ由0度至360度按0.01度步长递增,计算相应的变换矩阵C b ,并将结果转换为欧拉角,可得欧拉角变化曲线,结果如附图3、附图4、附图5所示。附图3中最小值点的坐标为(158.09,5.12),最大值点的坐标为(341.29,8.98)。附图4中最小值点的坐标为(69.69,-57.21),最大值点的坐标为(249.69,-55.06),附图5中最小值点的坐标为(360,-180),最大值点的坐标为(0,180)。对比各欧拉角最值点的纵坐标与本发明方法的计算结果可知,本方法确定的欧拉角取值范围是准确的。
本发明提供了一种利用向量测量值获取航姿信息的新技术方案,仅使用单向量测量值构建航向角、俯仰角及横滚角的计算式,当已知该单向量测量值时,各欧拉角均表示为定轴转动角度值的一元函数。同时,利用反三角函数在特定区间上的单调性将求欧拉角极值问题转变为求一般变换矩阵元素函数的极值问题。
使用解析计算而非遍历搜索方式获取欧拉角极值点,本发明给出了全部欧拉角极值点的解析计算式,并利用三角函数的周期性确定在定轴转动角度完整取值范围内的极值点。此外,根据极值点是否存在实数解判断欧拉角变化的单调性,在单调变化情况下直接给出欧拉角取值范围。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种单向量航姿信息提取方法,其特征在于,包括以下步骤:
S1、计算初始变换矩阵,
设重力加速度与地磁向量在参考坐标系中的坐标分别为与g r m r ,两向量的测量值分别为g b m b ;
向量的分量使用脚标x、y、z表示,如m b 的分量形式可写为[m bx ,m by ,m bz ]T,T表示矩阵转置;
归一化向量使用脚标n表示,如m b 的归一化向量为m bn ;
使用式(1)可计算得到一个满足m r m b 坐标变换关系的变换矩阵,称之为初始变换矩阵Cs
Figure DEST_PATH_IMAGE001
上式中:
Figure DEST_PATH_IMAGE002
注意,由于g b 不可用,在以上计算中g bn 可取任意单位向量,其计算结果均可满足地磁向量坐标变换关系;
获取一般变换矩阵表达式,
以初始变换矩阵表示的航姿状态为初始状态,以地磁向量为轴,使航姿测量单元做定轴转动;
在这一转动过程中,地磁向量在三轴磁传感器坐标系中的坐标保持不变,即转动过程中的任一航姿状态均满足地磁向量坐标变换关系;
因此,一般变换矩阵C b 的表达式可写为:
Figure DEST_PATH_IMAGE003
上式中φ为定轴旋转角度,其取值范围为0至360度,[m bn ×]为m bn 的反对称矩阵,其表达式为:
Figure DEST_PATH_IMAGE004
注意,一般变换矩阵表达式已将所有满足地磁向量坐标变换关系的变换矩阵表示为旋转角度φ的函数;
S3、确定俯仰角的取值范围,
使用θ表示俯仰角,使用脚标i、j表示矩阵元素,如C bij 表示变换矩阵C b 的第i行第j列元素;
俯仰角的计算式为:
Figure DEST_PATH_IMAGE005
上式中
Figure DEST_PATH_IMAGE006
在俯仰角完整取值范围内反正弦函数是单调函数,因此俯仰角的极值点与C b23 的极值点相同;
设俯仰角的极值点为φ θ ,将式(7)对φ求导,并令导数等于零可得极值点计算式:
Figure DEST_PATH_IMAGE007
反正切函数的值域为-90度至90度,因此在φ的取值范围内可得到两个极值点φ θ1φ θ2,其计算式为:
Figure DEST_PATH_IMAGE008
将极值点值代入式(6)可求得俯仰角的各个极值;
设俯仰角最小值与最大值分别为θ min θ max ,则俯仰角的取值范围为[θ min θ max ],其计算式为:
Figure DEST_PATH_IMAGE009
S4、确定航向角的取值范围,
使用ψ表示航向角,航向角的计算式为:
Figure DEST_PATH_IMAGE010
上式中:
Figure DEST_PATH_IMAGE011
反正切函数是单调函数,因此航向角与-C b21/C b22具有相同的极值点;
将-C b21/C b22φ求导,并令导数等于零可得极值点φ ψ1φ ψ2的计算式:
Figure DEST_PATH_IMAGE012
上式中:
Figure DEST_PATH_IMAGE013
由于反正弦函数的值域为-90度至90度,因此在φ的取值范围内还可获得另外两个极值点φ ψ3φ ψ4
Figure DEST_PATH_IMAGE014
将极值点值代入式(11)可求得航向角的各个极值;
设航向角最小值与最大值分别为ψ min ψ max ,则航向角的取值范围为[ψ min ,ψ max ],其计算式为:
Figure DEST_PATH_IMAGE015
当a2 + c 2 - d 2< 0时,式(14)无法求得实数极值点,说明航向角是单调变化的,考虑到当φ取0度与360度时,航向角的计算值是相同的,因此航向角将在完整范围内取值,即
Figure DEST_PATH_IMAGE016
S5、确定横滚角的取值范围,
使用γ表示横滚角,横滚角的计算式为:
Figure DEST_PATH_IMAGE017
上式中:
Figure DEST_PATH_IMAGE018
反正切函数是单调函数,因此横滚角与-C b13/C b33具有相同的极值点;
将-C b13/C b33φ求导,并令导数等于零可得极值点φ γ1φ γ2的计算式:
Figure DEST_PATH_IMAGE019
上式中:
Figure DEST_PATH_IMAGE020
由于反正弦函数的值域为-90度至90度,因此在φ的取值范围内还可获得另外两个极值点φ γ3φ γ4
Figure DEST_PATH_IMAGE021
将极值点值代入式(21)可求得横滚角的各个极值;
设横滚角最小值与最大值分别为γ min γ max ,则横滚角的取值范围为[γ min ,γ max ],其计算式为:
Figure DEST_PATH_IMAGE022
当e2 + f2 - h 2< 0时,式(24)无法求得实数极值点,说明横滚角是单调变化的,考虑到当φ取0度与360度时,横滚角的计算值是相同的,因此横滚角将在完整范围内取值,即
Figure DEST_PATH_IMAGE023
2.根据权利要求1所述的一种单向量航姿信息提取方法,其特征在于,使用单向量测量值构建航向角、俯仰角及横滚角的计算式,当已知该单向量测量值时,各欧拉角均表示为定轴转动角度值的一元函数。
3.根据权利要求1所述的一种单向量航姿信息提取方法,其特征在于,所述S3至S5分别提取了三个欧拉角的取值范围信息,这三步之间没有依赖关系,即可以按任意顺序计算或只计算其中部分欧拉角的取值范围。
4.根据权利要求1所述的一种单向量航姿信息提取方法,其特征在于,方法使用解析计算而非遍历搜索方式获取欧拉角极值点,给出了全部欧拉角极值点的解析计算式,利用三角函数的周期性确定在定轴转动角度完整取值范围内的极值点,并根据极值点是否存在实数解判断欧拉角变化的单调性,在单调变化情况下直接给出欧拉角取值范围。
CN202210490143.XA 2022-05-07 2022-05-07 单向量航姿信息提取方法 Active CN114579934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210490143.XA CN114579934B (zh) 2022-05-07 2022-05-07 单向量航姿信息提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210490143.XA CN114579934B (zh) 2022-05-07 2022-05-07 单向量航姿信息提取方法

Publications (2)

Publication Number Publication Date
CN114579934A true CN114579934A (zh) 2022-06-03
CN114579934B CN114579934B (zh) 2022-07-19

Family

ID=81769248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210490143.XA Active CN114579934B (zh) 2022-05-07 2022-05-07 单向量航姿信息提取方法

Country Status (1)

Country Link
CN (1) CN114579934B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654404A (zh) * 2011-03-02 2012-09-05 浙江中科无线授时与定位研发中心 一种提高航姿参考系统解算精度和系统抗干扰能力的方法
CN105300384A (zh) * 2015-04-03 2016-02-03 东南大学 一种用于卫星姿态确定的交互式滤波方法
US20160349058A1 (en) * 2014-06-13 2016-12-01 Beijing Aerospace Wanda Hi-Tech Ltd. Method and System for Controlling Antenna of Mobile Communication Application System Based on Double Quaternions in MEMS Inertial Navigation
CN112002007A (zh) * 2020-08-31 2020-11-27 胡翰 基于空地影像的模型获取方法及装置、设备、存储介质
CN112985380A (zh) * 2021-05-14 2021-06-18 中国石油大学胜利学院 基于非完整测量向量的航姿解算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654404A (zh) * 2011-03-02 2012-09-05 浙江中科无线授时与定位研发中心 一种提高航姿参考系统解算精度和系统抗干扰能力的方法
US20160349058A1 (en) * 2014-06-13 2016-12-01 Beijing Aerospace Wanda Hi-Tech Ltd. Method and System for Controlling Antenna of Mobile Communication Application System Based on Double Quaternions in MEMS Inertial Navigation
CN105300384A (zh) * 2015-04-03 2016-02-03 东南大学 一种用于卫星姿态确定的交互式滤波方法
CN112002007A (zh) * 2020-08-31 2020-11-27 胡翰 基于空地影像的模型获取方法及装置、设备、存储介质
CN112985380A (zh) * 2021-05-14 2021-06-18 中国石油大学胜利学院 基于非完整测量向量的航姿解算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GANG SHI ET AL.: "An Improved Yaw Estimation Algorithm for Land Vehicles Using MARG Sensors", 《SENSORS》 *
杨胜 等: "一种单子样旋转矢量姿态算法", 《宇航学报》 *
石岗: "惯性与磁传感器组合航向估计方法研究", 《中国优秀博硕士学位论文全文数据库(博士)信息科技辑》 *

Also Published As

Publication number Publication date
CN114579934B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN111878064B (zh) 一种姿态测量方法
CN105180968B (zh) 一种imu/磁强计安装失准角在线滤波标定方法
US20210348924A1 (en) Attitude measurement method
CN110792430B (zh) 一种基于多传感器数据融合的随钻测斜方法及装置
CN107063254B (zh) 一种陀螺地磁组合的姿态解算方法
CN106767925B (zh) 带双轴转位机构的惯导系统三位置参数辨识对准方法
CN108534744A (zh) 一种姿态角获取方法、装置和手柄
CN116147624B (zh) 一种基于低成本mems航姿参考系统的船舶运动姿态解算方法
CN112378399A (zh) 基于捷联惯导和数字全站仪的煤矿巷道掘进机器人精确定位定向方法
CN110736484B (zh) 基于陀螺仪及磁传感器融合的背景磁场标定方法
CN102748010B (zh) 姿态测量系统和方法以及油井井眼轨迹测量系统和方法
Dai et al. A novel attitude measurement while drilling system based on single-axis fiber optic gyroscope
CN114579934B (zh) 单向量航姿信息提取方法
CN108759863A (zh) 一种激光捷联惯组误差参数快速标定方法及系统
JPH04231813A (ja) 角度および角度特性曲線の測定方法
Yang et al. Research on improving accuracy of MWD based on support vector classifier and K-proximity method
CN114001757A (zh) 一种磁力计零偏校准方法
RU2507392C1 (ru) Способ определения зенитного угла и азимута скважины и гироскопический инклинометр
CN109356568B (zh) 一种测斜探管传感器标定方法
Li et al. Testing a new integrated solution for MEMS inertial measurement unit used for measurement-while-drilling in rotary steerable system
Liu et al. Eccentric Optimization of Multi-sensor for SLAM Integrated Navigation
CN113672862B (zh) 一种测量向量分量缺失情况下欧拉角优化方法
CN111577249B (zh) 一种多传感器布局井下钻柱运行姿态测量仪
Binder et al. Continuous gyro-inclinometric survey of arbitrarily oriented wellbores: Various schemes, problems, and solutions
CN117705097A (zh) 一种棱镜杆装置、地物碎部点测量方法、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant