CN114577716A - A method for screening the molecular functional groups of coal slime flotation collectors - Google Patents
A method for screening the molecular functional groups of coal slime flotation collectors Download PDFInfo
- Publication number
- CN114577716A CN114577716A CN202210159749.5A CN202210159749A CN114577716A CN 114577716 A CN114577716 A CN 114577716A CN 202210159749 A CN202210159749 A CN 202210159749A CN 114577716 A CN114577716 A CN 114577716A
- Authority
- CN
- China
- Prior art keywords
- probe
- modified
- functional groups
- force
- coal sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003245 coal Substances 0.000 title claims abstract description 93
- 238000005188 flotation Methods 0.000 title claims abstract description 54
- 125000000524 functional group Chemical group 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012216 screening Methods 0.000 title claims abstract description 25
- 239000000523 sample Substances 0.000 claims abstract description 192
- 238000000418 atomic force spectrum Methods 0.000 claims abstract description 25
- 238000003780 insertion Methods 0.000 claims abstract description 20
- 230000037431 insertion Effects 0.000 claims abstract description 20
- 230000005489 elastic deformation Effects 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 8
- 238000013461 design Methods 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 22
- 230000003993 interaction Effects 0.000 claims description 16
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 14
- 239000012266 salt solution Substances 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 14
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- -1 mercapto compounds Chemical class 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 3
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 3
- 239000012498 ultrapure water Substances 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims 4
- 230000001070 adhesive effect Effects 0.000 claims 4
- 238000012986 modification Methods 0.000 claims 2
- 230000004048 modification Effects 0.000 claims 2
- 239000003344 environmental pollutant Substances 0.000 claims 1
- 238000002372 labelling Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 231100000719 pollutant Toxicity 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 4
- 230000008844 regulatory mechanism Effects 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract description 2
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 239000010439 graphite Substances 0.000 description 16
- 229910002804 graphite Inorganic materials 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012625 in-situ measurement Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000000961 QCM-D Methods 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008396 flotation agent Substances 0.000 description 1
- 238000001298 force spectroscopy Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003380 quartz crystal microbalance Methods 0.000 description 1
- CCIDWXHLGNEQSL-UHFFFAOYSA-N undecane-1-thiol Chemical compound CCCCCCCCCCCS CCIDWXHLGNEQSL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/04—Measuring adhesive force between materials, e.g. of sealing tape, of coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N2011/006—Determining flow properties indirectly by measuring other parameters of the system
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开一种煤泥浮选捕收剂分子官能团筛选方法,属于浮选药剂设计领域。通过沉积制备带有不同浮选药剂分子官能团的改性探针,之后通过原子力显微镜AFM观测改性探针向被测煤样上进针过程中产生的弹性变形信息,并根据弹性变形信息推导出改性探针在进针过程中的进针力信息,收集改性探针对应的退针力信息生成退针力曲线;比较所有改性探针的退针力曲线数值,数值越大则说明改性探针上的浮选捕收剂分子官能团与煤样之间的粘附力越大,粘附力越大则说明该改性探针上沉积的捕收剂效果越好。本方法步骤简单,精度高且直观,解决了现有技术中高效捕收剂分子官能团筛选困难、捕收剂调控机制不清晰等问题。
The invention discloses a method for screening coal slime flotation collector molecular functional groups, which belongs to the field of flotation reagent design. Modified probes with different flotation reagent molecular functional groups were prepared by deposition, and then the elastic deformation information generated during the injection of the modified probe into the tested coal sample was observed by atomic force microscope AFM, and the modified probe was deduced according to the elastic deformation information. The needle insertion force information of the sex probe during the needle insertion process was collected, and the needle withdrawal force information corresponding to the modified probe was collected to generate the needle withdrawal force curve; the values of the needle withdrawal force curves of all modified probes were compared. The greater the adhesion between the flotation collector molecular functional groups on the sex probe and the coal sample, the greater the adhesion, the better the effect of the collector deposited on the modified probe. The method has simple steps, high precision and intuition, and solves the problems in the prior art, such as difficulty in screening the molecular functional groups of high-efficiency collectors, unclear regulation mechanism of collectors, and the like.
Description
技术领域technical field
本发明涉及一种煤泥浮选捕收剂分子官能团定向筛选设计方法,属于浮选药剂设计领域。The invention relates to a method for directional screening and design of molecular functional groups of coal slime flotation collectors, belonging to the field of flotation reagent design.
背景技术Background technique
浮选是细粒煤泥分选、资源高效回收利用的有效途径,是根据矿物表面物理化学性质的 不同实现有用矿物与脉石矿物有效分离的界面分选技术。捕收剂是选择性吸附在矿物表面, 进而提高矿物表面疏水性使其易于粘附在气泡上的浮选药剂,捕收剂与矿物表面的相互作用 是决定浮选效率的前提条件。目前,以非极性烃油、石油化工副产品等为代表的传统化石燃 料是煤泥浮选捕收剂的主要来源,药剂的选择依赖于经验探索,缺乏科学依据,对煤种的适 应性较差,严重制约煤泥浮选效率的提高和煤炭行业高质量发展。近年来,捕收剂在浮选过 程中的调控机理已经取得系列进展,但捕收剂的分子结构信息仍不清晰,其作用机理仍需探 索,高效捕收剂的设计开发缺乏科学技术的支撑。Flotation is an effective way for fine-grained slime separation and efficient resource recovery and utilization. It is an interface separation technology to effectively separate useful minerals and gangue minerals according to the different physical and chemical properties of mineral surfaces. The collector is a flotation agent that selectively adsorbs on the mineral surface, thereby improving the hydrophobicity of the mineral surface and making it easy to adhere to the air bubbles. The interaction between the collector and the mineral surface is the precondition for determining the flotation efficiency. At present, traditional fossil fuels represented by non-polar hydrocarbon oil, petrochemical by-products, etc. are the main sources of coal slime flotation collectors. The selection of reagents relies on empirical exploration, lacks scientific basis, and has poor adaptability to coal types. Poor, seriously restricting the improvement of slime flotation efficiency and the high-quality development of the coal industry. In recent years, a series of progress has been made in the regulation mechanism of collectors in the flotation process, but the molecular structure information of collectors is still unclear, and its mechanism of action still needs to be explored. The design and development of efficient collectors lack the support of science and technology .
表面力主要包括范德华力,静电力、水化力、疏水力等,直接决定捕收剂与煤炭表面间 的相互作用。目前,微纳尺度下药剂在煤表面的吸附行为引起了浮选胶体化学领域学者的广 泛关注,一系列用于研究煤与药剂间相互作用的试验技术逐渐涌现。傅立叶变换红外吸收光 谱仪(FTIR),X射线光电子能谱(XPS)等传统表面检测技术通常是在真空或空气干燥环境 下得到的非实时或非原位测定,无法实现浮选液相环境下的原位测试,石英晶体微天平 (QCM-D)通过监测待测表面的质量变化表征药剂的吸附行为,原子力显微镜(AFM)对聚 合物吸附层的形态进行成像可探究药剂在煤表面的吸附行为,上述方法均无法对药剂分子与 煤物表面的相互作用力进行直接测量,导致药剂分子与煤表面间相互作用力缺失。Surface forces mainly include van der Waals force, electrostatic force, hydration force, hydrophobic force, etc., which directly determine the interaction between collector and coal surface. At present, the adsorption behavior of chemicals on the coal surface at the micro-nano scale has attracted extensive attention of scholars in the field of flotation colloid chemistry, and a series of experimental techniques for studying the interaction between coal and chemicals have gradually emerged. Traditional surface detection techniques such as Fourier Transform Infrared Absorption Spectrometer (FTIR), X-ray Photoelectron Spectroscopy (XPS) are usually non-real-time or non-in situ measurements obtained in a vacuum or air-drying environment, and cannot realize the flotation liquid phase environment. In situ testing, quartz crystal microbalance (QCM-D) characterizes the adsorption behavior of the agent by monitoring the mass change of the surface to be tested, and the morphology of the polymer adsorption layer is imaged by atomic force microscope (AFM) to explore the adsorption behavior of the agent on the coal surface However, none of the above methods can directly measure the interaction force between the agent molecule and the coal surface, resulting in the lack of the interaction force between the agent molecule and the coal surface.
因此,亟需提出适用于捕收剂分子官能团定向筛选方法。基于原子力显微镜提出的化学 力谱测试方法是筛选与煤表面性质匹配的捕收剂的重要手段,同时,可用于研究捕收剂分子 在浮选过程中的调控机制,这对促进煤泥浮选领域的发展具有重要意义。Therefore, there is an urgent need to propose a method for directional screening of collector molecular functional groups. The chemical force spectroscopy test method based on atomic force microscopy is an important means to screen collectors that match the properties of coal surface. The development of the field is of great significance.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足之处,提供一种步骤简单,精度高且直观的煤泥浮选捕收剂分子官 能团筛选方法,从而解决现有技术中高效捕收剂分子官能团筛选困难、捕收剂调控机制不清 晰等问题。Aiming at the shortcomings of the prior art, a simple, high-precision and intuitive method for screening the molecular functional groups of coal slime flotation collectors is provided, so as to solve the difficulty in screening the molecular functional groups of efficient collectors in the prior art, and the The control mechanism is not clear and so on.
为实现上述技术目的,本发明的一种煤泥浮选捕收剂分子官能团筛选方法,其步骤如下:In order to achieve the above-mentioned technical purpose, a method for screening the molecular functional groups of a coal slime flotation collector of the present invention, the steps are as follows:
步骤1、将多个镀金探针置于含有不同捕收剂分子官能团的巯基化合物的乙醇溶液中浸 泡24小时,从而在每个镀金探针表面化学沉积不同的浮选捕收剂分子官能团,形成表面沉积 有不同浮选捕收剂分子官能团的改性探针,并对各个改性探针进行标注;Step 1. Immerse a plurality of gold-plated probes in an ethanol solution of mercapto compounds containing different collector molecular functional groups for 24 hours, thereby chemically depositing different flotation collector molecular functional groups on the surface of each gold-plated probe to form Modified probes with different flotation collector molecular functional groups are deposited on the surface, and each modified probe is marked;
步骤2、将上表面光滑且平整的煤样固定在基底上,之后将基底放置在原子力显微镜AFM 载物台上;Step 2. Fix the coal sample with a smooth and flat upper surface on the substrate, and then place the substrate on the AFM stage of the atomic force microscope;
步骤3、将无底环形的橡胶圈安装在液体池底部,取一个改性探针安装在液体池中间的 夹子上,将液体池放在专用支撑台上,使改性探针的尖端悬于煤样的上表面;
步骤4、固定改性探针位置的情况下调节载物台的位置使煤样接近改性探针的尖端位置 后,固定载物台的位置,此时橡胶圈位于液体池底面与煤样上表面之间且形成密封空间;Step 4. Adjust the position of the stage under the condition of fixing the position of the modified probe so that the coal sample is close to the tip of the modified probe, and then fix the position of the stage. At this time, the rubber ring is located on the bottom of the liquid pool and on the coal sample between surfaces and form a sealed space;
步骤5、向液体池底面与煤样上表面之间被橡胶圈包围的空间注满无机盐溶液;控制无 机盐溶液溶液,保证每次试验条件一致;
步骤6、利用压电陶瓷控制改性探针向煤样上表面持续进针,同时收集进针过程中改性 探针产生的弹性变形信息,并根据弹性变形信息推导出改性探针在进针过程中的进针力信息, 进针力随着改性探针向煤样上表面的接近而增加,当进针力与距离呈现线性关系后判断改性 探针的端部已经物理接触煤样上表面,此时进行退针即控制改性探针远离煤样,同时收集改 性探针对应的退针力信息,将进针力信息以及退针力信息生成进针力曲线和退针力曲线;
步骤7、重复步骤2到步骤6,获取每个表面沉积不同浮选捕收剂分子官能团的改性探针 与煤样的进针力曲线和退针力曲线,比较所有改性探针的退针力曲线数值,数值越大则说明 改性探针上的浮选捕收剂分子官能团与煤样之间的粘附力越大,粘附力越大则说明该改性探 针上沉积的捕收剂效果越好。Step 7. Repeat steps 2 to 6 to obtain the needle insertion force curve and needle withdrawal force curve of the modified probes with different flotation collector molecular functional groups deposited on each surface and coal samples, and compare the withdrawal force curves of all modified probes. The value of the needle force curve, the larger the value, the greater the adhesion between the flotation collector molecular functional groups on the modified probe and the coal sample, the greater the adhesion, the greater the adhesion force deposited on the modified probe. The better the collector works.
进一步,利用各个改性探针的粘附力对所有沉积在镀金探针上的不同浮选捕收剂进行排 序,从而筛选出针对煤样最好的浮选捕收剂;通过更换煤样的种类,从而比较出不同种类的 煤样浮选补收效果最好的浮选捕收剂。Further, all the different flotation collectors deposited on the gold-plated probes are sorted by the adhesion of each modified probe, so as to screen out the best flotation collector for coal samples; So as to compare the flotation collectors with the best flotation effect of different types of coal samples.
进一步,每次更换测试不同的改性探针均需要更换液体池底面与煤样上表面之间被橡胶 圈包围的空间内的无机盐溶液以及煤样;通过在橡胶圈上设置进液管和出液管实现无机盐溶 液的快速更换,控制每次试验无机盐溶液浓度一致;Further, the inorganic salt solution and the coal sample in the space surrounded by the rubber ring between the bottom surface of the liquid pool and the upper surface of the coal sample need to be replaced each time a different modified probe is replaced and tested; The liquid outlet pipe realizes the rapid replacement of the inorganic salt solution, and the concentration of the inorganic salt solution is controlled to be consistent in each test;
进一步,所述制备改性探针的镀金探针的名义弹性系数为0.08N/m。Further, the nominal elastic modulus of the gold-plated probe for preparing the modified probe is 0.08 N/m.
进一步,在制备改性探针前需要将镀金探针置于等离子体清洗机中处理10分钟,置于乙 醇溶液中浸泡5分钟以去除污染物。Further, before preparing the modified probe, the gold-plated probe needs to be placed in a plasma cleaning machine for 10 minutes, and then soaked in an ethanol solution for 5 minutes to remove contaminants.
进一步,在镀金探针形成表面沉积有不同浮选捕收剂分子官能团的改性探针后,将改性 探针须依次在乙醇和超纯水中浸泡10分钟,之后放入真空干燥箱中干燥后备用。Further, after the gold-plated probes form modified probes with different flotation collector molecular functional groups deposited on the surface, the modified probes must be soaked in ethanol and ultrapure water for 10 minutes in turn, and then placed in a vacuum drying box. Reserve after drying.
进一步,煤样切割为扁平结构并将表面打磨光滑,之后进行清洗保证无污染。Further, the coal sample is cut into a flat structure and the surface is polished smooth, and then cleaned to ensure no contamination.
进一步,在改性探针进针前,需要对改性探针的探针悬臂偏转灵敏度进行测量并计算探 针悬臂实际弹性系数,完成弹性系数校正,确保力测试数据的准确性;在完成校正后,通过 压电陶瓷控制改性探针进针接近和远离煤样表面获取力信息,每个改性探针分别在煤样的不 同位置重复进针和退针,从而获取该改性探针与煤样不同位置的粘附力,取不同位置采集的 粘附力的平均数,从而保证力曲线测试的代表性及准确性。Further, before the modified probe is inserted into the needle, it is necessary to measure the deflection sensitivity of the probe cantilever of the modified probe and calculate the actual elastic coefficient of the probe cantilever to complete the elastic coefficient correction to ensure the accuracy of the force test data; After that, the modified probe is controlled by piezoelectric ceramics to enter and move away from the surface of the coal sample to obtain force information. Each modified probe is repeatedly inserted and withdrawn at different positions of the coal sample to obtain the modified probe. For the adhesion force at different positions of the coal sample, the average value of the adhesion force collected at different positions is taken to ensure the representativeness and accuracy of the force curve test.
进一步,对退针曲线力测试结果进行正态分布拟合,确定改性探针与煤样之间的粘附力 大小;使用EDLVO理论对进针力曲线进行拟合,确定相互作用力中范德华力、静电力和疏 水力的分量。Further, the force test results of the needle withdrawal curve were fitted with a normal distribution to determine the adhesion force between the modified probe and the coal sample; the EDLVO theory was used to fit the needle insertion force curve to determine the van der Waals interaction force. Components of force, electrostatic force, and hydrophobic force.
有益效果:Beneficial effects:
1、本发明提出的捕收剂分子官能团定向筛选方法可以直接比较多种捕收剂分子与煤表面 的力学作用大小,从而筛选最佳捕收剂,突破了盲目依赖传统经验性指导的弊端。1. The method for directional screening of collector molecular functional groups proposed by the present invention can directly compare the mechanical interaction between various collector molecules and the coal surface, thereby screening the best collector and breaking through the drawbacks of blindly relying on traditional empirical guidance.
2、与传统技术相比,本发明提供的捕收剂分子官能团筛选方法可以在液相环境中进行原 位测定,测试条件接近浮选环境中捕收剂与煤矿物表面的相互作用。2. Compared with the traditional technology, the method for screening collector molecular functional groups provided by the present invention can perform in-situ measurement in a liquid phase environment, and the test conditions are close to the interaction between the collector and the surface of coal minerals in the flotation environment.
3、本发明提供的捕收剂分子官能团筛选方法可以调控溶液化学条件,提供多样的测试条 件。3. The method for screening collector molecular functional groups provided by the present invention can regulate the chemical conditions of the solution and provide various test conditions.
4、本发明提供的捕收剂分子官能团筛选方法可以快速筛选出捕收剂中的有效官能团,直 接指导药剂设计与开发。4. The method for screening collector molecular functional groups provided by the present invention can quickly screen out the effective functional groups in the collector, and directly guide the design and development of pharmaceuticals.
5、本发明提供的捕收剂分子官能团筛选方法可以定量地对药剂与煤表面间的力学信息进 行分析,有利于明晰捕收剂调控机制。5. The method for screening collector molecular functional groups provided by the present invention can quantitatively analyze the mechanical information between the agent and the coal surface, which is beneficial to clarify the regulation mechanism of the collector.
附图说明Description of drawings
图1为本发明的捕收剂分子定向筛选测试的原理图;Fig. 1 is the schematic diagram of the molecular orientation screening test of collector of the present invention;
图2为本发明实施例1的十一烷改性探针在液相环境中与石墨表面进针测得的典型力- 距离曲线;2 is a typical force-distance curve measured by the undecane-modified probe of Example 1 of the present invention and the graphite surface needle insertion in a liquid phase environment;
图3为本发明实施例1的十一烷改性探针在液相环境中与石墨表面退针测得的典型力- 距离曲线;3 is a typical force-distance curve measured by the undecane-modified probe of Example 1 of the present invention in a liquid phase environment and the graphite surface withdrawn from the needle;
图4为本发明实施例2的十一酸改性探针在液相环境中与石墨表面进针测得的典型力- 距离曲线。FIG. 4 is a typical force-distance curve measured by the undecanoic acid-modified probe of Example 2 of the present invention and the graphite surface in a liquid phase environment.
图5为本发明实施例2的十一酸改性探针在液相环境中与石墨表面退针测得的典型力- 距离曲线。FIG. 5 is a typical force-distance curve measured by the undecanoic acid modified probe of Example 2 of the present invention and the graphite surface withdrawn in a liquid phase environment.
图中:1-激光光源;2-棱镜;3-激光检测器;4-扫描器;5-液体池;6-镀金探针;7-捕收 剂分子官能团;8-无底环形橡胶圈;9-矿物样品;10-基底;11-载物台;12-进液管;13-出液 管;14-改性探针。In the figure: 1-laser light source; 2-prism; 3-laser detector; 4-scanner; 5-liquid cell; 6-gold-plated probe; 7-collector molecular functional group; 8-bottomless annular rubber ring; 9-mineral sample; 10-substrate; 11-stage; 12-liquid inlet; 13-outlet; 14-modified probe.
具体实施方式:Detailed ways:
为了进一步了解本发明,下面结合附图来具体描述本发明的优选实施例,其中,附图构 成本申请一部分,并于本发明一起用于阐述本发明的特征和优点,并非用于限制本发明的范 围。In order to further understand the present invention, the preferred embodiments of the present invention are specifically described below with reference to the accompanying drawings, wherein the accompanying drawings constitute a part of the present application, and together with the present invention, are used to illustrate the features and advantages of the present invention, but not to limit the present invention. range.
如图1所示,本发明的种煤泥浮选捕收剂分子官能团筛选方法,使用原子力显微镜AFM, 原子力显微镜AFM包括激光光源1、棱镜2、激光检测器3和扫描器4As shown in FIG. 1 , the method for screening the molecular functional groups of a coal slime flotation collector of the present invention uses an atomic force microscope AFM, which includes a laser light source 1 , a prism 2 , a
其步骤如下:The steps are as follows:
步骤1、将多个镀金探针6置于含有不同捕收剂分子官能团的巯基化合物的乙醇溶液中 浸泡24小时,制备改性探针14的镀金探针6的名义弹性系数为0.08N/m,从而在每个镀金 探针6表面化学沉积不同的浮选捕收剂分子官能团7,形成表面沉积有不同浮选捕收剂分子 官能团7的改性探针14,并对各个改性探针14进行标注;在制备改性探针14前需要将镀金 探针6置于等离子体清洗机中处理10分钟,置于乙醇溶液中浸泡5分钟以去除污染物,在镀 金探针6形成表面沉积有不同浮选捕收剂分子官能团7的改性探针14后,将改性探针14须 依次在乙醇和超纯水中浸泡10分钟,之后放入真空干燥箱中干燥后备用。Step 1. Immerse a plurality of gold-coated
步骤2、将上表面光滑且平整的煤样9固定在基底10上,之后将基底10放置在原子力 显微镜AFM载物台11上;煤样9切割为扁平结构并将表面打磨光滑,之后进行清洗保证无污染。Step 2. Fix the coal sample 9 with a smooth and flat upper surface on the
步骤3、将无底环形的橡胶圈8安装在液体池5底部,取一个改性探针14安装在液体池 5中间的夹子上,将液体池5放在专用支撑台上,使改性探针14的尖端悬于煤样9的上表面;
步骤4、固定改性探针14位置的情况下调节载物台11的位置使煤样9接近改性探针14 的尖端位置后,固定载物台11的位置,此时橡胶圈位于液体池5底面与煤样9上表面之间且 形成密封空间;Step 4. With the position of the modified
步骤5、向液体池5底面与煤样9上表面之间被橡胶圈8包围的空间注满无机盐溶液; 每次更换测试不同的改性探针14均需要更换液体池5底面与煤样9上表面之间被橡胶圈8包 围的空间内的无机盐溶液以及煤样9;通过在橡胶圈8上设置进液管12和出液管13实现无 机盐溶液的快速更换,控制每次试验无机盐溶液浓度一致;
步骤6、利用压电陶瓷控制改性探针14向煤样9上表面持续进针,同时收集进针过程中 改性探针14产生的弹性变形信息,并根据弹性变形信息推导出改性探针14在进针过程中的 进针力信息,进针力随着改性探针14向煤样9上表面的接近而增加,当进针力与距离呈现线 性关系后判断改性探针14的端部已经物理接触煤样9上表面,此时进行退针即控制改性探针 14远离煤样9,同时收集改性探针14对应的退针力信息,将进针力信息以及退针力信息生成 进针力曲线和退针力曲线;
步骤7、重复步骤2到步骤6,获取每个表面沉积不同浮选捕收剂分子官能团7的改性探 针14与煤样9的进针力曲线和退针力曲线,比较所有改性探针14的退针力曲线数值,数值 越大则说明改性探针14上的浮选捕收剂分子官能团7与煤样9之间的粘附力越大,粘附力越 大则说明该改性探针14上沉积的捕收剂效果越好。利用各个改性探针14的粘附力对所有沉 积在镀金探针6上的不同浮选捕收剂进行排序,从而筛选出针对煤样9最好的浮选捕收剂; 通过更换煤样9的种类,从而比较出不同种类的煤样9浮选补收效果最好的浮选捕收剂。Step 7. Repeat steps 2 to 6 to obtain the needle insertion force curve and the needle withdrawal force curve of the modified
在改性探针14进针前,需要对改性探针14的探针悬臂偏转灵敏度进行测量并计算探针 悬臂实际弹性系数,完成弹性系数校正,确保力测试数据的准确性;在完成校正后,通过压 电陶瓷控制改性探针14进针接近和远离煤样9表面获取力信息,每个改性探针14分别在煤 样9的不同位置重复进针和退针,从而获取该改性探针14与煤样9不同位置的粘附力,取不 同位置采集的粘附力的平均数,从而保证力曲线测试的代表性及准确性。Before the modified
对退针曲线力测试结果进行正态分布拟合,确定改性探针14与煤样9之间的粘附力大小; 使用EDLVO理论对进针力曲线进行拟合,确定相互作用力中范德华力、静电力和疏水力的 分量。Fit the normal distribution of the force test results of the needle withdrawal curve to determine the adhesion force between the modified
其中煤样9可采用以下表面进行代替:石墨基底、氧化石墨基底、硅基底、硅烷化硅基 底、玻璃片基底、硅烷化玻璃片基底、金片、云母片;镀金探针6与捕收剂分子7的固定方式为化学成键作用;The coal sample 9 can be replaced by the following surfaces: graphite substrate, graphite oxide substrate, silicon substrate, silanized silicon substrate, glass flake substrate, silanized glass flake substrate, gold flake, mica flake; gold-plated
以下结合实施例及附图进一步说明本发明。实施例中所采用的检测技术为上述技术。The present invention is further described below with reference to the embodiments and the accompanying drawings. The detection technology adopted in the embodiment is the above-mentioned technology.
实施例1、十一烷与石墨表面间相互作用Example 1. Interaction between undecane and graphite surface
步骤1、将镀金探针6分别在1mM的1-巯基-十一烷的乙醇溶液中浸泡24小时,通过化学沉积获得覆有十一烷分子7的改性探针14;Step 1. Soak the gold-plated
步骤2、将固定石墨片9的基底10放置在AFM载物台11上;Step 2. Place the
步骤3、将装有镀金探针6的液体池5置于石墨片9上方,调整橡胶圈8的位置以保证封闭性,通入0.5M NaCl溶液;
步骤4、获取力曲线并进行分析。Step 4. Obtain the force curve and analyze it.
图2、图3为实施例1的十一烷改性探针14在液相环境中与石墨表面9相互作用测得的 典型力-距离曲线。从图2、图3可以看出,本发明的测试方法可以在液相环境中原位测试捕 收剂分子7与石墨表面9间相互作用力。Figures 2 and 3 are typical force-distance curves measured by the interaction of the undecane-modified
实施例2、十一酸与石墨表面间相互作用Example 2. Interaction between undecanoic acid and graphite surface
步骤1、将镀金探针6分别在1mM的1-巯基-十一酸的乙醇溶液中浸泡24小时,通过化 学沉积获得覆有十一酸分子7的改性探针14;Step 1, soak the gold-plated
步骤2、将固定石墨片9的基底10放置在AFM载物台11上;Step 2, placing the
步骤3、将装有镀金探针6的液体池5置于石墨片9上方,调整橡胶圈8的位置以保证封闭性,通入0.5M NaCl溶液;
步骤4、获取力曲线并进行分析。Step 4. Obtain the force curve and analyze it.
图4、图5为实施例2的十一酸改性探针14在液相环境中与石墨表面9相互作用测得的 典型力-距离曲线。从图4、图5可以看出,本发明的测试方法可以在液相环境中原位测试捕 收剂分子7与石墨表面9间相互作用力。Figures 4 and 5 are typical force-distance curves measured by the interaction of the undecanoic acid-modified
本发明利用现有技术对测试方法进行简单改造就可以调控不同的溶液化学环境及不同的 捕收剂分子,提供多样的测试条件且操作方便。The present invention utilizes the prior art to simply transform the test method to control different solution chemical environments and different collector molecules, provides various test conditions and is easy to operate.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210159749.5A CN114577716A (en) | 2022-02-22 | 2022-02-22 | A method for screening the molecular functional groups of coal slime flotation collectors |
PCT/CN2022/133064 WO2023160045A1 (en) | 2022-02-22 | 2022-11-21 | Method for screening molecular functional groups of coal slime flotation collecting agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210159749.5A CN114577716A (en) | 2022-02-22 | 2022-02-22 | A method for screening the molecular functional groups of coal slime flotation collectors |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114577716A true CN114577716A (en) | 2022-06-03 |
Family
ID=81773013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210159749.5A Pending CN114577716A (en) | 2022-02-22 | 2022-02-22 | A method for screening the molecular functional groups of coal slime flotation collectors |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114577716A (en) |
WO (1) | WO2023160045A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116090217A (en) * | 2023-01-10 | 2023-05-09 | 中国矿业大学 | Low-rank coal or oxidized coal flotation collector molecule virtual screening method |
WO2023160045A1 (en) * | 2022-02-22 | 2023-08-31 | 中国矿业大学 | Method for screening molecular functional groups of coal slime flotation collecting agent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110736858A (en) * | 2019-10-23 | 2020-01-31 | 中南大学 | oxidized mineral collecting agent AFM (atomic force microscopy) measuring probe and preparation and application methods thereof |
CN113426583A (en) * | 2021-07-01 | 2021-09-24 | 中国矿业大学 | Directional development method of low-quality coal flotation collecting agent |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU541192B2 (en) * | 1981-06-03 | 1984-12-20 | Dow Chemical Company, The | Froth flotation of oxidised coal |
AU2860297A (en) * | 1996-07-12 | 1998-01-22 | Ingwe Coal Corporation Limited | Method of mineral beneficiation |
CN102218376B (en) * | 2011-01-27 | 2013-01-30 | 湖南有色金属研究院 | Method for high-efficiency floatation and separation of molybdenum and nickel and recovery of molybdenum and nickel from high carbon nickel-molybdenum ore to obtain molybdenum concentrate and nickel-molybdenum bulk concentrate |
CN103143448B (en) * | 2013-04-03 | 2014-05-07 | 张京三 | Method for extracting float coal, ferrous sulfide and kaoline from gangue through flotation |
CN114577716A (en) * | 2022-02-22 | 2022-06-03 | 中国矿业大学 | A method for screening the molecular functional groups of coal slime flotation collectors |
-
2022
- 2022-02-22 CN CN202210159749.5A patent/CN114577716A/en active Pending
- 2022-11-21 WO PCT/CN2022/133064 patent/WO2023160045A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110736858A (en) * | 2019-10-23 | 2020-01-31 | 中南大学 | oxidized mineral collecting agent AFM (atomic force microscopy) measuring probe and preparation and application methods thereof |
CN113426583A (en) * | 2021-07-01 | 2021-09-24 | 中国矿业大学 | Directional development method of low-quality coal flotation collecting agent |
Non-Patent Citations (1)
Title |
---|
叶军建: "微细粒磷灰石浮选的界面调控研究", 《中国博士学位论文全文数据库(电子期刊)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023160045A1 (en) * | 2022-02-22 | 2023-08-31 | 中国矿业大学 | Method for screening molecular functional groups of coal slime flotation collecting agent |
CN116090217A (en) * | 2023-01-10 | 2023-05-09 | 中国矿业大学 | Low-rank coal or oxidized coal flotation collector molecule virtual screening method |
Also Published As
Publication number | Publication date |
---|---|
WO2023160045A1 (en) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023160045A1 (en) | Method for screening molecular functional groups of coal slime flotation collecting agent | |
CA2258239C (en) | Detection of ligand interaction with polymeric material | |
US20010051337A1 (en) | Method and apparatus for solid state molecular analysis | |
US9228972B2 (en) | Electroanalytical sensor based on nanocrystalline diamond electrodes and microelectrode arrays | |
KR100583233B1 (en) | Biomaterial Measurement System and Method | |
US20150038378A1 (en) | Biocompatible graphene sensor | |
CN110018086B (en) | Device and method for quantitatively measuring hysteresis force between solid surface and bubbles or liquid drops | |
KR20090093486A (en) | Physical/chemical sensor using piezoelectric microcantilever and manufacturing method thereof | |
CN106338355B (en) | A test method for adhesion and friction of graphene surface | |
CN105181501B (en) | Multiprobe friction and wear test and pattern detection system in situ under a kind of vacuum | |
CN104458979A (en) | Measuring device and measuring method for carbon-oxygen isotope of carbonate rock | |
CN113884411B (en) | Method for testing hydrogen diffusion coefficient of local tissue in material by using SKPFM | |
KR20150000887A (en) | Particle adsorption probe | |
CN113884410A (en) | Device for observing hydrogen diffusion process of local tissue in material by using SKPFM (scanning electron fluorescence microscopy) | |
US20010044106A1 (en) | Method and apparatus for solid state molecular analysis | |
CN114739842A (en) | Atomic force microscope-based method for measuring mechanical properties of micro-plastics | |
CN110455655B (en) | High-flux detection device and test method for thermal spraying coating | |
KR20150024328A (en) | Particle adsorption microprobe | |
CN210834519U (en) | High-flux detection device for thermal spraying coating | |
CN201266162Y (en) | Tap type high-sensitivity SPM gauge head based on PVDF | |
CN2816805Y (en) | Biochemical sensor | |
CN220063749U (en) | Underwater super-oleophobic surface wettability detection table | |
CN118190720A (en) | Device and method for testing interaction force of flotation particles and bubbles or liquid drops | |
Arumugam et al. | Nanocrystalline diamond biosensors | |
US7650804B2 (en) | Mechanochemical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |