CN114574490A - Pichia pastoris constitutive promoter and modification method and application thereof - Google Patents

Pichia pastoris constitutive promoter and modification method and application thereof Download PDF

Info

Publication number
CN114574490A
CN114574490A CN202210238177.XA CN202210238177A CN114574490A CN 114574490 A CN114574490 A CN 114574490A CN 202210238177 A CN202210238177 A CN 202210238177A CN 114574490 A CN114574490 A CN 114574490A
Authority
CN
China
Prior art keywords
promoter
seq
artificial sequence
pichia pastoris
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210238177.XA
Other languages
Chinese (zh)
Other versions
CN114574490B (en
Inventor
杨艳坤
吕梦娇
战春君
刘秀霞
白仲虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210238177.XA priority Critical patent/CN114574490B/en
Publication of CN114574490A publication Critical patent/CN114574490A/en
Application granted granted Critical
Publication of CN114574490B publication Critical patent/CN114574490B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/10Vectors comprising a special translation-regulating system regulates levels of translation
    • C12N2840/105Vectors comprising a special translation-regulating system regulates levels of translation enhancing translation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

The invention discloses a constitutive promoter of pichia pastoris, a modification method and application thereof, wherein the constitutive promoter is P0887‑GAP、P0887‑AOX1And P0887‑GSOne of (1); the promoter P0887‑GAPThe nucleotide sequence of (A) is shown as SEQ ID NO. 31; the promoter P0887‑AOX1The nucleotide sequence of (A) is shown as SEQ ID NO. 32; the promoter P0887‑GSNucleotide sequences of e.g.Shown as SEQ ID NO. 33. The invention replaces promoter P0887The transcription activity of the modified promoter is basically unchanged, and the fluorescence intensity is improved to 37 times of that of the original promoter.

Description

Pichia pastoris constitutive promoter and modification method and application thereof
Technical Field
The invention belongs to the field of molecular biology, and particularly relates to a pichia pastoris constitutive promoter, and a modification method and application thereof.
Background
Pichia pastoris is a unicellular eukaryotic microorganism, is a methylotrophic yeast at the same time, is widely used as a host for producing recombinant proteins, has attracted attention as a cell factory for producing chemicals in recent years, has a strictly regulated expression system, has less glycosylation compared with Saccharomyces cerevisiae, can realize high-density fermentation in a basal medium, has a high growth speed, has a eukaryotic post-translational modification mechanism, and can correctly express and secrete exogenous proteins. Although much research work has been done in pichia pastoris, there are fewer promoters in pichia pastoris that can be used for foreign protein production and biosynthetic pathway construction than other model yeasts.
Most inducible promoters in Pichia pastoris are involved in the methanol metabolic pathway and utilize methanol as an inducer, such as P, which is most commonly used for protein productionAOX1And PFLD1. Compared with these inducible promoters, constitutive promoters do not require expensive, toxic and explosive inducers during production, and are more favorable for controlling production costs and safety issues. PGAP(glyceraldehyde-3-phosphate dehydrogenase) is the most commonly used constitutive promoter in Pichia pastoris and has a high expression level in glucose and glycerol media but a low expression level when methanol is used as the carbon source. Furthermore, PTEF1And PGCW14And are also commonly used for constitutive expression. Recently, Dou et al screened 8 strong endogenous promoters with high transcription levels by RNA-Seq and LacZ reporter systems, and some of them were randomly applied to construct a heterologous beta-carotene synthesis pathway in Pichia pastoris with a yield up to 1.07 mg/L. Meanwhile Dou et al found that the simultaneous use of the same promoter multiple times significantly reduced the transcriptional expression level of the target gene.
Constitutive promoters in Pichia pastoris are not only quite small in number, but are limited to promoters with strong activity. For co-expression of some chaperones or other secretory cofactors, a less transcriptionally active promoter may be required. In addition, the construction of some heterologous metabolic pathways requires a larger promoter pool to avoid competing effects. Therefore, the use of Pichia pastoris for the construction of cell factories requires constitutive promoters of different strengths, which are more stable and suitable for recombinant protein expression.
Disclosure of Invention
This section is for the purpose of summarizing some aspects of embodiments of the invention and to briefly introduce some preferred embodiments. In this section, as well as in the abstract and the title of the invention of this application, simplifications or omissions may be made to avoid obscuring the purpose of the section, the abstract and the title, and such simplifications or omissions are not intended to limit the scope of the invention.
The present invention has been made keeping in mind the above and/or other problems occurring in the prior art.
One of the objects of the present invention is to provide a constitutive promoter of Pichia pastoris, by replacing promoter P0887The transcription activity of the modified promoter is basically unchanged, and the fluorescence intensity is improved to 37 times of that of the original promoter.
In order to solve the technical problems, the invention provides the following technical scheme: a constitutive promoter of Pichia pastoris, wherein the constitutive promoter is P0887-GAP、P0887-AOX1And P0887-GSOne of (1);
the promoter P0887-GAPThe nucleotide sequence of (A) is shown as SEQ ID NO. 31;
the promoter P0887-AOX1The nucleotide sequence of (A) is shown as SEQ ID NO. 32;
the promoter P0887-GSThe nucleotide sequence of (A) is shown in SEQ ID NO. 33.
As a preferred embodiment of the constitutive promoter of Pichia pastoris according to the present invention, wherein: the constitutive promoter isP0887-GS
Another object of the present invention is to provide a method for modifying constitutive promoter of Pichia pastoris, which comprises using promoter PGAP5' UTR sequence of (A) or promoter PAOX15' UTR sequence of (A) or promoter PGSReplacement of the promoter P by the 5' UTR sequence of (A)0887The 5' UTR sequence of (a);
wherein, the promoter P0887The 5' UTR sequence of (A) is shown in SEQ ID NO. 22;
the promoter PGSThe 5' UTR sequence of (A) is shown in SEQ ID NO. 25;
the promoter PGAPThe 5' UTR sequence of (A) is shown in SEQ ID NO. 28;
the promoter PAOX1The 5' UTR sequence of (A) is shown in SEQ ID NO. 29.
As a preferred embodiment of the method for modifying the constitutive promoter of Pichia pastoris according to the present invention, wherein: the promoter P0887The nucleotide sequence of (A) is shown in SEQ ID NO. 10.
As a preferred embodiment of the method for modifying the constitutive promoter of Pichia pastoris according to the present invention, wherein: the promoter PGSThe nucleotide sequence of (A) is shown in SEQ ID NO. 14.
As a preferred embodiment of the method for modifying the constitutive promoter of Pichia pastoris according to the present invention, wherein: the promoter PGAPThe nucleotide sequence of (A) is shown in SEQ ID NO. 1.
As a preferred embodiment of the method for modifying the constitutive promoter of Pichia pastoris according to the present invention, wherein: the promoter PAOX1The nucleotide sequence of (A) is shown in SEQ ID NO. 30.
It is another object of the present invention to provide the use of the constitutive promoter of Pichia pastoris, as described above, for expression of intracellular and/or secreted proteins.
Compared with the prior art, the invention has the following beneficial effects:
the invention provides a method for modifying a constitutive promoter of pichia pastoris, wherein P is P after modification0887The transcription level of the promoter is basically unchanged, and the translation efficiency is improved by 37 times at most. The discovery of the promoters with different activities widens the promoter library of the pichia pastoris, breaks through the limitation of the pichia pastoris in the aspects of recombinant protein production and biosynthesis pathway construction, has good application prospect, enriches synthetic biological elements, and lays a theoretical foundation for the strain in the genetic engineering modification and exogenous gene expression.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings needed to be used in the description of the embodiments will be briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without inventive exercise. Wherein:
FIG. 1 shows the expression of fluorescence by a candidate promoter according to the present invention;
FIG. 2 shows the expression of HSA protein by the candidate promoter of the present invention;
FIG. 3 shows fluorescence intensity and transcription level of candidate promoters in YTD medium;
FIG. 4 shows fluorescence intensity and transcription level of the modified promoter in YTD medium.
Detailed Description
In order to make the aforementioned objects, features and advantages of the present invention more comprehensible, specific embodiments thereof are described in detail below with reference to examples of the specification.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, but the present invention may be practiced in other ways than those specifically described and will be readily apparent to those of ordinary skill in the art without departing from the spirit of the present invention, and therefore the present invention is not limited to the specific embodiments disclosed below.
Furthermore, reference herein to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation of the invention. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
EXAMPLE 1 construction of promoter-eGFP and promoter-HAS strains
19 genes were screened initially by transcriptome data (RPS17, RPS8B, RPL35A, RPL10, Eif5a, RPL19A, ILV5, RPL23B, 0887, GSP2, TIF1, RPL14B, GS, SUN, BMH1, TRX1, YPT1, CCP1 and ARC 15). The promoter region of the selected gene (1000 bp upstream of the start codon ATG in the genomic DNA sequence) was amplified by PCR using the primer sequences shown in Table 1. At the same time, P is clonedGAPThe promoter served as a control.
Promoter PGAPThe nucleotide sequence of (A) is shown as SEQ ID NO. 1; promoter PRPS17The nucleotide sequence of (A) is shown as SEQ ID NO. 2; promoter PRPS8BThe nucleotide sequence of (A) is shown as SEQ ID NO. 3; promoter RPL35AThe nucleotide sequence of (A) is shown as SEQ ID NO. 4; promoter PRPL10The nucleotide sequence of (A) is shown as SEQ ID NO. 5; promoter PEif5aThe nucleotide sequence of (A) is shown as SEQ ID NO. 6; promoter PRPL19AThe nucleotide sequence of (A) is shown as SEQ ID NO. 7; promoter PILV5The nucleotide sequence of (A) is shown as SEQ ID NO. 8; promoter PRPL23BThe nucleotide sequence of (A) is shown as SEQ ID NO. 9; promoter P0887The nucleotide sequence of (A) is shown as SEQ ID NO. 10; promoter PGSP2The nucleotide sequence of (A) is shown as SEQ ID NO. 11; promoter PTIF1The nucleotide sequence of (A) is shown as SEQ ID NO. 12; promoter PRPL14BThe nucleotide sequence of (A) is shown as SEQ ID NO. 13; promoter PGSThe nucleotide sequence of (A) is shown as SEQ ID NO. 14; promoter PSUNThe nucleotide sequence of (A) is shown as SEQ ID NO. 15; promoter PBMH1The nucleotide sequence of (A) is shown as SEQ ID NO. 16; promoter PTRX1The nucleotide sequence of (A) is shown as SEQ ID NO. 17; promoter PCCP1The nucleotide sequence of (A) is shown as SEQ ID NO. 18; promoter PARC15The nucleotide sequence of (A) is shown in SEQ ID NO. 19.
TABLE 1 primers for construction of strains
Figure BDA0003543183020000041
Figure BDA0003543183020000051
Replacement of candidate promoter fragments by P in the PGAPZB plasmid backbone (PGAPZB plasmid purchased from Invitrogen, USA) by homologous recombination using MultiF Seamless Assembly kits (ABClonal, China)GAPAnd inserting the codon optimized eGFP or HSA sequence in the latter to construct the PXXXZB-eGFP or PXXXZB-HSA vector, e.g., by promoter PGSPGSZB-eGFP or PGSZB-HSA vectors were constructed. The eGFP sequence is shown as SEQ ID NO. 20; the HSA sequence is shown in SEQ ID NO. 21.
These vectors were linearized by PspL I digestion located in the middle of the AOX1 terminator, then passed by electroporation into GS115 competent cells and integrated into the genome by homologous recombination. Positive transformants were selected using bleomycin-containing YTDS plates and verified by genomic PCR. The expression of the protein was carried out as previously reported (Kolacsek O, Pergel E, Varga N, Apati A,&orban TI (2017) Ct shift A novel and available real-time PCR quantification model for direct compliance of differential nucleic acid sequences and its adaptation for translational compliance, Gene 598: 43-49) Single copy strains were selected from the positive clones and named promoter-eGFP strain or promoter-HSA strain, respectively, e.g., promoter PGSAre respectively corresponding to PGSeGFP strains and PGS-a HAS strain.
Example 2 promoter-eGFP Strain fluorescence intensity assay
The promoter-eGFP strain is cultured in the YTD, YTG and YTM medium containing bleomycin at 30 ℃ for 24h, and then the cells are collected by centrifugation. Cells were washed three times with PBS buffer and then diluted to OD600Approximately equal to 0.4-0.6 and transferred to a 96-well microplate.
Figure BDA0003543183020000061
Multimode Plate Reader (Perkinelmer, USA) is used to determine OD value and fluorescence intensity of cells. As fluorescence intensity/OD600The values of (A) characterize the promoter strength and the results obtained are shown in FIG. 1.
For better analysis of promoter stability and strength, classical constitutive strong promoter PGAPWas used as a control. Based on the fluorescence intensity of the promoter-eGFP strain under different conditions, the Coefficient of Variation (CV) of the promoter is calculated, and the promoters with the coefficient of variation smaller than GAP are screened out for further analysis. 12 ratios P selectedGAPMore stable promoters, respectively P0887、PRPS8B、PRPL10、PGS、PRPL35A、PCCP1、PRPS17、PILV5、PRPL23B、PSUN、PGSP2、PYPT1
EXAMPLE 3 measurement of the concentration of HSA protein secreted by promoter-HSA Strain
The HSA protein was expressed using 12 promoters selected, and the supernatant was subjected to western blotting to analyze the HSA concentration. Culturing promoter-HSA strain at 30 deg.C in YTD, YTG, YTM medium containing bleomycin for 24 hr, collecting fermentation supernatant, adding 5 × loading buffer, boiling, performing SDS gel electrophoresis, transferring protein in gel to
Figure BDA0003543183020000062
polyvinylidene difluoride (PVDF) membrane (Millipore, USA). Membranes were blocked with TBST buffer containing 5% skim milk for one hour at room temperature and then diluted 1: 10000 of Albumin Monoclonal antibody (Proteintech, USA) was incubated at room temperature for 1H, and after three washes, HRP-conjugated affinity Goat Anti-Mouse IgG (H + L) (Proteintech, USA) was used for incubation at room temperature for 1H. Bound antibodies were detected with High-sig ECL Western Blotting Substrate (Tanon, China). The integral density of the protein bands was calculated by counting with Image J software and obtaining black and white pictures by a chemiluminescence imager. Correlation of the integrated density and concentration according to the standard HSA sampleThe HSA concentration in the culture supernatant was calculated.
The protein bands, HAS concentrations and Coefficient of Variation (CV) obtained by Western Blotting are shown in FIG. 2, and finally 6 constitutive promoters with different strengths, P respectively, were selected0887、PRPS8B、PRPL10、PGS、PRPL35AAnd PCCP1Expression intensity distribution in PGAPThe strength is 27-148%.
Example 4 identification of promoter 5' UTR sequences
Pure total RNA was obtained by Ultrapure RNA kit (CWBIO, China), the integrity of the RNA was judged by agarose nucleic acid electrophoresis, and the purity and concentration of RNA, A of pure RNA, were determined using NanoDrop (Quawell, USA)260:A280The ratio of (a) to (b) is 2.0. The 5 '-complementary DNA ends of high quality RNA were rapidly amplified using 5' RACE Kits (Sangon, China). Briefly, two rounds of PCR were performed after single-stranded cDNA synthesis. The products were cloned into T-Vector (Takara, Japan) after gel recovery and were Sanger sequenced (Genewiz, China) to determine the transcription start sites of these six promoters as well as the 5' UTR region (Table 3).
Table 3 5' UTR sequences of the promoter sequences screened
Figure BDA0003543183020000071
Example 5 expression of eGFP by different promoters in YTD Medium translation and transcription levels
Pure total RNA was obtained by Ultrapure RNA kit (CWBIO, china) and then reverse transcribed into cDNA using HiScript III RT SuperMix (nunoprazan, china). Real-time fluorescent quantitative PCR was performed in a StepOneNus RealTime PCR System (Applied Biosystems, USA) using the ChamQ Universal SYBR qPCR Master Mix reagent (Novowed, China). The reference gene was ACT1, and the primers used were as shown in Table 2.
TABLE 2 real-time fluorescent quantitative PCR primers
Figure BDA0003543183020000081
6 constitutive promoters P of different strengths0887、PRPS8B、PRPL10、PGS、PRPL35A、PCCP1And P as a controlGAPThe comparison of the fluorescent intensity (FIG. 3a) and transcription level (FIG. 3b) of the promoter expressing eGFP in YTD medium is shown in FIG. 3.
As can be seen in FIG. 3, P0887The amount of mRNA transcribed by the activated eGFP is the most among seven promoters, but the fluorescence intensity corresponding to the strain is the lowest. This phenomenon may be due to ribosome recruitment during translation of mRNA and translation efficiency.
Example 6 promoter P0887Transformation of
Attempt to pass through replacement of P0887The 5' UTR sequence of (a) to unify its transcription level and translation level. Selected promoter P exhibiting excellent translation level by homologous recombination using MultiF Seamless Assembly kit (ABConal, China)GSAnd a strong constitutive promoter P commonly used in Pichia pastorisGAPAnd a strongly inducible promoter PAOX1The 5' UTR sequence of (A) is replaced to P0887Respectively obtaining the promoter P0887-GAP、P0887-AOX1、P0887-GS
Strongly inducible promoter PAOX1The nucleotide sequence of (A) is shown as SEQ ID NO. 30; promoter P0887-GAPThe nucleotide sequence of (A) is shown as SEQ ID NO. 31; promoter P0887-AOX1The sequence is shown as SEQ ID NO. 32; promoter P0887-GSThe sequence is shown in SEQ ID NO. 33.
Testing of the modified promoter P Using the methods of example 2 and example 50887-GAP、P0887-AOX1、P0887-GSThe fluorescent intensity of eGFP was expressed in YTD medium (fig. 4a) and the transcription level (fig. 4 b).
As can be seen from FIG. 4, P is obtained after the sequence conversion of the 5' UTR0887The relative expression amount of the initiated eGFP is basically unchanged, and the fluorescence intensity is obviously improved. Especially P0887Conversion of 5' UTR to PGSAfter 5' UTR, the fluorescence intensity increased 37-fold. The results indicate that switching the 5' UTR of the promoter can increase the level of translation of the gene without affecting the level of transcription.
The invention takes pichia pastoris as a research object, clones, screens and transforms a constitutive promoter. By using eGFP as a reporter gene and driving the expression of the eGFP through the selected promoter, the difference of green fluorescence intensity and HSA protein secretion level is analyzed, and finally a series of stable constitutive promoters (P) with different intensities are obtained0887、PRPS8B、PRPL10、PGS、PRPL35AAnd PCCP1). The invention also provides a method for modifying the constitutive promoter of the pichia pastoris, wherein P is the modified P0887The transcription level of the promoter is basically unchanged, and the translation efficiency is improved by 37 times. The discovery of the promoters with different activities widens the promoter library of the pichia pastoris, breaks through the limitation of the pichia pastoris in the aspects of recombinant protein production and biosynthesis pathway construction, has good application prospect, enriches synthetic biological elements, and lays a theoretical foundation for the strain in genetic engineering modification and exogenous gene expression.
It should be noted that the above-mentioned embodiments are only for illustrating the technical solutions of the present invention and not for limiting, and although the present invention has been described in detail with reference to the preferred embodiments, it should be understood by those skilled in the art that modifications or equivalent substitutions may be made on the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention, which should be covered by the claims of the present invention.
Sequence listing
<110> university of south of the Yangtze river
<120> Pichia pastoris constitutive promoter, and transformation method and application thereof
<160> 33
<170> SIPOSequenceListing 1.0
<210> 1
<211> 486
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
tttttgtaga aatgtcttgg tgtcctcgtc caatcaggta gccatctctg aaatatctgg 60
ctccgttgca actccgaacg acctgctggc aacgtaaaat tctccggggt aaaacttaaa 120
tgtggagtaa tggaaccaga aacgtctctt cccttctctc tccttccacc gcccgttacc 180
gtccctagga aattttactc tgctggagag cttcttctac ggcccccttg cagcaatgct 240
cttcccagca ttacgttgcg ggtaaaacgg aggtcgtgta cccgacctag cagcccaggg 300
atggaaaagt cccggccgtc gctggcaata atagcgggcg gacgcatgtc atgagattat 360
tggaaaccac cagaatcgaa tataaaaggc gaacaccttt cccaattttg gtttctcctg 420
acccaaagac tttaaattta atttatttgt ccctatttca atcaattgaa caactatcaa 480
aacaca 486
<210> 2
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
tgtacgtttt ttatcgatac tagcgttctt tctatactcc agtaaaccgt tgataaatat 60
gactcgtttc ctttctgctc tagttgtcaa tcgggagtta tatatatcca gaacggacaa 120
ttttagttca atatccaacg gttgatcatc cggatcaaag accatatcct ttacagtgag 180
ttcagcatca ttttcaactt caacttcgaa ttctaatcta ccaggcataa acccttgaat 240
atcagagcat aacgggaccg acgctaaagg cttcttaggt gttggtaacg gctgcttttt 300
cctacgttca agtcgggctt tgcgttgctg tatgaacact tcaggagtta tatctttgaa 360
atcctttgtc aggtccggta gtggataatc aatcgaatag agatagaatt tttcataatg 420
ctgtccgact tcttccttgg agcgattacc gatatggtca gcgatgtcat gccaatttcc 480
taaaccgaat ttttggcatc cttcgatcag taacagctct tcatcagcgc cccaactttc 540
gcttagtatt ggataagcat tctgttcgac aatcctgtag gcatggtaag gtttatgagc 600
accggaaaat gaaccctggc taaagcaagg tacgcacaga tcgtactcct cgcatacagc 660
acaccgtatc cgcacccgat tagtgcaatc ggaagagcac acgtcgcaat gaaacttcgc 720
catttgatgt ctcaaatatg atcactcttt tgtaggagtc cttcgagcat ttatttatcc 780
aaggtgagat gtaagatgtc gtgttggact tcaatgtagt tacctcagca gttgttactg 840
tgagcgaatt attcagcagt cacatcgtgt atgtaatatc tagaacactt aggtactgtc 900
gcgcaccaag tgttcagttt ccacatcagt acaccagaaa gacgaggcta attaattgaa 960
ataatttttc ttttgaactc actactaaga attcaacaaa 1000
<210> 3
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ctgtcccact gatactgctg aaggtgctat caatattgga gaaatagaag atccagaaga 60
taaagtgcga taccaaatat ggaaagaaaa tgaatccaaa cgagcagacc agaacgataa 120
atcgcctgca tcaatccttt caaaattgca gtacatattg ttttttatat ttctgggtgc 180
catattcaag tattatgttc attgattgtt ttaaaatgtg acctttagtc aaactttcat 240
gaaagaaaag cggctaactg gctaaagttt atggcctatt tcagaaagct agaacccaaa 300
actggttttt ctcctctgat tgctaaactc ttgagtacat cccgatcgta gtgttgatag 360
tcgttgcttt gttgacttcg tctcagccct tttgtgagct gtcgtccata atctcagtga 420
ttcatttcat aagcatattt taaatgtaat atgttaactt agttgatcga catattgttg 480
caaatcttct tcttcaaaaa ctacttgaac cattagagag caagatggac aaatagcaac 540
atcttccccg tcctttaaat catctaagga gatttgaaac ctatccccac aaggacatgg 600
atactggaaa atctgtagaa taggatcaaa aataaaatct tcgatttcta tatgatcata 660
aattgtttcc atgaatagta ttaaaacctt tgagtacacc tatatgtcac tggatgcttc 720
ttacagattc ctcatgtaga accgataaaa agtaaaggat catacaaaaa gatagaaaaa 780
taacaatcac gtgagtagat aaagggtaaa ataatcttaa aagtcacaac atcttcaatc 840
ggtaattaac ttggtcatgt gatttggctc acttgacttc gcttctaaaa atcttttcat 900
acttctcttt ccttaaacat caagtaaagt aagtaaatta ccagaacttg cgaaatcaag 960
tcattgctcc attcaacttc atcggctaac agttattaga 1000
<210> 4
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
agcaagttga acaagatccc aaaacggatc agtgtcattt tgaatctgaa gccggaggaa 60
actgagaatg gtggcatatc ggggctaatc agtgacagct cagaagtatg tgcatgggta 120
gtagctagtg ggattaagta tctctctatt tatgagtatg gaggagaact aaagaacaac 180
atcccagagt tacgtagatc cgtctacaag aagttggcag tctattacgg taccgacaat 240
gtgcctacat tctccataaa ggtcccacat gccaatgcca tttactacgg tgcttcggac 300
caagatatag accaacaaag atacaagaat actagctaca agcctatcct ccaaattgtg 360
cttctctcta atgttgatgg gagagctaca attgtggatt tgactaaagt tatggctgat 420
ctaacaacca ctaacgagat atcaccaaag gatataactg taaagttcat tgatgatgaa 480
cttaaacagc tggtgggaga agaacctgat ctactaattc tatttcagcc atatttgaac 540
ttgcaaagtt atcctccatg gcacattcgt ctttgtgaaa tctattggga acctgataac 600
gatgctgtta cgtatccggt ttatctccgt gctctacaaa aattttccac atgcaaggtc 660
aatgttggaa aataaacatg acaacgccga tttcaacagc tagatagctt atcataccat 720
ttgcttcata cattatgacc taatctacat gaatctattg actccctact aaggtagtcg 780
gtataatagt aggcctgaaa tctcgaaaca ctataaggtt tatgccctta aagtagtcat 840
gtgatttggt ttgtctaagt aatgtactga tgtaagtttc ataatgtcgt gcactgtatc 900
aaacattctt ggattttcgt cctggctctt ttgtaggaaa tcgcttagaa aaaaaagtga 960
aaaaagttct tctctacctt acatcaataa ctaatataaa 1000
<210> 5
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ggcctcctcc tgtggcgctt gaagttgagc tgcaagtatt ttgtccttct cttcgttttc 60
tgccaaatga gtggctaaca cagcatcttc catttgcttt ctggaaggtt cagattgctt 120
ataatgttct actcgttcca taaacttgag taagttggtt cctgctgctg cttcactctc 180
taagttatca tatggtctta cactaaggtc tttgaccctt cttttatgga tcttagactt 240
caaatgtgag gcaagtgcct tattgtcctg aaaatatttg gcacaatgaa cacagtagta 300
ttgacccaat cccgctttgt attcatccat aggttgatgc tttaagctct gaatagactc 360
tggtgtcgat agatcaccat agataaggtc caaatctctg gttcttcgct tggtcttgta 420
tctccttaca ctgtatcttc ccatttgcgt ttaggtggtt atcaaaaact aaaaggaaaa 480
atttcagatg tttatctcta aggttttttc tttttacagt ataacacgtg atgcgtcacg 540
tggtactaga ttacgtaagt tattttggtc cggtgggtaa gtgggtaaga atagaaagca 600
tgaaggttta caaaaacgca gtcacgaatt attgctactt cgagcttgga accaccccaa 660
agattatatt gtactgatgc actaccttct cgattttgct cctccaagaa cctacgaaaa 720
acatttcttg agccttttca acctagacta cacatcaagt tatttaaggt atgttccgtt 780
aacatgtaag aaaaggagag gatagatcgt ttatggggta cgtcgcctga ttcaagcgtg 840
accattcgaa gaataggcct tcgaaagctg aataaagcaa atgtcagttg cgattggtat 900
gctgacaaat tagtataaaa agcaatagac tttctaacca cctgtttttt tccttttact 960
ttatttatat tttgccaccg tactaacaag ttcagacaaa 1000
<210> 6
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
tgaggttaca cccgatgcaa caaaatcaga accaaatgag ccattagagt ctcagaataa 60
taccgatagt gattcaacag atgctagtac aaatactagc gttacagtta aaaaacaggg 120
tgccaaaaaa ggccgaaaag tacgcaacaa atccgtcaac cactcctttg acgagttttc 180
gccaataatc acagaccagg agtttttcat gttaacaaac aataattcca agtattacga 240
aaaatacgta ctaagatgca atttcaaaga taaagaagtt gaagatgttg aaagacaggt 300
tgcactgaaa attgctgatt ccctgcggga tagcaaatca aacttgagtc ggcaaggacg 360
tccttccaga aactcaacaa ttgaaggttg tgggctatcg cacaatagaa atagtaaccc 420
ttctagagca gttagagaca gcaatgcaag ggaaacgtta gaagctgagt tcccaagaaa 480
aacataccca caatttccag aattcacagg tgaagtgaga agcaaggaac tgggccatac 540
tcaatcaaca attgaccttt acttctcaca ctataggact tcatctggaa aacacagtga 600
ggcccaacaa atgaacagaa tattcaaaca ctacagacca ccctatggac ttgaggcaga 660
ggttattagt gaggatctca gaaagatggg aataaaccca gtaggcaaat aggacgacat 720
gttgacataa gtaaaatcaa tggacactta tctatcttct ccccacaccg ttcatcttcg 780
ttacccggcg taagtctcta tcatgtaaaa ttcagtccgg agtagtgtaa acatcatcac 840
gaagtaaaga aaatcaaaat atcaaaacca aaaattggtt ggtgcacaga gccaacaaga 900
tttctaggcg atcaatgggc aattggctta gaaaaaggca ttcatttttt ttctcatttg 960
ttttttcact tctctttgaa tctccctaac tttaatcaaa 1000
<210> 7
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ctacgacgtt cttttgatta gctcagcaaa ctagtttgaa aaaaaagacc aatacctgct 60
attactgtac aacttttata atatgcttaa tatacacgct acagcaaccc tcatatagca 120
caacactaaa ctaatagaag attaccatgg cttttcgggg gtgaactgtt caaagcccaa 180
acgatgattc cacttttgtc ttcttgatct cttcttaaag ttcttcttgg tcgtcctctt 240
ctcaggcttt ttcaaaggga cagagtctat atctatgtca acttccacag tggagacctt 300
ggcaggttta gagtctttgt cttcgcttgc ctcttccttc tgttttacca gggctgcttg 360
ggacttctca aacagtctct tcctcctttc atcttcgtat ttctggaatt ccaatgacct 420
cttcacagct tttgcttgaa gcttggactt tgatctagag gatttagcca ttactgtggg 480
atatctgtga atgcaaattg ggatcttcct agaagagatg ttattttacc tctcagaaaa 540
tttattttcc tgcaactctc aaaaagtctt ggcccctatc aaagtattgc ttatctaaga 600
agcaaaccgt tattacgtaa catgatctta tcctttacac atcgtgggta aaccctaact 660
ttgataacgt gaccaccttt tgagaatgtg attattggaa gcgaatcact gttccacacg 720
acggaccctc ttacaatttg cccgcgattg ggcccagaaa agggagattt agctcgtgac 780
tacctctttc gctacctttc caagagggaa aaatttacct gtttcaattt cctcttcacc 840
tttttagttt gcccaattac taatttcaaa atgtaagttt gattcccaag cggaagaggt 900
catggagtag ttccattggt aagaccagta caatcagttt caactcgctc aatctgttgt 960
ctttttgttg attgttcatg atcctccagg tattttccct 1000
<210> 8
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atttccagat aatcatgacg catccacctc gttacaatgt acctaaacta aaagacaacg 60
acagccccct tggttgtgca gatcatcatc tcctatcaaa cagcacacaa aaaactgggt 120
aataagttta gaacgagtta caaaatgtct tcctcctttt gcaattctaa tctacgcgga 180
atctgtcacc ctcttaggtt tattctctta cagtacttcc cctagaatcc cgacaagagc 240
taaacaaaaa cttaggccag aaagcaaagt tcccttagca tataatttac ctagctttgt 300
taggctattt cgaacttgat tccgttcaat cgcccactcc acttcatctt cgacattatc 360
ttccatcaat tctccttcta cagaaacata ggctgaccca tctaaagaag atctttcagt 420
aatgtcttgt ttcttttgtt gcagtggtga gccattttga cttcgtgaaa gtttctttag 480
aatagttgtt tccagaggcc aaacattcca cccgtagtaa agtgcaagcg taggaagacc 540
aagactggca taaatcaggt ataagtgtcg agcactggca ggtgatcttc tgaaagtttc 600
tactagcaga taagatccag tagtcatgca tatggcaaca atgtaccgtg tggatctaag 660
aacgcgtcct actaaccttc gcattcgttg gtccagtttg ttgttatcga tcaacgtgac 720
aaggttgtcg attccgcgta agcatgcata cccaaggacg cctgttgcaa ttccaagtga 780
gccagttcca acaatctttg taatattaga gcacttcatt gtgttgcgct tgaaagtaaa 840
atgcgaacaa attaagagat aatctcgaaa ccgcgacttc aaacgccaat atgatgtgcg 900
gcacacaata agcgttcata tccgctgggt gactttctcg ctttaaaaaa ttatccgaaa 960
aaattttctt cccttctctt ccaaatatcg tctccacaaa 1000
<210> 9
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
aggatgcaag gtatctcttt gtggacgggg aactgagccg taaacgagaa tgctctgtag 60
ttggggtctt ctgggtaggg gcgcttcact tcgctatctg cgcatcttca aatgcaccag 120
tccattccat gacatcactt tgcgacacaa actacaatgc ccctgctggg actgagcatt 180
attaggttta gagcttgcca tggctctata gatacaattg gcacaaaata tatgaccaca 240
tggcgtgact accgcttcgt tgatggcgtc aaaacaaata ggacattctg tcatcttgaa 300
cagcttttga ttatcctttc tctttgcaga cgcctctaac agttctatag tcgatttgtt 360
agcagctgga tctttttcgc catcggatcc cagcacaata acatcttcct cctcttcctc 420
ctcctcctcc tctatctcgt ctccactaga cacctcagta tctgacccgt cgggtacttc 480
caaaacagaa tgctttctct tattggtgcg atctctttgc tcatcgtcat taatcacgat 540
ctgctgattc tcctcttgtt cagatccagt atccacaaca tcgcttagag ggctactgct 600
gccatcaatt ggtgtaatga actcctggtc agaatcctca accggagtaa aaagtgaatc 660
ttcctgtgca ttcattcttt aacttgacat tcttgaataa gctctaattt acaagcagtt 720
gatgatccag tgctgatgga aaccctgctt atccgatgta gtcttaatgt attcagaggg 780
gaggtagagg caggatagat aagaggaaca gtcttagtaa tcatcacgtg cacttgttca 840
gggctctctt cgggttttgt ttcaaagatt cgcgaactgc acctattgtc ctacatttca 900
aacgaaccca gagcagcaat ttttgattca tcgcacgaca gtaattagtt ttcgttaaaa 960
aaaatatcca acttttacct caataacata atcatcaact 1000
<210> 10
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
aaactgttta gagttgtgac gatgatcatg tccaataact attgatttac cgccagcttt 60
tgacatatag ttggccagtc cctgagatgc ttgtattatc gtgagatcat tcattagact 120
aaaaccagca cccattctac ctcgaagtcc cgctgttcca aaagtaattc ttcttcgtaa 180
gcgttcttca agaactttaa acttttcatt ctcaagaagt ttgagaatct cagatctagt 240
ggatggatta cgatcaatgc taagccattg atgcgctaac gccttaattg atggggacat 300
gatgtcagat gtaatacctt gtttaccgaa atttagctat ctcacgtagc ctagaatggc 360
cgctgctaat cggcctatat ctaaaacggc atatcgagga tcgatgaagt ttacacgtga 420
cgcattcagt gtaagtaaat tacatgcagt gccggctact tgactaaagt aagaaaaaac 480
tcagaaatca aagaaataac agaagctgta cgacacaacg aaataaatac aaactttctt 540
aggatgcaat ttaacaagaa tcgtcttatt gtctctcgga aacattcaag aatttcagcc 600
cattatccac attcagtcat ggcgcattat ttagattgtg ttgtttgata aaaaaagaat 660
acagcaagta acaacgagta gtcagttact gagatatttt ttagtaccgt cgatccggtt 720
acggggaatt taactgcaat atatcaaacg ttaaactgga tcgagttcaa aaaaacaagc 780
tctaactcag tcaagcttta tgtatagttt cctaatcagg taatttttta tgatcttgtc 840
tgtaggtttg attaaatttc cattacatct aaaaatagta acccagccat ctgaaaaatg 900
gatctttcgg gattcaatat tcacagtata aaaggaagac ttctcttagg attctgaccc 960
gttcatactc attgctaaac atattaaata ctgagaaatg 1000
<210> 11
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
aggtaaatgt tagtacttgt tcatcgtgtc tgtcgtctag aattttttca ctcctgattg 60
atacttactt cttctggctg gggcagcaga gaaagctcta acttgagttc tcagggcctg 120
aatatgttag tcaagttaaa cattgaaaaa cccaccgaat tgagtggtga aggctagact 180
tacggatgat ctgataacgg caaacattgt gtgtgtgtct aagggttgat ttagatggtt 240
cctccttgac ttggacattt cgagcgattt cgttggttgg caagaagacg ggtaatcgag 300
gagtaatggt tgggacacta tcagaggacc attgagagaa gaggtaagca agattaagat 360
taatggcaaa gtattattgt gaatattgca attgtgagtg tgaaccgtaa ttgatcgtcg 420
ccaaatggat cttactaaca agtttagcct acttgaccca tgactctttg agtgtcagaa 480
aatctcattt gattggccga aaccatctca gaaagtattg cgattactac gaaggtaaga 540
catcttgtga ttcgcccacc acagggccat actatcataa agactactaa cagttctaga 600
aaaggctaaa gagcttggga tttgggactc caacgattta ccatatgaaa taactgaatc 660
cgatctctat gcgaatattc caggtagacc actgtcatta gaaactcctt tggaaacatt 720
tccgccgccg ccaagtctgc caaacctacc aaaccctcca ccagccatat accactacaa 780
caccacagaa gagaaagagc tcatatcatc cgtcatgaga gagtaccagc acagaaatac 840
agtcaagtaa aactagtatg caagcattac gtaataatag caactttatg acaaatcatt 900
ccattttttt ccactggagc gtgcactgcg taaatcattc tctttggaag gcaagggaag 960
aacaacaaaa tttttccttc cgttatacaa acattgaatc 1000
<210> 12
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
ctcttctcta tccggccctc tagataaata tacttgagaa ataattgtac aacttatcag 60
ttctctatca cgtgacagtg gactttccgc agtcacagag cattgctcca aatggattcg 120
agcctttcgg agggaccttg tagcatctac gcggaaatat acgggcacag agccttcgcg 180
aagcagtgac cacctaacac cacaattctt cgagctcgca aaacgtctga aaaatttaac 240
ctatcttcaa cctgttagct tcaactacaa ctatacaaaa tggaaaacga caacggtgaa 300
ttggtatgta tcccgaacta cacgagaaat ggtgatgtgt agcataaaat gaagctcaga 360
aaatctgtag ccacagtgaa gttatacggc catttgcgtt gttagttggt caagttcgaa 420
aaatactaac atttcaaggt tgaactttac gttccacgca agtgctctgc caccaacaga 480
attatcaagg ctaaagacca cgcctccgtt caaattaaca ttgctaacgt tgatgaggaa 540
ggacgtgcca tcagaggaga caacaccact ttcgctctct ccggttacgt tagatccaga 600
ggtgaggctg acgactcttt gaacagattg gctcaacaag cgggtctgtt gaagaacgtc 660
tggtcctact cccgttaagc actcaaaaag atgtttttgt acctttaatt tagcccgtca 720
acattattag tgtattacac caggttgtaa aatgcatcca tacaccgtag tatttgcgcg 780
cctcctcctg ggtgttttct caactgccgc ccccaactcg ccccccccct tttgcacttc 840
ttgccacctt ggagatcaga gattgtggaa ccttgctcaa aatctggcat gcacactacc 900
tcctcaaaaa aattttcctt gccttgttgc aaggcgctca aaaatcaaaa gtttttctac 960
aacttttgtt cccaacaaat caccttttta cttacccatt 1000
<210> 13
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
acagaaggac aaacaggagc tagagtcgca gttaaggaag acgacgactt acaggcacgc 60
ttggacgatc tccggagata aacgctgcgt ctcccacttg tgagattatt atcaatagcc 120
taacaggtca tcgtgatcat ttggaccatc tacccgagca gagaagctcg tagctctgtt 180
tttggtaacg atcttagtac aggctactca ttttgcgaat atttagctta cttagtgtca 240
tttctgcctt gcacttcttt ggacctgcca aactaccacc cagcagagca acttggctca 300
acaactttac caggcgcaca gagtctatgt aacaactatc aatgccatag ataacaagct 360
cattgaaaga ttcactgtga acctgacgta agtcctgaag cgcaactagc accaagtata 420
aggcagtcac ttcatctggc ttcaaaaata gaaacttagc tccaccggaa atcagatgtt 480
cctcaatggt atcaactata gcaactgagg ggcaattcac acatatcaat accaccaggg 540
ttttcctttt atttatacct tccataatca tcttgaaatc aaccttgtcg tcatcattgc 600
tagacatcga tcataggggc aaaactgatt acctttaaag ttagataatc aagttctaga 660
ataaaaagcc atcctttatt cagaaagaaa tttatcgcat ttcgaaaaga gaacacattg 720
aaactaggca tgtttcgaac cttttctctc aatcgcaaat tatttcatca taagaaagat 780
aaaaatagat tagcaactta ctaaaagact ctgacaatca cacgagcctg aacatcgtct 840
tttttcctgt agaacaaaca cttattgaaa cgagattcga gactctcaaa gcgaatattc 900
tctagggctc aaccctggtc atgtgattgg ttcttgcgcg cttgtttttt gcagtacaac 960
aaaaaaaatt attgtccttc ttctatcaac caaagtaaag 1000
<210> 14
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gctggtgcgt caggttcggt ccccgggagg agtctcgacc aatggctagg tagtgataac 60
aatcaaagtt tatgagacca gtagtttgac acatagtgca tttattggaa atatggggac 120
actaccttcc gccaatagga gacgagaata cgactagacg tatctcgtaa agtccctccg 180
cctcgatcta gaactgccac catatttgag gatcaaagac cagaagaagt gtcgtgccag 240
tttttcagat aaatcattcg ccgagatcag tcgatcatca gcgttcagtc catgagaaca 300
aggtgctggc ttgacgtatc ttcaggcagc cagcagcttt ttgtttcagc ctatcatctt 360
tgaggcttat catcttactg ataagactat gggaaaaaac ccaagaaaat gagatgtttt 420
atgtgaacga ccatttactt ttttagatag gcaatcttct gccccggtga gtctcctcat 480
tgggcaatgt tgtaattaca cgactaacaa atcagaggcg gtaaacgcta gtctcggcag 540
cgtcatcgag gtcagtgcat actcaacaat agaaggcgcg caatcattag acaacttgat 600
ccatagcccg cagcgtttct tctccagaaa gttcactata attacccgta gaggattggt 660
tcaacataca agaagatcag caaatcacct tcagtattcg gcgacaagat ttatttttca 720
ctgaggtttc aaagcttttc aaatttcaat ataatacttc cctattaatc atgcatgcac 780
cctacaagat ttcgcattct tttttttact acaggaatta ctgaccaggt gactctaaaa 840
tagctttgag gtatataaat cacaaaggcg ctgttagcag acagtttttt tctttttcgt 900
ttcttacctt cggtcaacaa tattaattcg cttcaagcta cttagttctc tccattataa 960
gagaatctta atataaacac ctatacatta caattacaat 1000
<210> 15
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
acatctatga taactaccta aacaacgagt tcatctacat gagatggaag gaaatgtttt 60
tgattccaga tgccaaagtt agagatataa agggggcatc gtttgctgga ttttactacg 120
tatgtttcag ccaactaact ggatcaatta gcgggctata tttccacaag tactctgaaa 180
agttccagca gctagaattg tgccatgctc cagacggcgg gtgtagctcc tacttcaagc 240
tagcttagag agagagagga gatagacggc gacacattgt aggcaaggag gagccattca 300
ccctcaagag ctggtctttt gggcgccatg tgtgcacacg cggtttaatc gcttaccgga 360
ggtgttctag tgttttggca gggatataat tctttattaa tagagtgtat gaattaaatt 420
aggtacctat cgcctatgcg atatggccaa aaagggaagt gtaactactt gcaccatgtt 480
gccttgaaca ccggtaacgt ggtaagtgca cgactgtgtg ttaaagacgg aatgtatgga 540
atgtgggtgt ttctcacaag gagaatctaa aacgaacctt caaggactca aacgctaagc 600
cacgcgttat tggccttgtg taggcggcac tgctgcacac tgacggccct caattgcact 660
ggaggtttcc atctctgcct cctgagaagg ccctcatcgc cagtcccact tgatcggatc 720
aatgttgcta gtatgtagat cggtatttat gttaatctga gattgccaga tgcggcaata 780
aatctagatt tatcatgaaa ctttttcttc agactcttgc tcgcccgaat atatagttta 840
acaaatccag ctcgatctga cgttcgttag aaacaaacct ttgatcactc caactacaag 900
agaaacttgc ctactcactg ccttataggt acttacattc attccaagtt ctttttgttc 960
agtctttcct tacattcatt ttttaaccgt gcttctcaat 1000
<210> 16
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
cgagatcacc aacagacgtt tatgtgttac aaaacctatt caaaccgctc gattcatccc 60
attgaaggtt gtattggaag cttctaatgc cacaggattg gatggttacg acgcagccaa 120
cccaactttg ccaggcttag aaacacccct accaaggctg ggaatttcca gcttgaaact 180
taagtcactt ttgaaaaagt ctattccaat tgacgttgcc agagaatgct ctacaatcct 240
tctacctgaa caacaaccac caatcaggct gacaggaggt agcacctcca ggcccagtta 300
cgtccattca aactacgaat tagatggtcc ttacaaacag gcgatctacg aacttgtcaa 360
actgaccgaa gactccaagt tcggactcaa tatccaagag tgtcctccat tctagttaaa 420
agaccatgta ataatagaga atacacattg cacctaaaca ccaccatatt ttcgtaaagc 480
ggttttattt tatctccctc cgggtaacgg tggctgtcga aatttcttat ttctttctga 540
tgatttccat agaggtgtac caatcaaaac aatatgggcc tttgttgaac ctcagattcg 600
tttgcgaata ccttcacacg tacttattat caaaggttct aaagaattat tttttaattg 660
agtaactacg gattaatttg agttttaaag tgagtagttc atgtgtaagg tgagaaggat 720
gattggactt ttgagaaaca agtgaactta ctctgatcca tcgtactacc gggtggcgaa 780
gtagtataaa caaacatagc aaacgggaga tttcgtctat tggctacaaa gacacgattt 840
gaaatttgct acgatccaag cgaaatgacc gttaagcaat gaagtggtga ttttccgatg 900
attgcttcga ttttttaagt tccagtattt cttccttcct ttttttcccc attttttttt 960
tttttgtccc gaagcctcct ttactaacat tacctttagc 1000
<210> 17
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
cgaaatttgg ctcggacacg tcttaaaagg ttatgtaagg aggtgatgtt agatagagac 60
gaagctgtgg atgagctgga gaaccttggt aatctgaacg gatctaaaga acaatcatca 120
ctttgggcct agaggtttac agaggtttgg gcaattttta ctacattacc tggtgttgga 180
gacacccaaa tgctgagaca tttgtacatg tcgtcgggga gattgtttga acgaactgac 240
gagaattgga atgcccattg caggatcata actgatggga tggaacattt atcatgtgca 300
gtaagcaaaa gtcgtttctt agtcaatcat atatctttta acagatacta agtaaccata 360
ggagatgtgt tatcttagta gaagaatgat ttatatatta ataatattat atctttttcc 420
tagatcgcat tggtcaactt tgaccaacaa ctatgggtgc ttcaatccta acaggcttat 480
accactgaag ttacagtaat tcttcctagt gaaactgatt gtgtccttac attaccatgt 540
ttttccaagc ttcgttcctc atggcccaat ggtcaaggcg tctggctacg attagccaac 600
tccgagtaaa ctcggggtaa taggaaacca gaagattcca ggttcgactc ctggtgggga 660
agcttctttt tttctgagtt gtattgggga aaaactgagg cgcattaatc tattcccaac 720
aaattccaca ccaactacgt tactcatgtg agagcctctt tgcagtttca gtacaattac 780
cttccattaa tcatctggca tccagtagtt actaaacacc ctattgatga ccaaatattc 840
actccacgtt acctgattac ctaataatag ttagcgtgat tagtaactaa agaatctcga 900
acaaccgatg gccaacatgc ttataagcgg cacagcatcc cactcctgaa ttctcaattc 960
aatttcctgt tttataccac agtgctgaaa ttaacaaaca 1000
<210> 18
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
cattcggaga ctgtgatctc tcaaggggaa caggcgtgtt tgttattgac attttgcctg 60
aggttaggaa caaacaaaaa ggttgattga tttcagagag attcgtgtac tctgattatt 120
cgagggtgag ttcgggggtt ggttggtgaa cgaaaaaaaa ttctgaacgg ctgagattat 180
tagggatgaa tcaggtggtt atagagccgg agatggactg gtatagatag tggcacaact 240
gagagggaga tgttttagcc aaagtattac gtctttatcc tagataagta gtaattatcc 300
ggaggcattg tgagatacca ggtaccataa ccatacaaca ggttcaatgt ggttacagga 360
tacgatagaa ggattcatag gagctgcatt acgactctgt tccactactg ggcgtttcaa 420
ggtgaatgga aaataaacca aggaagtgct ctctggcttt ctggaaaact ttaagtcatc 480
agagatttaa gtccctcggt tctgcgtggg cgctaaaaac gatcccccac tagctagctc 540
tgctctactt cagtcatgtc tcatgatcac gatcatgatt tggtcatatt cgtgcaccac 600
ataattgtgt ccaatcagga atgaataatt tcaaagacgg ttgtaatgag gcagatgaca 660
taatcaatcg actgtaaacc tagtgagaga cttttaccca attggcgtcg aaatagccgt 720
gaaacctagc tagattccag acagaaaacg tctagggaat cgtagagaat ataaggcttt 780
gaacgtctgt acagtttcag ctcaaatctg cggaattaaa tgatcgtcta gactgtagta 840
gattacagtt atgtatcccc gcgccatctg cggaactata ttattcatcg gctcacttct 900
agaatgcagg aaaattaggt ctcctctgtg ggaagcggag aactataaat actgccaata 960
tccacatatt gattcttcct aggctattat actttttaac 1000
<210> 19
<211> 1000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
agaactgtga aaaattggaa acctcggcgt cttggaggtg gtttaggtgg tcgtcattac 60
acaaaacgtc aaatagaaaa acttaccaga caggctccaa gatatgatag atatcctccc 120
ccagagagat actccacaag ttcaaatcgt ggggcatata gaggaggggc aggctccgga 180
ggctttcgaa gccatggtgg tggaggcaga gagggacaag gtaatttcag atcttctgat 240
caacgagata accgtagagg aggatggaat ggtcaaagaa gatactagta agatgctgta 300
gagatgaagc tatcttcatt gacatccaac atccatcgcg gttagtattt ttttttcttt 360
tttgcccttt tttccttcgt atcactttct taaagcaaaa ccactatggc ctccaataaa 420
gaggactatc cagttccgga acaagatgag ttagaaaatg attttagaat aacgctggtg 480
gttcagtcca aagaaatacc agatggtgag cttcacgaac gatttctttc gaatatctcc 540
acgtttactg gaatgaacca gtttttcgac atttttgatg aaaaagtggc ttatcctaat 600
gaaggacagt tgaaatatga agtaggaagt gacggcttgg tcgtgatgct agtgaccaat 660
agggatatca gagaccaatg tttagacttt attgacaaat acattgagga catagagccc 720
aaagaatcgg ccagagggga cgatgagcaa gctgagacta gtagtaatga tagtgagaat 780
gacagtgacc acacagagag agtatcgtct aagaagagta gaaaataaag catacataca 840
taatacactt gcactttaca catttgtaag ccctcccctc gatcagagat tgatccggat 900
ctctgtgatt atataagctg tatccgtttt tctacgcatt gtcttctcgg ttatataatc 960
agcactttct ccgccccttt acgacaaaag taacgagacc 1000
<210> 20
<211> 720
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 720
<210> 21
<211> 1794
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
atgaggggtg tgtttcgtcg agatgcacac aagagtgagg ttgctcatcg atttaaagat 60
ttgggagaag aaaatttcaa agccttggtg ttgattgcct ttgctcagta tcttcagcag 120
tgtccatttg aagatcatgt aaaattagtg aatgaagtaa ctgaatttgc aaaaacatgt 180
gttgctgatg agtcagctga aaattgtgac aaatcacttc ataccctttt tggagacaaa 240
ttatgcacag ttgcaactct tcgtgaaacc tatggtgaaa tggctgactg ctgtgcaaaa 300
caagaacctg agagaaatga atgcttcttg caacacaaag atgacaaccc aaacctcccc 360
cgattggtga gaccagaggt tgatgtgatg tgcactgctt ttcatgacaa tgaagagaca 420
tttttgaaaa aatacttata tgaaattgcc agaagacatc cttactttta tgccccggaa 480
ctccttttct ttgctaaaag gtataaagct gcttttacag aatgttgcca agctgctgat 540
aaagctgcct gcctgttgcc aaagctcgat gaacttcggg atgaagggaa ggcttcgtct 600
gccaaacaga gactcaagtg tgccagtctc caaaaatttg gagaaagagc tttcaaagca 660
tgggcagtag ctcgcctgag ccagagattt cccaaagctg agtttgcaga agtttccaag 720
ttagtgacag atcttaccaa agtccacacg gaatgctgcc atggagatct gcttgaatgt 780
gctgatgaca gggcggacct tgccaagtat atctgtgaaa atcaagattc gatctccagt 840
aaactgaagg aatgctgtga aaaacctctg ttggaaaaat cccactgcat tgccgaagtg 900
gaaaatgatg agatgcctgc tgacttgcct tcattagctg ctgattttgt tgaaagtaag 960
gatgtttgca aaaactatgc tgaggcaaag gatgtcttcc tgggcatgtt tttgtatgaa 1020
tatgcaagaa ggcatcctga ttactctgtc gtgctgctgc tgagacttgc caagacatat 1080
gaaaccactc tagagaagtg ctgtgccgct gcagatcctc atgaatgcta tgccaaagtg 1140
ttcgatgaat ttaaacctct tgtggaagag cctcagaatt taatcaaaca aaattgtgag 1200
ctttttgagc agcttggaga gtacaaattc cagaatgcgc tattagttcg ttacaccaag 1260
aaagtacccc aagtgtcaac tccaactctt gtagaggtct caagaaacct aggaaaagtg 1320
ggcagcaaat gttgtaaaca tcctgaagca aaaagaatgc cctgtgcaga agactatcta 1380
tccgtggtcc tgaaccagtt atgtgtgttg catgagaaaa cgccagtaag tgacagagtc 1440
accaaatgct gcacagaatc cttggtgaac aggcgaccat gcttttcagc tctggaagtc 1500
gatgaaacat acgttcccaa agagtttaat gctgaaacat tcaccttcca tgcagatata 1560
tgcacacttt ctgagaagga gagacaaatc aagaaacaaa ctgcacttgt tgagctcgtg 1620
aaacacaagc ccaaggcaac aaaagagcaa ctgaaagctg ttatggatga tttcgcagct 1680
tttgtagaga agtgctgcaa ggctgacgat aaggagacct gctttgccga ggagggtaaa 1740
aaacttgttg ctgcaagtca agctgcctta ggccatcatc atcatcatca ttaa 1794
<210> 22
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
atactcattg ctaaacatat taaatactga gaa 33
<210> 23
<211> 93
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
tttccttaaa catcaagtaa agtaagtaaa ttaccagaac ttgcgaaatc aagtcattgc 60
tccattcaac ttcatcggct aacagttatt aga 93
<210> 24
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ccgtactaac aagttcagac aaa 23
<210> 25
<211> 95
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
accttcggtc aacaatatta attcgcttca agctacttag ttctctccat tataagagaa 60
tcttaatata aacacctata cattacaatt acaat 95
<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
accttacatc aataactaat ataaa 25
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
aggctattat actttttaac 20
<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
ttgaacaact atcaaaacac a 21
<210> 29
<211> 114
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
atcattatta gcttactttc ataattgcga ctggttccaa ttgacaagct tttgatttta 60
acgactttta acgacaactt gagaagatca aaaaacaact aattattcga aacg 114
<210> 30
<211> 936
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
gatctaacat ccaaagacga aaggttgaat gaaacctttt tgccatccga catccacagg 60
tccattctca cacataagtg ccaaacgcaa caggagggga tacactagca gcagaccgtt 120
gcaaacgcag gacctccact cctcttctcc tcaacaccca cttttgccat cgaaaaacca 180
gcccagttat tgggcttgat tggagctcgc tcattccaat tccttctatt aggctactaa 240
caccatgact ttattagcct gtctatcctg gcccccctgg cgaggttcat gtttgtttat 300
ttccgaatgc aacaagctcc gcattacacc cgaacatcac tccagatgag ggctttctga 360
gtgtggggtc aaatagtttc atgttcccca aatggcccaa aactgacagt ttaaacgctg 420
tcttggaacc taatatgaca aaagcgtgat ctcatccaag atgaactaag tttggttcgt 480
tgaaatgcta acggccagtt ggtcaaaaag aaacttccaa aagtcgccat accgtttgtc 540
ttgtttggta ttgattgacg aatgctcaaa aataatctca ttaatgctta gcgcagtctc 600
tctatcgctt ctgaaccccg gtgcacctgt gccgaaacgc aaatggggaa acacccgctt 660
tttggatgat tatgcattgt ctccacattg tatgcttcca agattctggt gggaatactg 720
ctgatagcct aacgttcatg atcaaaattt aactgttcta acccctactt gacagcaata 780
tataaacaga aggaagctgc cctgtcttaa accttttttt ttatcatcat tattagctta 840
ctttcataat tgcgactggt tccaattgac aagcttttga ttttaacgac ttttaacgac 900
aacttgagaa gatcaaaaaa caactaatta ttcgaa 936
<210> 31
<211> 985
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
aaactgttta gagttgtgac gatgatcatg tccaataact attgatttac cgccagcttt 60
tgacatatag ttggccagtc cctgagatgc ttgtattatc gtgagatcat tcattagact 120
aaaaccagca cccattctac ctcgaagtcc cgctgttcca aaagtaattc ttcttcgtaa 180
gcgttcttca agaactttaa acttttcatt ctcaagaagt ttgagaatct cagatctagt 240
ggatggatta cgatcaatgc taagccattg atgcgctaac gccttaattg atggggacat 300
gatgtcagat gtaatacctt gtttaccgaa atttagctat ctcacgtagc ctagaatggc 360
cgctgctaat cggcctatat ctaaaacggc atatcgagga tcgatgaagt ttacacgtga 420
cgcattcagt gtaagtaaat tacatgcagt gccggctact tgactaaagt aagaaaaaac 480
tcagaaatca aagaaataac agaagctgta cgacacaacg aaataaatac aaactttctt 540
aggatgcaat ttaacaagaa tcgtcttatt gtctctcgga aacattcaag aatttcagcc 600
cattatccac attcagtcat ggcgcattat ttagattgtg ttgtttgata aaaaaagaat 660
acagcaagta acaacgagta gtcagttact gagatatttt ttagtaccgt cgatccggtt 720
acggggaatt taactgcaat atatcaaacg ttaaactgga tcgagttcaa aaaaacaagc 780
tctaactcag tcaagcttta tgtatagttt cctaatcagg taatttttta tgatcttgtc 840
tgtaggtttg attaaatttc cattacatct aaaaatagta acccagccat ctgaaaaatg 900
gatctttcgg gattcaatat tcacagtata aaaggaagac ttctcttagg attctgaccc 960
gttcttgaac aactatcaaa acaca 985
<210> 32
<211> 1078
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
aaactgttta gagttgtgac gatgatcatg tccaataact attgatttac cgccagcttt 60
tgacatatag ttggccagtc cctgagatgc ttgtattatc gtgagatcat tcattagact 120
aaaaccagca cccattctac ctcgaagtcc cgctgttcca aaagtaattc ttcttcgtaa 180
gcgttcttca agaactttaa acttttcatt ctcaagaagt ttgagaatct cagatctagt 240
ggatggatta cgatcaatgc taagccattg atgcgctaac gccttaattg atggggacat 300
gatgtcagat gtaatacctt gtttaccgaa atttagctat ctcacgtagc ctagaatggc 360
cgctgctaat cggcctatat ctaaaacggc atatcgagga tcgatgaagt ttacacgtga 420
cgcattcagt gtaagtaaat tacatgcagt gccggctact tgactaaagt aagaaaaaac 480
tcagaaatca aagaaataac agaagctgta cgacacaacg aaataaatac aaactttctt 540
aggatgcaat ttaacaagaa tcgtcttatt gtctctcgga aacattcaag aatttcagcc 600
cattatccac attcagtcat ggcgcattat ttagattgtg ttgtttgata aaaaaagaat 660
acagcaagta acaacgagta gtcagttact gagatatttt ttagtaccgt cgatccggtt 720
acggggaatt taactgcaat atatcaaacg ttaaactgga tcgagttcaa aaaaacaagc 780
tctaactcag tcaagcttta tgtatagttt cctaatcagg taatttttta tgatcttgtc 840
tgtaggtttg attaaatttc cattacatct aaaaatagta acccagccat ctgaaaaatg 900
gatctttcgg gattcaatat tcacagtata aaaggaagac ttctcttagg attctgaccc 960
gttcatcatt attagcttac tttcataatt gcgactggtt ccaattgaca agcttttgat 1020
tttaacgact tttaacgaca acttgagaag atcaaaaaac aactaattat tcgaaacg 1078
<210> 33
<211> 1059
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
aaactgttta gagttgtgac gatgatcatg tccaataact attgatttac cgccagcttt 60
tgacatatag ttggccagtc cctgagatgc ttgtattatc gtgagatcat tcattagact 120
aaaaccagca cccattctac ctcgaagtcc cgctgttcca aaagtaattc ttcttcgtaa 180
gcgttcttca agaactttaa acttttcatt ctcaagaagt ttgagaatct cagatctagt 240
ggatggatta cgatcaatgc taagccattg atgcgctaac gccttaattg atggggacat 300
gatgtcagat gtaatacctt gtttaccgaa atttagctat ctcacgtagc ctagaatggc 360
cgctgctaat cggcctatat ctaaaacggc atatcgagga tcgatgaagt ttacacgtga 420
cgcattcagt gtaagtaaat tacatgcagt gccggctact tgactaaagt aagaaaaaac 480
tcagaaatca aagaaataac agaagctgta cgacacaacg aaataaatac aaactttctt 540
aggatgcaat ttaacaagaa tcgtcttatt gtctctcgga aacattcaag aatttcagcc 600
cattatccac attcagtcat ggcgcattat ttagattgtg ttgtttgata aaaaaagaat 660
acagcaagta acaacgagta gtcagttact gagatatttt ttagtaccgt cgatccggtt 720
acggggaatt taactgcaat atatcaaacg ttaaactgga tcgagttcaa aaaaacaagc 780
tctaactcag tcaagcttta tgtatagttt cctaatcagg taatttttta tgatcttgtc 840
tgtaggtttg attaaatttc cattacatct aaaaatagta acccagccat ctgaaaaatg 900
gatctttcgg gattcaatat tcacagtata aaaggaagac ttctcttagg attctgaccc 960
gttcaccttc ggtcaacaat attaattcgc ttcaagctac ttagttctct ccattataag 1020
agaatcttaa tataaacacc tatacattac aattacaat 1059

Claims (8)

1. A Pichia pastoris constitutive promoter, wherein: the constitutive promoter is P0887-GAP、P0887-AOX1And P0887-GSOne of (1);
the promoter P0887-GAPThe nucleotide sequence of (A) is shown as SEQ ID NO. 31;
the promoter P0887-AOX1The nucleotide sequence of (A) is shown as SEQ ID NO. 32;
the promoter P0887-GSThe nucleotide sequence of (A) is shown in SEQ ID NO. 33.
2. The pichia pastoris constitutive promoter of claim 1, wherein: the constitutive promoter is P0887-GS
3. The method of engineering a constitutive promoter of pichia pastoris according to claim 1 or 2, wherein: comprising the use of a promoter PGAP5' UTR sequence of (A) or promoter PAOX15' UTR sequence of (A) or promoter PGSReplacement of the promoter P by the 5' UTR sequence of (A)0887The 5' UTR sequence of (a);
wherein, the promoter P0887The 5' UTR sequence of (b) is shown in SEQ ID NO. 22;
the promoter PGSThe 5' UTR sequence of (A) is shown as SEQ ID NO. 25;
the promoter PGAPThe 5' UTR sequence of (A) is shown in SEQ ID NO. 28;
the promoter PAOX1The 5' UTR sequence of (A) is shown in SEQ ID NO. 29.
4. The method of engineering a constitutive promoter of pichia pastoris according to claim 3, wherein: the promoter P0887The nucleotide sequence of (A) is shown in SEQ ID NO. 10.
5. The method of engineering a constitutive promoter of pichia pastoris according to claim 3, wherein: the promoter PGSThe nucleotide sequence of (A) is shown in SEQ ID NO. 14.
6. The method of engineering a constitutive promoter of pichia pastoris according to claim 3, wherein: the promoter PGAPThe nucleotide sequence of (A) is shown in SEQ ID NO. 1.
7. The method of engineering a constitutive promoter of pichia pastoris according to claim 3, wherein: the promoter PAOX1The nucleotide sequence of (A) is shown in SEQ ID NO. 30.
8. Use of a constitutive promoter of pichia pastoris according to claim 1 or 2, for expression of intracellular proteins and/or secreted proteins.
CN202210238177.XA 2022-03-11 2022-03-11 Pichia pastoris constitutive promoter and modification method and application thereof Active CN114574490B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210238177.XA CN114574490B (en) 2022-03-11 2022-03-11 Pichia pastoris constitutive promoter and modification method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210238177.XA CN114574490B (en) 2022-03-11 2022-03-11 Pichia pastoris constitutive promoter and modification method and application thereof

Publications (2)

Publication Number Publication Date
CN114574490A true CN114574490A (en) 2022-06-03
CN114574490B CN114574490B (en) 2022-11-11

Family

ID=81780732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210238177.XA Active CN114574490B (en) 2022-03-11 2022-03-11 Pichia pastoris constitutive promoter and modification method and application thereof

Country Status (1)

Country Link
CN (1) CN114574490B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027231A2 (en) * 2001-09-04 2003-04-03 Bristol-Myers Squibb Company Polynucleotide encoding adapter protein, pmn29
US20080311612A1 (en) * 2007-06-15 2008-12-18 Pioneer Hi-Bred International, Inc. Functional Expression of Higher Plant Nitrate Transporters in Pichia Pastoris
CN102994501A (en) * 2012-10-15 2013-03-27 华南理工大学 DNA (Deoxyribose Nucleic Acid) with constitutive promoter activity, application of DNA and pichia pastoris expression vector
CN112266914A (en) * 2020-10-26 2021-01-26 江南大学 Strong constitutive promoter of bumblebee candida and application thereof
WO2021260186A1 (en) * 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Engineered t cells conditionally expressing a recombinant receptor, related polynucleotides and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027231A2 (en) * 2001-09-04 2003-04-03 Bristol-Myers Squibb Company Polynucleotide encoding adapter protein, pmn29
US20080311612A1 (en) * 2007-06-15 2008-12-18 Pioneer Hi-Bred International, Inc. Functional Expression of Higher Plant Nitrate Transporters in Pichia Pastoris
CN102994501A (en) * 2012-10-15 2013-03-27 华南理工大学 DNA (Deoxyribose Nucleic Acid) with constitutive promoter activity, application of DNA and pichia pastoris expression vector
WO2021260186A1 (en) * 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Engineered t cells conditionally expressing a recombinant receptor, related polynucleotides and methods
CN112266914A (en) * 2020-10-26 2021-01-26 江南大学 Strong constitutive promoter of bumblebee candida and application thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
LOVE,K.R.等: "Komagataella phaffii GS115 chromosome 2, complete sequence", 《GENBANK DATABASE》 *
PORTELA RMC等: "Pichia pastoris Alcohol Oxidase 1 (AOX1) Core Promoter Engineering by High Resolution Systematic Mutagenesis", 《BIOTECHNOL J》 *
SREEKRISHNA K等: "Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris", 《GENE》 *
ZHAN C等: "The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression", 《FEMS YEAST RES》 *
孙曼曼等: "谷氨酸棒杆菌增强型表达载体构建及牛α-干扰素表达", 《生物学杂志》 *
方求武等: "谷氨酸棒杆菌中基于5′UTR及其下游序列的增强型表达载体构建", 《生物学杂志》 *
方炜等: "用GAP启动子在Pichia pastoris GS115中组成型表达鼠灰链霉菌腺苷酸脱氨酶", 《微生物学通报》 *
梁书利: "基于RNA-Seq技术的毕赤酵母转录组学研究及其表达元件的挖掘", 《中国博士学位论文全文数据库基础科学辑》 *
石义超: "葡萄糖氧化酶基因在毕赤酵母中的高效表达研究", 《中国学位论文全文数据库》 *

Also Published As

Publication number Publication date
CN114574490B (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP6833812B2 (en) Promoter mutant
JP2022025068A (en) Expression constructs and methods of genetically engineering methylotrophic yeast
US8143023B2 (en) Method for methanol independent induction from methanol inducible promoters in Pichia
US20210115446A1 (en) Regulation of Translation of Expressed Genes
JP2022529021A (en) Materials and methods for protein production
CN114574490B (en) Pichia pastoris constitutive promoter and modification method and application thereof
CN111909879A (en) Corynebacterium glutamicum mutant strain for efficiently expressing foreign protein and application thereof
Tamayo‐Ramos et al. Enhanced production of Aspergillus niger laccase‐like multicopper oxidases through mRNA optimization of the glucoamylase expression system
CN113249241B (en) Construction and application of saccharomyces cerevisiae protease deletion strain
JP6880010B2 (en) Novel episome plasmid vector
US20090162897A1 (en) Promoter Sequences
CN116555269B (en) Bumblebee candida utilis inducible promoter and application thereof
CN116555310B (en) Method for high-throughput screening of heterologous constitutive promoter and application thereof
CN113584067B (en) Quorum-sensing-based self-induced regulation system and application thereof
JP4671394B2 (en) Promoter DNA from Candida utilis
CN115960802A (en) Engineering bacterium of vibrio natriegens for high yield recombination protein and its application
JP2018078883A (en) Novel high temperature resistance imparting gene and method of using same
CN116254286A (en) Cyanamide-induced saccharomyces cerevisiae engineering bacteria and construction method thereof
CN116904509A (en) Method for improving expression level of firefly luciferase gene by blocking cleavage site forming circRNA
CN116536346A (en) Method for improving yield of pichia pastoris extracellular glucose oxidase and application
CN116904455A (en) Promoter, recombinant microorganism and application thereof
CN115786340A (en) Method for improving activity of leader less promoter and application thereof
CN113817736A (en) Promoter with quorum sensing characteristic and application thereof
CN117925713A (en) Enhanced cytoplasmic expression system, expression plasmid and application thereof
CN115247135A (en) Enhancing the transport process from Golgi to extracellular protein and improving the yield of pichia pastoris extracellular glucose oxidase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant