CN114573861B - 一种泡沫及其制备方法和应用 - Google Patents
一种泡沫及其制备方法和应用 Download PDFInfo
- Publication number
- CN114573861B CN114573861B CN202210201311.9A CN202210201311A CN114573861B CN 114573861 B CN114573861 B CN 114573861B CN 202210201311 A CN202210201311 A CN 202210201311A CN 114573861 B CN114573861 B CN 114573861B
- Authority
- CN
- China
- Prior art keywords
- foam
- pressure
- reaction
- psdm
- sensitive sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/005—Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2389/00—Characterised by the use of proteins; Derivatives thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Fluid Pressure (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明属于传感器技术领域,具体公开了一种泡沫及其制备方法和在制备压敏传感器中的应用。该泡沫由胶原纤维支撑、具有三维纤维网络互连的定向层级结构(PSDM‑structure)可以在纳米和微米尺度发生跨尺度形变,以实现高灵敏度和宽检测范围;PSDM结构中的柱状结构起到类似弹簧的作用,赋予泡沫良好的回弹性和机械性能;PSDM结构赋予泡沫高孔隙率,有效提升了泡沫的透水汽性和穿戴舒适性。
Description
技术领域
本发明涉及传感器技术领域,具体涉及一种泡沫及其制备方法和应用。
背景技术
压敏传感器是一类重要的机械传感器,在医疗健康监测、疾病诊断和人工智能等方面具有广泛应用(Boutry C M, Beker L, Kaizawa Y, et al. Biodegradable andflexible arterial-pulse sensor for the wireless monitoring of blood flow[J].Nature biomedical engineering, 2019, 3(1): 47-57. Boutry C M, Negre M, JordaM, et al. A hierarchically patterned, bioinspired e-skin able to detect thedirection of applied pressure for robotics[J]. Science Robotics, 2018, 3(24).)。通常,单一结构压敏传感器的高检测灵敏度依赖于精细微结构的构筑,而其传感范围则依赖于微结构的形变范围。传统单一结构的压敏传感器通常通过构造特有的压阻形貌(如纳米级微结构)以获得高检测灵敏度,但是纳米级压阻形貌无法对高压条件下的大变形提供有效响应。因此,传统单一结构的压敏传感器的有效检测范围仅限于低压形变。为了提高压敏传感器的检测范围,构筑具有大形变范围的微米级结构是一种广泛使用的方法。然而,微米级结构虽然能够拓宽压敏传感器的检测范围,但无法确保其在低压区域的高检测灵敏度。如图1a所示,传统单一结构的压敏传感器的灵敏度和检测范围呈“L”形分布(ParkJ, Lee Y, Hong J, et al. Giant tunneling piezoresistance of compositeelastomers with interlocked microdome arrays for ultrasensitive andmultimodal electronic skins[J]. ACS nano, 2014, 8(5): 4689-4697. Zhu B, NiuZ, Wang H, et al. Microstructured graphene arrays for highly sensitiveflexible tactile sensors[J]. Small, 2014, 10(18): 3625-3631. Mannsfeld S C B,Tee B C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensorswith microstructured rubber dielectric layers[J]. Nature materials, 2010, 9(10): 859-864. Shao Q, Niu Z, Hirtz M, et al. High‐performance and tailorablepressure sensor based on ultrathin conductive polymer film[J]. Small, 2014,10(8): 1466-1472. Li W D, Pu J H, Zhao X, et al. Scalable fabrication offlexible piezoresistive pressure sensors based on occluded microstructuresfor subtle pressure and force waveform detection[J]. Journal of MaterialsChemistry C, 2020, 8(47): 16774-16783. Pruvost M, Smit W J, Monteux C, et al.Polymeric foams for flexible and highly sensitive low-pressure capacitivesensors[J]. npj Flexible Electronics, 2019, 3(1): 1-6. Yao H B, Ge J, Wang CF, et al. A flexible and highly pressure‐sensitive graphene–polyurethanesponge based on fractured microstructure design[J]. Advanced Materials, 2013,25(46): 6692-6698. Lin L, Xie Y, Wang S, et al. Triboelectric active sensorarray for self-powered static and dynamic pressure detection and tactileimaging[J]. ACS nano, 2013, 7(9): 8266-8274. Wang J, Jiu J, Nogi M, et al. Ahighly sensitive and flexible pressure sensor with electrodes and elastomericinterlayer containing silver nanowires[J]. Nanoscale, 2015, 7(7): 2926-2932.Weng M, Sun L, Qu S, et al. Fingerprint-inspired graphene pressure sensorwith wrinkled structure[J]. Extreme Mechanics Letters, 2020, 37: 100714. WuJ, Li H, Lai X, et al. Conductive and superhydrophobic F-rGO@ CNTs/chitosanaerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal,2020, 386: 123998. Tolvanen J, Hannu J, Jantunen H. Hybrid foam pressuresensor utilizing piezoresistive and capacitive sensing mechanisms[J]. IEEESensors Journal, 2017, 17(15): 4735-4746. Xie J, Jia Y, Miao M. Highsensitivity knitted fabric bi-directional pressure sensor based on conductiveblended yarn[J]. Smart Materials and Structures, 2019, 28(3): 035017. Yu P,Li X, Li H, et al. All-fabric ultrathin capacitive sensor with high pressuresensitivity and broad detection range for electronic skin[J]. ACS AppliedMaterials & Interfaces, 2021, 13(20): 24062-24069. Dong H, Zhang L, Wu T, etal. Flexible pressure sensor with high sensitivity and fast response forelectronic skin using near-field electrohydrodynamic direct writing[J].Organic Electronics, 2021, 89: 106044. Xie J, Jia Y, Miao M. High sensitivityknitted fabric bi-directional pressure sensor based on conductive blendedyarn[J]. Smart Materials and Structures, 2019, 28(3): 035017. Luo J, Zhang L,Wu T, et al. Flexible piezoelectric pressure sensor with high sensitivity forelectronic skin using near-field electrohydrodynamic direct-writing method[J]. Extreme Mechanics Letters, 2021, 48: 101279. Chen W, Gui X, Liang B, etal. Structural engineering for high sensitivity, ultrathin pressure sensorsbased on wrinkled graphene and anodic aluminum oxide membrane[J]. ACS appliedmaterials & interfaces, 2017, 9(28): 24111-24117. Qi K, Wang H, You X, et al.Core-sheath nanofiber yarn for textile pressure sensor with high pressuresensitivity and spatial tactile acuity[J]. Journal of colloid and interfacescience, 2020, 561: 93-103.),即高灵敏度一般限制在低压较窄的检测范围内,而较宽检测范围的压敏传感器通常具有较低的灵敏度,这极大地限制了压敏传感器在医疗健康监测和人机互动等方面的应用。
鉴于此,特提出本发明。
发明内容
为解决背景技术中的问题,本发明的第一目的在于提供一种泡沫及其制备方法,由胶原纤维支撑、具有三维纤维网络互连的定向层级结构(PSDM-structure)。
本发明的第二目的在于提供一种泡沫在制备压敏传感器中的应用,该压敏传感器在0.15-3.08 kPa的宽检测范围内具有高达27.95 kPa-1的灵敏度。
为了达到上述目的,本发明采用的第一个技术方案为:
一种泡沫,由胶原纤维支撑、具有三维纤维网络互连的定向层级结构(PSDM-structure),是通过将胶原纤维分散于水中,加入交联剂反应后,冷冻干燥,得到的;
其中,胶原纤维与交联剂的质量比为1:0.06-1:1.2。
优选的,所述交联剂为乙二醇、乙二醇二缩水甘油醚、聚乙烯亚胺组成的混合物。
本发明采用的第二个技术方案为:
泡沫在制备压敏传感器中的应用,即第一个技术方案的泡沫在制备压敏传感器中的应用。
优选的,制备压敏传感器的方法包含以下步骤:
制备泡沫;
对泡沫进行导电处理得到导电泡沫;
将叉指电极构筑在泡沫上得到叉指电极泡沫;以及
将叉指电极泡沫与导电泡沫组装。
优选的,所述导电处理包含以下步骤:
将泡沫浸泡于杨梅单宁溶液中反应,反应后干燥得到敏化泡沫;
将敏化泡沫浸泡于硝酸银溶液中反应,反应后干燥得到活化泡沫;以及
将活化泡沫浸泡于溶液A中反应,反应后干燥。
优选的,所述溶液A的制备方法为:将五水硫酸铜和酒石酸钾钠溶于水中,再加入氢氧化钠、无水乙醇和甲醛反应得到。
本发明与现有技术相比,具有以下有益效果:
1、本发明提供的方法所制备的泡沫具有由胶原纤维支撑、具有三维纤维网络互连的定向层级结构(PSDM structure),在压力下,PSDM结构能够在纳米和微米尺度发生跨尺度形变,以实现高灵敏度和宽检测范围。
2、本发明提供的方法所制备泡沫中的柱状结构起到类似弹簧的作用,赋予泡沫良好的回弹性和机械性能。
3、本发明提供的方法所制备的泡沫具有贯通孔的内部结构,有效提高了泡沫的透水汽性和穿戴舒适性。
附图说明
图1为本发明实施例1制备的压敏传感器(b)与背景技术中压敏传感器(a)的灵敏度和线性范围图;
图2为本发明实施例1制备的泡沫的场发射扫描电镜(FESEM)图和实物图;
图3为本发明实施例1制备的导电泡沫的FESEM-EDS元素面扫描图(FESEM-EDSmapping)图;
图4为本发明实施例1制备的压敏传感器的实物图(a),配备有压敏传感器的口罩的实物图(b),配备有压敏传感器的椅子的实物图(c);
图5为本发明实施例1制备的叉指电极阵列泡沫(a)和压敏传感阵列的实物图(b);
图6为本发明实施例1制备的压敏传感器的稳定性图;
图7为本发明实施例1制备的泡沫(a)和导电泡沫(b)的孔隙率图;
图8为本发明实施例1制备的压敏传感器的透水汽性图;
图9为本发明实施例1制备的压敏传感器的呼吸电信号图;
图10为本发明实施例1制备的压敏传感器的手指(a)、手腕(b)和肘关节(c)弯曲的实物图和相应的电信号图;
图11为本发明实施例1制备的压敏传感器的佩戴在鞋底的实物图和步行、跳高的电信号图;
图12为本发明实施例1制备的压敏传感器的不同坐姿的的电信号图;
图13为本发明实施例1制备的压敏传感阵列上放置中国象棋的实物图和压力分布图;
图14为本发明实施例1制备的压敏传感阵列上放置不同数量中国象棋的实物图和压力分布图;
图15为本发明实施例1制备的压敏传感阵列上放置国际象棋的实物图和压力分布图;
图16为本发明实施例2制备的泡沫的场发射扫描电镜(FESEM)图;
图17为本发明实施例3制备的泡沫的场发射扫描电镜(FESEM)图;
图18为本发明对比例1制备的泡沫的场发射扫描电镜(FESEM)图;
图19为本发明对比例2制备的泡沫的场发射扫描电镜(FESEM)图;
图20为本发明对比例3制备的泡沫的场发射扫描电镜(FESEM)图;
图21为本发明对比例4制备的泡沫的场发射扫描电镜(FESEM)图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
泡沫及压敏传感器的制备:
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm 搅拌30 min,再加入由2.0 g乙二醇、2.0 g乙二醇二缩水甘油醚、2.0 g聚乙烯亚胺组成的混合物,1000 rpm搅拌30 min后,通过冷冻干燥即制得由胶原纤维支撑、具有三维纤维网络互连的定向层级结构的泡沫(PSDM-structured foam)。如图2所示为PSDM-structured foam在不同放大倍数下的场发射扫描电镜(FESEM)图,图2a中插图为PSDM-structured foam的实物图。
将PSDM-structured foam浸泡于20 mL含0.10 g杨梅单宁的溶液中,在50°C条件下反应30 min后,干燥即制得敏化泡沫(BT/PSDM-structured foam);将上述BT/PSDM-structured foam浸泡于20 ml含0.40 g硝酸银的溶液中,在25°C条件下反应60 min后,干燥即制得活化泡沫(Ag/PSDM-structured foam);称取0.20 g五水硫酸铜、1.5 g酒石酸钾钠溶于40 mL水中,再加入0.30 g氢氧化钠、10 mL无水乙醇和2.0 mL甲醛,形成溶液A。将上述Ag/PSDM-structured foam浸泡于溶液A中,在50°C条件下反应30 min,待反应完成后,干燥即制得导电泡沫(conductive PSDM-structured foam)。如图3a-c为conductive PSDM-structured foam的FESEM-EDS元素面扫描图(FESEM-EDS mapping)。
将叉指电极绘制于PSDM-structured foam上,干燥后即制得叉指电极泡沫。
将上述conductive PSDM-structured foam与叉指电极泡沫通过绝缘胶带粘合制得压敏传感器(其实物照片如图4a所示)。
将4×4叉指电极阵列绘制于PSDM-structured foam上,干燥后即制得叉指电极阵列泡沫(其实物照片如图5a所示)。
将上述conductive PSDM-structured foam与叉指电极阵列泡沫通过绝缘胶带粘合,制得压敏传感阵列(其实物照片如图5b所示)。
将所制得的压敏传感器在CHI66E电化学工作站上检测其灵敏度S(S=d(△I/I 0 )/ dP),△I表示电流变化值,I 0 表示初始电流值,P表示压强)。如图1b所示,在0.15-3.08 kPa的压力范围内其灵敏度S为27.95 kPa-1。
将所制得的压敏传感器在CHI66E电化学工作站上进行稳定性检测。如图6所示,该压敏传感器在10000次加载-卸载循环后的电信号无明显改变,表现出良好的响应特性。
将所制得的PSDM-structured foam和conductive PSDM-structured foam通过Autopore IV 9500型压汞仪进行孔隙率测定,如图7所示为泡沫的孔隙率为92.42%,导电泡沫的孔隙率为90.10%。
将所制得的conductive PSDM-structured foam以及商业高分子膜聚二甲基硅氧烷(PDMS)和聚醚酰亚胺(PEI)通过w3/060型水蒸汽透过率测试仪测定它们的透过率以对比它们之间的透水透气性。如图8所示,PSDM-structured foam的透过率为113.38 g mm m-2h-1 kPa-1,conductive PSDM-structured foam的透过率为90.76 g mm m-2 h-1 kPa-1,PDMS的透过率为1.23 g mm m-2 h-1 kPa-1, PEI的透过率为0.99 g mm m-2 h-1 kPa-1。
将所制得的压敏传感器在CHI66E电化学工作站上进行人体运动检测。将压敏传感器用绝缘胶带粘合至口罩内侧(其实物照片如图4b所示)进行呼吸监测。如图9所示,处于正常呼吸、深呼吸和快速呼吸状态时,电信号的强度和频率存在明显的区别,因此,该压敏传感器可用于检测人体呼吸;将压敏传感器用绝缘胶带粘合至手指、手腕和肘关节上(其实物照片如图10中插图所示)进行弯曲检测。如图10所示,电信号随手指、手腕和肘关节弯曲角度的增加不断增加;将压敏传感器用绝缘胶带粘合至鞋底上(其实物照片如图11a所示)进行步行和跳跃检测。如图11b-c所示,步行的频率为37.52 times min-1、电信号强度为~1.8×10-3 A,而跳高的频率为85.72 times min-1、电信号强度为~4.2×10-3 A;将压敏传感器用绝缘胶带粘合至椅子上(其实物照片如图4c所示)进行坐姿检测。如图12所示,当人体呈现不同坐姿(标准坐姿和非标准坐姿)时,其电信号强度完全不同。
将所制得的压敏传感阵列在CHI66E电化学工作站上进行压力检测。将中国象棋放置在压敏传感阵列上(其实物照片如图13a所示)进行压力分布检测,如图13b所示,当中国象棋位于传感阵列上的不同位点时,相应位置的电信号明显增加;将不同数量的中国象棋放置在压敏传感阵列上(其实物照片如图14a所示)进行压力分布检测,如图14b所示,相应位置的电信号随中国象棋数量的增加而增加;将国际象棋放置在压敏传感阵列上(其实物照片如图15a所示)进行压力分布检测,如图15b所示,电信号的强度依据国际象棋的重量和分布呈现明显的区别。
实施例2
泡沫及压敏传感器的制备:
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm搅拌30 min后,再加入由0.10g乙二醇、0.10 g乙二醇二缩水甘油醚、0.10 g聚乙烯亚胺组成的混合物,1000 rpm搅拌30min后,通过冷冻干燥制得由胶原纤维支撑、具有三维纤维网络互连的定向层级结构的泡沫(PSDM-structured foam)。
将上述制得的PSDM-structured foam在原子力显微镜下观察其形貌。如图16所示为该泡沫在不同放大倍数下的场发射扫描电镜(FESEM)图,图中展示了泡沫具有明显的由胶原纤维支撑、具有三维纤维网络互联的层级结构(PSDM-structured)。
采用与实施例1相同的方法制备得到压敏传感器。所制得的压敏传感器采用与实施例1相同的检测方法,测得压敏传感器在0.15-3.84 kPa 的压力范围内其灵敏度S为25.43 kPa-1。
实施例3
泡沫及压敏传感器的制备:
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm搅拌30 min后,再加入由0.50g乙二醇、0.50 g乙二醇二缩水甘油醚、0.50 g聚乙烯亚胺组成的混合物,1000 rpm搅拌30min后,通过冷冻干燥制得由胶原纤维支撑、具有三维纤维网络互连的定向层级结构的泡沫(PSDM-structured foam)。
将上述制得的PSDM-structured foam在原子力显微镜下观察其形貌。如图17所示为该泡沫在不同放大倍数下的场发射扫描电镜(FESEM)图,图中展示了泡沫具有明显的由胶原纤维支撑、具有三维纤维网络互联的层级结构(PSDM-structured)。
采用与实施例1相同的方法制备得到压敏传感器。所制得的压敏传感器采用与实施例1相同的检测方法,测得压敏传感器在0.15-3.47 kPa的压力范围内其灵敏度S为24.68kPa-1。
对比例1
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm搅拌30 min后,通过冷冻干燥制得泡沫。
将上述制得的泡沫在原子力显微镜下观察其形貌。如图18所示为该泡沫在不同放大倍数下的场发射扫描电镜(FESEM)图,图中所展示泡沫的微观结构没有定向层级结构。
对比例2
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm搅拌30 min后,再加入由2.0g乙二醇、2.0 g乙二醇二缩水甘油醚,1000 rpm搅拌30 min后,通过冷冻干燥制得泡沫。
将上述制得的泡沫在原子力显微镜下观察其形貌。如图19所示为该泡沫在不同放大倍数下的场发射扫描电镜(FESEM)图,图中所展示泡沫的微观结构没有定向层级结构。
对比例3
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm搅拌30 min后,再加入由2.0g乙二醇、2.0 g聚乙烯亚胺组成的混合物,1000 rpm搅拌30 min后,通过冷冻干燥制得泡沫。
将上述制得的泡沫在原子力显微镜下观察其形貌。如图20所示为该泡沫在不同放大倍数下的场发射扫描电镜(FESEM)图,图中所展示泡沫的微观结构没有定向层级结构。
对比例4
将5.0 g废弃胶原纤维加入到50 mL水中于1000 rpm搅拌30 min后,再加入由2.0g乙二醇二缩水甘油醚、2.0 g聚乙烯亚胺组成的混合物,1000 rpm搅拌30 min后,通过冷冻干燥制得泡沫。
将上述制得的泡沫在原子力显微镜下观察其形貌。如图21所示为该泡沫在不同放大倍数下的场发射扫描电镜(FESEM)图,图中所展示泡沫的微观结构没有定向层级结构。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (8)
1.一种泡沫,其特征在于,由胶原纤维支撑、具有三维纤维网络互连的定向层级结构PSDM-structure,是由胶原纤维与交联剂按照质量比1:0.06-1:1.2混合反应后冷冻干燥得到的。
2.如权利要求1所述的泡沫,其特征在于,所述交联剂为乙二醇、乙二醇二缩水甘油醚、聚乙烯亚胺组成的混合物。
3.一种制备泡沫的方法,其特征在于,将胶原纤维分散于水中,加入交联剂反应后,冷冻干燥,得到由胶原纤维支撑、具有三维纤维网络互连的定向层级结构PSDM-structure的泡沫;
其中,胶原纤维与交联剂的质量比为1:0.06-1:1.2。
4.如权利要求3所述的制备泡沫的方法,其特征在于,所述交联剂为乙二醇、乙二醇二缩水甘油醚、聚乙烯亚胺组成的混合物。
5.一种采用如权利要求3或4所述方法制备得到的泡沫。
6.如权利要求1-2、5任一所述的泡沫在制备压敏传感器中的应用。
7.如权利要求6所述的应用,制备压敏传感器的方法包含以下步骤:
制备泡沫;
对泡沫进行导电处理得到导电泡沫;
将叉指电极构筑在泡沫上得到叉指电极泡沫;以及
将叉指电极泡沫与导电泡沫组装。
8.如权利要求7所述的应用,其特征在于,所述导电处理包含以下步骤:
将泡沫浸泡于杨梅单宁溶液中反应,反应后干燥得到敏化泡沫;
将敏化泡沫浸泡于硝酸银溶液中反应,反应后干燥得到活化泡沫;以及
将活化泡沫浸泡于溶液A中反应,反应后干燥得到导电泡沫;
其中,所述溶液A的制备方法为:将五水硫酸铜和酒石酸钾钠溶于水中,再加入氢氧化钠、无水乙醇和甲醛反应得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210201311.9A CN114573861B (zh) | 2022-03-03 | 2022-03-03 | 一种泡沫及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210201311.9A CN114573861B (zh) | 2022-03-03 | 2022-03-03 | 一种泡沫及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114573861A CN114573861A (zh) | 2022-06-03 |
CN114573861B true CN114573861B (zh) | 2022-11-11 |
Family
ID=81775814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210201311.9A Active CN114573861B (zh) | 2022-03-03 | 2022-03-03 | 一种泡沫及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114573861B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112812332A (zh) * | 2021-02-07 | 2021-05-18 | 陕西科技大学 | 一种胶原纤维基柔性压力传感材料及其制备方法 |
CN113667178A (zh) * | 2021-08-19 | 2021-11-19 | 陕西科技大学 | 一种柔性可降解微通道结构压力传感材料及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9629939B2 (en) * | 2012-05-25 | 2017-04-25 | Queen's University At Kingston | Collagenous foam materials |
EP3034103A1 (en) * | 2014-12-15 | 2016-06-22 | Geistlich Pharma AG | Collagen Sponge |
-
2022
- 2022-03-03 CN CN202210201311.9A patent/CN114573861B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112812332A (zh) * | 2021-02-07 | 2021-05-18 | 陕西科技大学 | 一种胶原纤维基柔性压力传感材料及其制备方法 |
CN113667178A (zh) * | 2021-08-19 | 2021-11-19 | 陕西科技大学 | 一种柔性可降解微通道结构压力传感材料及其制备方法 |
Non-Patent Citations (2)
Title |
---|
"Collagen Fiber-Based Advanced Separation Materials:Recent Developments and Future Perspectives";Hanzhong Xiao et al.;《Adv. Mater》;20211211;2107891 * |
"Collagen-based breathable,humidity ulstrable and degradable on-skin device";Le Ke et al.;《Journal of Materials Chemistry C》;20190128;第7卷(第9期);2548-2556 * |
Also Published As
Publication number | Publication date |
---|---|
CN114573861A (zh) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches | |
Lei et al. | Advances in self-powered triboelectric pressure sensors | |
Li et al. | Physical sensors for skin‐inspired electronics | |
Wang et al. | Flexible capacitive pressure sensors for wearable electronics | |
Wang et al. | Research progress of flexible wearable pressure sensors | |
Chen et al. | Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping | |
Tan et al. | Flexible pressure sensors based on bionic microstructures: from plants to animals | |
Wu et al. | Wearable carbon-based resistive sensors for strain detection: a review | |
Li et al. | Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation | |
Han et al. | Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors | |
Zhu et al. | Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor | |
Yuan et al. | Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network | |
Li et al. | Scalable fabrication of flexible piezoresistive pressure sensors based on occluded microstructures for subtle pressure and force waveform detection | |
Qin et al. | Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range | |
Xu et al. | Two-birds-one-stone: Flexible PANI film with bionic microstructures for multifunctional sensing of physical and chemical stimuli | |
Huang et al. | Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays | |
CN110082012B (zh) | 一种柔性压力传感器及其制作方法 | |
Hu et al. | Recent progress in flexible micro-pressure sensors for wearable health monitoring | |
Sun et al. | Recent applications of different microstructure designs in high performance tactile sensors: A review | |
Wang et al. | Ultra-sensitive and wide sensing-range flexible pressure sensors based on the carbon nanotube film/stress-induced square frustum structure | |
Yang et al. | Arrayed porous polydimethylsiloxane/barium titanate microstructures for high-sensitivity flexible capacitive pressure sensors | |
Tang et al. | Biomass-derived multifunctional 3D film framed by carbonized loofah toward flexible strain sensors and triboelectric nanogenerators | |
Hsieh et al. | Enhanced piezocapacitive response in zinc oxide tetrapod–poly (dimethylsiloxane) composite dielectric layer for flexible and ultrasensitive pressure sensor | |
Zhang et al. | Facile fabrication of silicone rubber composite foam with dual conductive networks and tunable porosity for intelligent sensing | |
Wang et al. | Strain sensor for full-scale motion monitoring based on self-assembled PDMS/MWCNTs layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |