CN114572973B - Method for preparing graphene composite aerogel by intercalation-in-situ polymerization synergistic method - Google Patents
Method for preparing graphene composite aerogel by intercalation-in-situ polymerization synergistic method Download PDFInfo
- Publication number
- CN114572973B CN114572973B CN202210477166.7A CN202210477166A CN114572973B CN 114572973 B CN114572973 B CN 114572973B CN 202210477166 A CN202210477166 A CN 202210477166A CN 114572973 B CN114572973 B CN 114572973B
- Authority
- CN
- China
- Prior art keywords
- graphene composite
- preparing
- composite aerogel
- intercalation
- aerogel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 99
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 81
- 239000002131 composite material Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000004964 aerogel Substances 0.000 title claims abstract description 43
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 11
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 10
- 230000002195 synergetic effect Effects 0.000 title claims abstract description 10
- 239000000017 hydrogel Substances 0.000 claims abstract description 33
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 12
- 238000010008 shearing Methods 0.000 claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 238000004299 exfoliation Methods 0.000 claims description 20
- 229910002804 graphite Inorganic materials 0.000 claims description 18
- 239000010439 graphite Substances 0.000 claims description 18
- 239000003792 electrolyte Substances 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 238000004108 freeze drying Methods 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 5
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 5
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 5
- 239000002195 soluble material Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229920003169 water-soluble polymer Polymers 0.000 claims description 4
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- 241000080590 Niso Species 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000003837 high-temperature calcination Methods 0.000 claims description 2
- 239000002861 polymer material Substances 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 229910000385 transition metal sulfate Inorganic materials 0.000 claims description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims 2
- 238000004506 ultrasonic cleaning Methods 0.000 claims 2
- 238000005303 weighing Methods 0.000 claims 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 239000004966 Carbon aerogel Substances 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 229920005372 Plexiglas® Polymers 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000004967 Metal oxide aerogel Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/19—Preparation by exfoliation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0091—Preparation of aerogels, e.g. xerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域Technical Field
本发明属于功能材料领域,特别涉及一种插层-原位聚合协同法制备石墨烯复合气凝胶的方法。The invention belongs to the field of functional materials, and particularly relates to a method for preparing graphene composite aerogel by an intercalation-in-situ polymerization synergistic method.
背景技术Background technique
石墨烯复合气凝胶的合成,不仅继承了石墨烯超高的导电能力和良好的力学性能,而且具有高比表面积、低密度等结构优点,极大地扩展了其应用领域。The synthesis of graphene composite aerogel not only inherits the ultra-high conductivity and good mechanical properties of graphene, but also has structural advantages such as high specific surface area and low density, which greatly expands its application fields.
目前制备石墨烯复合气凝胶大多采用两步法完成,第一步是通过Hummers法制备石墨烯分散液,第二步通过水热法合成石墨烯复合气凝胶,该方法需要使用强酸和强氧化剂,反应过程需要高温高压,耗时耗能,操作步骤繁琐,制备过程产生有毒气体,容易爆炸,产生致癌物,增加污水处理成本,对环境造成严重污染。因此迫切需要开发一种工艺简单、条件温和、快速制备复合气凝胶的新方法,以期实现石墨烯复合气凝胶更广泛的应用。At present, the preparation of graphene composite aerogels is mostly completed by a two-step method. The first step is to prepare graphene dispersion by Hummers method, and the second step is to synthesize graphene composite aerogel by hydrothermal method. This method requires the use of strong acid and strong oxidant, the reaction process requires high temperature and high pressure, time-consuming and energy-consuming, and the operation steps are cumbersome. The preparation process produces toxic gases, is prone to explosion, produces carcinogens, increases sewage treatment costs, and causes serious pollution to the environment. Therefore, it is urgent to develop a new method for preparing composite aerogels with simple process, mild conditions, and rapidity, in order to achieve a wider application of graphene composite aerogels.
基于以上问题,本发明提出了一种原位合成石墨烯复合气凝胶的新方法。该方法以过渡态硫酸盐为电解质,以石墨为电极,在直流电源的作用下,可获得插层均匀、缺陷较少、层数较薄的高质量石墨烯复合气凝胶,且该方法生产工艺简单,原料成本低廉,具备广阔的工业化应用前景。Based on the above problems, the present invention proposes a new method for in-situ synthesis of graphene composite aerogel. The method uses transition state sulfate as electrolyte and graphite as electrode. Under the action of DC power supply, high-quality graphene composite aerogel with uniform intercalation, fewer defects and thinner layers can be obtained. The method has simple production process, low raw material cost and broad industrial application prospects.
发明内容Summary of the invention
一种石墨烯或石墨烯复合气凝胶,该凝胶采用下列方法制备得到:A graphene or graphene composite aerogel, the gel is prepared by the following method:
(1)配制一定浓度硫酸盐溶液:称取一定量金属硫酸盐或者过渡态金属硫酸盐并溶解于去离子水中,不断搅拌,配置成浓度为0.1mol/L~5mol/L溶液;(1) Prepare a sulfate solution of a certain concentration: weigh a certain amount of metal sulfate or transition metal sulfate and dissolve it in deionized water, stirring continuously to prepare a solution with a concentration of 0.1 mol/L to 5 mol/L;
(2)配制一定浓度的高分子水溶性溶液:秤取一定量高分子水溶性材料,加入一定量去离子水中,加热搅拌溶解,配置成浓度为0.1%~10%溶液;(2) Prepare a certain concentration of a water-soluble polymer solution: weigh a certain amount of a water-soluble polymer material, add it to a certain amount of deionized water, heat and stir to dissolve, and prepare a solution with a concentration of 0.1% to 10%;
(3)配置一定浓度的硬脂酸钠溶液:秤取一定量硬脂酸钠固体,加入一定量去离子水中,加热搅拌溶解,配置成浓度为0.1%~10%溶液;(3) Prepare a sodium stearate solution of a certain concentration: weigh a certain amount of sodium stearate solid, add it to a certain amount of deionized water, heat and stir to dissolve, and prepare a solution with a concentration of 0.1% to 10%;
(4)组装电化学剥离装置:采用一体化有机玻璃板自制电解槽,阳极和阴极均为石墨,两电极分别通过导线与直流电源的正极和负极相连,同时,将电解槽置于恒温水浴超声波清洗仪中;(4) Assembling an electrochemical stripping device: an electrolytic cell is prepared using an integrated organic glass plate. The anode and cathode are both graphite. The two electrodes are connected to the positive and negative electrodes of a DC power supply through wires. At the same time, the electrolytic cell is placed in a constant temperature water bath ultrasonic cleaner.
(5)电化学剥离制备石墨烯复合水凝胶:将上述(1)和(2)、(1)和(3)按照一定比例混合均匀,加入电解槽中作为电解质。在直流电源的作用下,通过控制电压或电流,进行电化学剥离,得到分散在电解质中的石墨烯复合水凝胶;(5) Preparation of graphene composite hydrogel by electrochemical exfoliation: The above (1) and (2), (1) and (3) are mixed evenly in a certain proportion and added to an electrolytic cell as an electrolyte. Under the action of a DC power supply, the voltage or current is controlled to perform electrochemical exfoliation to obtain a graphene composite hydrogel dispersed in the electrolyte;
(6)高速剪切剥离石墨烯复合水凝胶:将上述步骤(5)中的石墨烯复合水凝胶取出倒入烧杯中,在高速分散剪切机作用下,进一步剥离,获得层数较薄、分散均匀的石墨烯复合水凝胶;(6) High-speed shear exfoliation of graphene composite hydrogel: The graphene composite hydrogel in step (5) is taken out and poured into a beaker, and further exfoliated under the action of a high-speed dispersing shearing machine to obtain a graphene composite hydrogel with a thinner layer and uniform dispersion;
(7)冰模板法制备石墨烯复合气凝胶:将上述(6)高速剪切剥离制备的石墨烯复合水凝胶置于磨具中,采用冰模板法通过冷冻干燥技术获得石墨烯复合气凝胶;(7) Preparation of graphene composite aerogel by ice template method: placing the graphene composite hydrogel prepared by high-speed shear exfoliation in (6) above in a mold, and obtaining the graphene composite aerogel by freeze drying technology using the ice template method;
(8)将上述步骤(7)获得的石墨烯复合气凝胶置于管式炉中,在Ar保护的作用下,通过高温煅烧除掉模板获得石墨烯或石墨烯复合气凝胶。(8) The graphene composite aerogel obtained in the above step (7) is placed in a tubular furnace, and under the protection of Ar, the template is removed by high-temperature calcination to obtain graphene or graphene composite aerogel.
优选地,步骤(1)中的金属硫酸盐为(NH4)2SO4、MgSO4、Al2SO4等,过渡态硫酸盐为Fe2(SO4)3、CoSO4、NiSO4、MnSO4等。Preferably, the metal sulfate in step (1) is (NH 4 ) 2 SO 4 , MgSO 4 , Al 2 SO 4 , etc., and the transitional sulfate is Fe 2 (SO 4 ) 3 , CoSO 4 , NiSO 4 , MnSO 4 , etc.
优选地,步骤(4)中石墨为高定向热解石墨、石墨箔、鳞片石墨、可膨胀石墨、或多孔石墨电极,恒温水浴温度为30~80℃,超声波清洗仪的功率为100~1000 W,超声时间依据电解时间而定。Preferably, in step (4), the graphite is highly oriented pyrolytic graphite, graphite foil, flake graphite, expandable graphite, or porous graphite electrode, the constant temperature water bath temperature is 30 to 80° C., the power of the ultrasonic cleaner is 100 to 1000 W, and the ultrasonic time is determined according to the electrolysis time.
优选地,步骤(5)中高分子水溶性材料为聚乙烯醇、羧甲基纤维素钠等,其中,高分子水溶性材料与硫酸盐的比例为0.001~1,硬脂酸钠与硫酸盐的比例为0.001~1,电解的电流为0.1~5A。Preferably, in step (5), the polymer water-soluble material is polyvinyl alcohol, sodium carboxymethyl cellulose, etc., wherein the ratio of the polymer water-soluble material to sulfate is 0.001-1, the ratio of sodium stearate to sulfate is 0.001-1, and the electrolysis current is 0.1-5A.
优选地,步骤(6)中高速分散剪切机的转速为500~6000 r/min,剪切剥离时间为10~60 min。Preferably, in step (6), the rotation speed of the high-speed dispersing shearing machine is 500 to 6000 r/min, and the shearing and peeling time is 10 to 60 min.
优选地,步骤(7)采用程序升温的方式进行冷冻干燥,其中升温速率为1~10℃/h,干燥温度为-60~100℃,干燥时间为5h~30h。Preferably, step (7) is freeze-drying by programmed temperature rise, wherein the heating rate is 1 to 10°C/h, the drying temperature is -60 to 100°C, and the drying time is 5 to 30 hours.
优选地,步骤(8)中的煅烧温度为200~1200℃,焙烧1 h,保温2 h。Preferably, the calcination temperature in step (8) is 200-1200° C., the calcination time is 1 h, and the heat preservation time is 2 h.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明制备的石墨烯气凝胶实物图;FIG1 is a physical picture of the graphene aerogel prepared by the present invention;
图2为本发明制备的石墨烯气凝胶SEM图。FIG. 2 is a SEM image of the graphene aerogel prepared by the present invention.
本发明的有益效果Beneficial Effects of the Invention
本发明采用插层-原位聚合协同法制备石墨烯复合水凝胶,并通过冰模板法和软模板法合成石墨烯复合气凝胶。该方法以硫酸盐为电解质,通过添加少量的高分子水溶性材料或硬脂酸钠,一步法制备了复合气凝胶。生产的产品中石墨烯气凝胶具有良好的力学性能和电学性能,可用于超级电容器和电池等领域;石墨烯/金属氧化物气凝胶可作为储能材料、电磁屏蔽材料等。与传统工艺相比,该方法具有生产工艺简单,条件温和,原料易得,成本低廉,反应过程相对绿色环保等优点,该方法为制备高性能石墨烯复合气凝胶提供了新的设计理念,为今后宏量制备宏观尺度碳气凝胶等材料提供了新的思路。The present invention adopts the intercalation-in-situ polymerization synergistic method to prepare graphene composite hydrogel, and synthesizes graphene composite aerogel by ice template method and soft template method. The method uses sulfate as electrolyte, and prepares composite aerogel in one step by adding a small amount of polymer water-soluble material or sodium stearate. The graphene aerogel in the produced product has good mechanical and electrical properties, and can be used in fields such as supercapacitors and batteries; graphene/metal oxide aerogel can be used as energy storage material, electromagnetic shielding material, etc. Compared with traditional processes, this method has the advantages of simple production process, mild conditions, easy to obtain raw materials, low cost, and relatively green reaction process. This method provides a new design concept for the preparation of high-performance graphene composite aerogels, and provides a new idea for the future large-scale preparation of macro-scale carbon aerogels and other materials.
具体实施方式Detailed ways
下面通过实施例进一步阐述本发明,本实施例不会对本发明构成限制。本发明中的技术方案列举的工艺参数的上下线取值、区间都能实现本发明要求的产品。The present invention is further described below by way of examples, which do not limit the present invention. The upper and lower limits and intervals of the process parameters listed in the technical solution of the present invention can achieve the product required by the present invention.
实施例1Example 1
(1)配制一定浓度硫酸铵溶液:称取一定量无水硫酸铵并溶解于去离子水中,不断搅拌,配置成浓度为0.8 mol/L的溶液;(1) Prepare a certain concentration of ammonium sulfate solution: weigh a certain amount of anhydrous ammonium sulfate and dissolve it in deionized water, stirring continuously to prepare a solution with a concentration of 0.8 mol/L;
(2)配制一定浓度的聚乙烯醇溶液:秤取一定量聚乙烯醇,加入一定量去离子水中,加热搅拌溶解,配置成浓度为0.5%溶液;(2) Prepare a polyvinyl alcohol solution of a certain concentration: weigh a certain amount of polyvinyl alcohol, add it to a certain amount of deionized water, heat and stir to dissolve, and prepare a solution with a concentration of 0.5%;
(3)组装电化学剥离装置:采用有机玻璃板自制电解槽,阳极和阴极均为高定向热解石墨,两电极分别通过导线与直流电源的正极和负极相连,同时,将电解槽置于恒温水浴超声波清洗仪中,温度为50 ℃,功率设定为500 W;(3) Assembling the electrochemical stripping device: an electrolytic cell was prepared using a plexiglass plate. The anode and cathode were both made of highly oriented pyrolytic graphite. The two electrodes were connected to the positive and negative electrodes of a DC power supply through wires. At the same time, the electrolytic cell was placed in a constant temperature water bath ultrasonic cleaner at a temperature of 50 °C and a power of 500 W.
(4)电化学剥离制备石墨烯复合水凝胶:将上述(1)和(2)溶液按照1:0.1的比例混合均匀,加入电解槽中作为电解质。在直流电源的作用下,通过控制电流为0.5 A,进行电化学剥离6 h,得到分散在电解质中的石墨烯复合水凝胶;(4) Preparation of graphene composite hydrogel by electrochemical exfoliation: The above solutions (1) and (2) were mixed evenly in a ratio of 1:0.1 and added to an electrolytic cell as an electrolyte. Under the action of a DC power supply, the current was controlled to 0.5 A and electrochemical exfoliation was performed for 6 h to obtain a graphene composite hydrogel dispersed in the electrolyte;
(5)高速剪切剥离石墨烯复合水凝胶:将上述步骤(4)中的石墨烯复合水凝胶取出倒入1000 mL烧杯中,在高速分散剪切机转速为2000 r/min的条件下剪切30 min,进一步剥离,获得层数较薄、分散均匀的石墨烯复合水凝胶;(5) High-speed shear exfoliation of graphene composite hydrogel: The graphene composite hydrogel in step (4) above was taken out and poured into a 1000 mL beaker, and sheared for 30 min at a high-speed dispersing shearing machine at a speed of 2000 r/min, and further exfoliated to obtain a graphene composite hydrogel with a thinner layer and uniform dispersion;
(6)将上述步骤(5)高速剪切剥离制备的石墨烯复合水凝胶置于磨具中,首先在-40 ℃冷冻2 h,然后采用程序升温的方式进行冷冻干燥,其中升温速率为3 ℃/h,干燥温度为-40~26 ℃,干燥时间为24 h在,最终获得石墨烯复合气凝胶;(6) placing the graphene composite hydrogel prepared by high-speed shear exfoliation in step (5) above in a mold, first freezing it at -40 °C for 2 h, and then freeze-drying it by programmed temperature increase, wherein the heating rate is 3 °C/h, the drying temperature is -40 to 26 °C, and the drying time is 24 h, and finally obtaining a graphene composite aerogel;
(7)将上述步骤(6)获得的石墨烯复合气凝胶置于管式炉中,在Ar保护的作用下,在600 ℃温度下焙烧1 h,保温2 h,煅烧除掉聚乙烯醇获得石墨烯气凝胶。(7) The graphene composite aerogel obtained in the above step (6) is placed in a tubular furnace, and calcined at 600°C for 1 h under Ar protection, and then kept at this temperature for 2 h to calcine and remove the polyvinyl alcohol to obtain the graphene aerogel.
实施例2Example 2
(1)配制一定浓度硫酸铁溶液:称取一定量硫酸铁并溶解于去离子水中,不断搅拌,配置成浓度为2 mol/L的溶液;(1) Prepare a certain concentration of ferric sulfate solution: weigh a certain amount of ferric sulfate and dissolve it in deionized water, stirring continuously to prepare a solution with a concentration of 2 mol/L;
(2)配制一定浓度的聚乙烯醇溶液:秤取一定量聚乙烯醇,加入一定量去离子水中,加热搅拌溶解,配置成浓度为1%溶液;(2) Prepare a polyvinyl alcohol solution of a certain concentration: weigh a certain amount of polyvinyl alcohol, add it to a certain amount of deionized water, heat and stir to dissolve, and prepare a solution with a concentration of 1%;
(3)组装电化学剥离装置:采用有机玻璃板自制电解槽,阳极和阴极均为高定向热解石墨,两电极分别通过导线与直流电源的正极和负极相连,同时,将电解槽置于恒温水浴超声波清洗仪中,温度为70 ℃,功率设定为600 W;(3) Assembling the electrochemical stripping device: an electrolytic cell was prepared using a plexiglass plate. The anode and cathode were both made of highly oriented pyrolytic graphite. The two electrodes were connected to the positive and negative electrodes of a DC power supply through wires. At the same time, the electrolytic cell was placed in a constant temperature water bath ultrasonic cleaner at 70 °C and a power setting of 600 W.
(4)电化学剥离制备石墨烯复合水凝胶:将上述(1)和(2)溶液按照1:0.1的比例混合均匀,加入电解槽中作为电解质。在直流电源的作用下,通过控制电流为1 A,进行电化学剥离5 h,得到分散在电解质中的石墨烯复合水凝胶;(4) Preparation of graphene composite hydrogel by electrochemical exfoliation: The above solutions (1) and (2) were mixed evenly in a ratio of 1:0.1 and added to an electrolytic cell as an electrolyte. Under the action of a DC power supply, the current was controlled to 1 A and electrochemical exfoliation was performed for 5 h to obtain a graphene composite hydrogel dispersed in the electrolyte;
(5)高速剪切剥离石墨烯复合水凝胶:将上述步骤(4)中的石墨烯复合水凝胶取出倒入1000 mL烧杯中,在高速分散剪切机转速为2000 r/min的条件下剪切60 min,进一步剥离,获得层数较薄、分散均匀的石墨烯复合水凝胶;(5) High-speed shear exfoliation of graphene composite hydrogel: The graphene composite hydrogel in step (4) above was taken out and poured into a 1000 mL beaker, and sheared for 60 min at a high-speed dispersing shearing machine at a speed of 2000 r/min, and further exfoliated to obtain a graphene composite hydrogel with a thinner layer and uniform dispersion;
(6)将上述步骤(5)高速剪切剥离制备的石墨烯复合水凝胶置于磨具中,首先在-40 ℃冷冻2 h,然后采用程序升温的方式进行冷冻干燥,其中升温速率为10 ℃/h,干燥温度为-40~26 ℃,干燥时间为12 h在,最终获得石墨烯复合气凝胶;(6) placing the graphene composite hydrogel prepared by high-speed shear exfoliation in step (5) above in a mold, first freezing it at -40 °C for 2 h, and then freeze-drying it by programmed temperature increase, wherein the heating rate is 10 °C/h, the drying temperature is -40 to 26 °C, and the drying time is 12 h, and finally obtaining a graphene composite aerogel;
(7)将上述步骤(6)获得的石墨烯复合气凝胶置于管式炉中,在Ar保护的作用下,在800 ℃温度下焙烧1 h,保温2 h,煅烧除掉聚乙烯醇获得磁性石墨烯气凝胶。(7) The graphene composite aerogel obtained in the above step (6) is placed in a tubular furnace, and calcined at 800°C for 1 h under Ar protection, and kept at this temperature for 2 h to calcine and remove the polyvinyl alcohol to obtain the magnetic graphene aerogel.
实施例3Example 3
(1)配制一定浓度硫酸镁溶液:称取一定量无水硫酸镁并溶解于去离子水中,不断搅拌,配置成浓度为0.5 mol/L的溶液;(1) Prepare a magnesium sulfate solution of a certain concentration: weigh a certain amount of anhydrous magnesium sulfate and dissolve it in deionized water, stirring continuously to prepare a solution with a concentration of 0.5 mol/L;
(2)配制一定浓度的羧甲基纤维素钠溶液:秤取一定量羧甲基纤维素钠,加入一定量去离子水中,加热搅拌溶解,配置成浓度为0.5%溶液;(2) Prepare a solution of sodium carboxymethyl cellulose at a certain concentration: weigh a certain amount of sodium carboxymethyl cellulose, add it to a certain amount of deionized water, heat and stir to dissolve, and prepare a solution with a concentration of 0.5%;
(3)组装电化学剥离装置:采用有机玻璃板自制电解槽,阳极和阴极均为高定向热解石墨,两电极分别通过导线与直流电源的正极和负极相连,同时,将电解槽置于恒温水浴超声波清洗仪中,温度为40 ℃,功率设定为700 W;(3) Assembling the electrochemical stripping device: an electrolytic cell was prepared using a plexiglass plate. The anode and cathode were both made of highly oriented pyrolytic graphite. The two electrodes were connected to the positive and negative electrodes of a DC power supply through wires. At the same time, the electrolytic cell was placed in a constant temperature water bath ultrasonic cleaner at 40 °C and a power setting of 700 W.
(4)电化学剥离制备石墨烯复合水凝胶:将上述(1)和(2)溶液按照1:0.1的比例混合均匀,加入电解槽中作为电解质。在直流电源的作用下,通过控制电流为2 A,进行电化学剥离3 h,得到分散在电解质中的石墨烯复合水凝胶;(4) Preparation of graphene composite hydrogel by electrochemical exfoliation: The above solutions (1) and (2) were mixed evenly in a ratio of 1:0.1 and added to an electrolytic cell as an electrolyte. Under the action of a DC power supply, the current was controlled to 2 A and the electrochemical exfoliation was performed for 3 h to obtain a graphene composite hydrogel dispersed in the electrolyte;
(5)高速剪切剥离石墨烯复合水凝胶:将上述步骤(4)中的石墨烯复合水凝胶取出倒入1000 mL烧杯中,在高速分散剪切机转速为5000 r/min的条件下剪切60 min,进一步剥离,获得层数较薄、分散均匀的石墨烯复合水凝胶;(5) High-speed shear exfoliation of graphene composite hydrogel: The graphene composite hydrogel in step (4) above was taken out and poured into a 1000 mL beaker, and sheared for 60 min at a high-speed dispersing shearing machine at a speed of 5000 r/min, and further exfoliated to obtain a graphene composite hydrogel with a thinner layer and uniform dispersion;
(6)将上述(5)高速剪切剥离制备的石墨烯复合水凝胶置于磨具中,首先在-40 ℃冷冻2 h,然后采用程序升温的方式进行冷冻干燥,其中升温速率为5 ℃/h,干燥温度为-40~80 ℃,干燥时间为30 h在,最终获得石墨烯复合气凝胶;(6) placing the graphene composite hydrogel prepared by high-speed shear exfoliation in (5) above in a mold, first freezing it at -40 °C for 2 h, and then freeze-drying it by programmed temperature increase, wherein the heating rate is 5 °C/h, the drying temperature is -40 to 80 °C, and the drying time is 30 h, and finally obtaining a graphene composite aerogel;
(7)将上述步骤(6)获得的石墨烯复合气凝胶置于管式炉中,在Ar保护的作用下,在1100 ℃温度下焙烧1 h,保温4 h,煅烧除掉羧甲基纤维素钠获得石墨烯/氧化镁复合气凝胶。(7) The graphene composite aerogel obtained in the above step (6) is placed in a tubular furnace, and calcined at 1100°C for 1 h under Ar protection, and kept at this temperature for 4 h to calcine and remove the sodium carboxymethyl cellulose to obtain the graphene/magnesium oxide composite aerogel.
申请人声明,以上实施例仅用以说明本发明的技术方案,并非用于限定本发明的保护范围。所属领域的技术人员应当理解,对本发明做任何修改、原料的等效替换、工艺的改进等,均应包含在本发明的保护范围之内。The applicant declares that the above embodiments are only used to illustrate the technical solution of the present invention and are not used to limit the protection scope of the present invention. Those skilled in the art should understand that any modification, equivalent replacement of raw materials, process improvement, etc. of the present invention should be included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210477166.7A CN114572973B (en) | 2022-05-03 | 2022-05-03 | Method for preparing graphene composite aerogel by intercalation-in-situ polymerization synergistic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210477166.7A CN114572973B (en) | 2022-05-03 | 2022-05-03 | Method for preparing graphene composite aerogel by intercalation-in-situ polymerization synergistic method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114572973A CN114572973A (en) | 2022-06-03 |
CN114572973B true CN114572973B (en) | 2024-04-09 |
Family
ID=81779002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210477166.7A Active CN114572973B (en) | 2022-05-03 | 2022-05-03 | Method for preparing graphene composite aerogel by intercalation-in-situ polymerization synergistic method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114572973B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104477878A (en) * | 2014-12-04 | 2015-04-01 | 中国科学院山西煤炭化学研究所 | Graphene-based hierarchical porous carbon material as well as preparation method and application thereof |
CN105271205A (en) * | 2015-11-20 | 2016-01-27 | 复旦大学 | Method for preparing layer-number-controllable high-quality graphene through electrochemical process |
CN105293483A (en) * | 2015-12-08 | 2016-02-03 | 武汉理工大学 | In-situ preparation method of transition metal doped porous graphene |
CN106245104A (en) * | 2016-07-20 | 2016-12-21 | 西安交通大学 | A kind of method preparing Graphene based on electrochemical process stripping dual graphite electrodes |
TWI564245B (en) * | 2015-07-07 | 2017-01-01 | 國立臺東大學 | Method of preparing graphene and supercapacitor including the same |
CN106450446A (en) * | 2016-11-04 | 2017-02-22 | 成都新柯力化工科技有限公司 | Graphene microchip composite material used for polymer battery and preparing method thereof |
CN110600273A (en) * | 2019-09-03 | 2019-12-20 | 滨州学院 | Doped transition metal selenide/ordered porous graphene aerogel composite electrode material and preparation method thereof |
CN111097341A (en) * | 2018-10-25 | 2020-05-05 | 中国科学院上海硅酸盐研究所 | A kind of preparation method of phenolic resin reinforced three-dimensional graphene aerogel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201517795D0 (en) * | 2015-10-08 | 2015-11-25 | Univ Manchester | Aerogels |
-
2022
- 2022-05-03 CN CN202210477166.7A patent/CN114572973B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104477878A (en) * | 2014-12-04 | 2015-04-01 | 中国科学院山西煤炭化学研究所 | Graphene-based hierarchical porous carbon material as well as preparation method and application thereof |
TWI564245B (en) * | 2015-07-07 | 2017-01-01 | 國立臺東大學 | Method of preparing graphene and supercapacitor including the same |
CN105271205A (en) * | 2015-11-20 | 2016-01-27 | 复旦大学 | Method for preparing layer-number-controllable high-quality graphene through electrochemical process |
CN105293483A (en) * | 2015-12-08 | 2016-02-03 | 武汉理工大学 | In-situ preparation method of transition metal doped porous graphene |
CN106245104A (en) * | 2016-07-20 | 2016-12-21 | 西安交通大学 | A kind of method preparing Graphene based on electrochemical process stripping dual graphite electrodes |
CN106450446A (en) * | 2016-11-04 | 2017-02-22 | 成都新柯力化工科技有限公司 | Graphene microchip composite material used for polymer battery and preparing method thereof |
CN111097341A (en) * | 2018-10-25 | 2020-05-05 | 中国科学院上海硅酸盐研究所 | A kind of preparation method of phenolic resin reinforced three-dimensional graphene aerogel |
CN110600273A (en) * | 2019-09-03 | 2019-12-20 | 滨州学院 | Doped transition metal selenide/ordered porous graphene aerogel composite electrode material and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
Zhishuang Xue et al."Thermodynamics of dye adsorption on electrochemically exfoliated graphene".《Journal of Materials Science》.2016,第2016卷(第51期),第4928–4941页. * |
闵芃."冰晶模板法设计石墨烯气凝胶结构及其相变储能和传感应用研究".《中国博士学位论文全文数据库工程科技Ⅰ辑》.2022,第B016-166页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114572973A (en) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102569756B (en) | Preparation method of silicon/graphene nanocomposite material for cathode of lithium ion battery | |
CN112542577B (en) | A nano-bismuth/nitrogen-doped carbon foam nanosheet two-dimensional composite material and its preparation method and application | |
WO2022142774A1 (en) | Carbon-based two-dimensional composite electrode material and preparation method therefor | |
CN106219510A (en) | The method that a kind of highly basic activation pomelo peel prepares three-dimensional carbon nano material | |
CN109817932B (en) | One-step method for preparing N-doped porous carbon-coated SnO2-Co3O4Method for producing composite material and use thereof | |
CN114604864B (en) | Method for preparing graphene by stripping graphite material through limited-area electrochemical method | |
CN106299271A (en) | Nano nickel cobaltate/graphene composite material and preparation method thereof | |
CN107640761B (en) | The preparation method and stored energy application of graphene/carbon acid hydrogen nickel nanocube three-dimensional composite material | |
CN107934965A (en) | A kind of Ti3C2‑Co(OH)(CO3)0.5The preparation method of nanocomposite | |
CN104993110B (en) | A kind of preparation method of composite negative electrode material of lithium ion battery | |
CN101958411A (en) | A kind of CoO-Co composite material with core-shell structure and preparation method thereof | |
CN106025240A (en) | A preparation method of C/SnO2/CNT composite material with core-shell structure for negative electrode of lithium ion battery | |
CN110783545B (en) | Preparation method and application of a nitrogen-phosphorus double-doped hierarchical porous carbon material | |
CN104528712B (en) | A kind of preparation method of graphene/metal oxide three-dimensional composite material | |
CN105990560A (en) | Iron oxide porous nanorod array electrode material and preparation method thereof | |
CN103400980A (en) | Iron sesquioxide/nickel oxide core-shell nanorod array film as well as preparation method and application thereof | |
CN109003827A (en) | A kind of preparation method and application of spongy graphene/nickel cobalt sulfide composite material | |
CN114572973B (en) | Method for preparing graphene composite aerogel by intercalation-in-situ polymerization synergistic method | |
CN111584834B (en) | Preparation method of metal oxide quantum dot embedded three-dimensional carbon nanomaterial | |
CN107317019B (en) | Ferrous carbonate/graphene composite material for sodium ion battery cathode and preparation method and application thereof | |
CN113562774A (en) | Cathode material of zinc-cobalt battery rich in anion defects, preparation method of cathode material and application of cathode material to zinc-cobalt battery | |
CN118198324A (en) | Method for preparing carbon-coated porous silicon-based lithium battery anode material from photovoltaic crystalline silicon waste | |
CN112047330A (en) | A synchronous exfoliation and collection method for realizing electrochemical production of graphene | |
CN115196631B (en) | Ultrathin single-layer vanadium-based MXene material and preparation method and application thereof | |
CN106158394A (en) | A kind of preparation method of nickel foam based super capacitor electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |