CN114565525A - A method for identifying tree species based on leaf pictures - Google Patents
A method for identifying tree species based on leaf pictures Download PDFInfo
- Publication number
- CN114565525A CN114565525A CN202210158900.3A CN202210158900A CN114565525A CN 114565525 A CN114565525 A CN 114565525A CN 202210158900 A CN202210158900 A CN 202210158900A CN 114565525 A CN114565525 A CN 114565525A
- Authority
- CN
- China
- Prior art keywords
- tree species
- formula
- leaf
- feature vector
- follows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 239000013598 vector Substances 0.000 claims abstract description 32
- 238000012549 training Methods 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 238000013528 artificial neural network Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims abstract description 16
- 238000007781 pre-processing Methods 0.000 claims abstract description 8
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 241000894007 species Species 0.000 claims description 32
- 210000002569 neuron Anatomy 0.000 claims description 19
- 238000003708 edge detection Methods 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 230000002902 bimodal effect Effects 0.000 claims description 5
- 241000208140 Acer Species 0.000 claims description 3
- 235000018185 Betula X alpestris Nutrition 0.000 claims description 3
- 235000018212 Betula X uliginosa Nutrition 0.000 claims description 3
- 235000011201 Ginkgo Nutrition 0.000 claims description 3
- 235000008100 Ginkgo biloba Nutrition 0.000 claims description 3
- 241000219991 Lythraceae Species 0.000 claims description 3
- 235000014360 Punica granatum Nutrition 0.000 claims description 3
- 241000124033 Salix Species 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 244000194101 Ginkgo biloba Species 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 9
- 238000003909 pattern recognition Methods 0.000 abstract description 8
- 230000006870 function Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 241000218628 Ginkgo Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及模式识别领域,尤其涉及一种基于树叶图片辨别树种的方法。The invention relates to the field of pattern recognition, in particular to a method for identifying tree species based on leaf pictures.
背景技术Background technique
模式识别诞生于20实际20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成为一门学科。模式识别是根据输入的原始数据对齐进行各种分析判断,从而得到其类别属性,特征判断的过程。模式识别的作用和目的就在于把某一个具体的事物正确的归入某一个类别。Pattern recognition was born in the 1920s. With the advent of computers in the 1940s and the rise of artificial intelligence in the 1950s, pattern recognition rapidly developed into a discipline in the early 1960s. Pattern recognition is a process of performing various analysis and judgments according to the alignment of the input original data, so as to obtain its category attributes and feature judgments. The function and purpose of pattern recognition is to correctly classify a specific thing into a certain category.
随着科学技术的不断发展与进步,模式识别运用地也越来越广泛,模式识别能够更加准确、快速地对事物进行分类,节省了人们大量的时间以及人力物力。With the continuous development and progress of science and technology, pattern recognition has become more and more widely used. Pattern recognition can classify things more accurately and quickly, saving people a lot of time and manpower and material resources.
傅弘学者提出了神经网络的叶脉提取方法,通过训练的神经网络,准确地提取了叶脉图像,实现了叶脉的提取;朱宁学者利用局部二进制模式方法,提出了将该方法应用于植物叶片图像纹理特征的提取,实现了用于提取叶片样本特征的各种算子,实现了基于局部二进制模式的树叶识别。Scholar Fu Hong proposed a neural network extraction method for leaf veins. Through the trained neural network, the image of leaf veins was accurately extracted, and the extraction of leaf veins was realized. Scholar Zhu Ning used the local binary pattern method to propose that this method should be applied to plant leaf images. The extraction of texture features implements various operators for extracting leaf sample features, and realizes leaf recognition based on local binary patterns.
然而基于树叶图片进行识别与分类存下以下几点问题:However, the identification and classification based on leaf images have the following problems:
1、算法较为复杂,计算量大,实现起来有难度;1. The algorithm is more complex, the amount of calculation is large, and it is difficult to implement;
2、识别结果受环境、背景等因素的干扰,识别的准确率不高。2. The recognition results are interfered by factors such as environment and background, and the recognition accuracy is not high.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于树叶图片辨别树种的方法,用以解决算法复杂、计算量大、识别的准确率不高的问题,提高算法的鲁棒性。The purpose of the present invention is to provide a method for identifying tree species based on leaf pictures, which is used to solve the problems of complex algorithm, large amount of calculation, and low recognition accuracy, and to improve the robustness of the algorithm.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于树叶图片辨别树种的方法,其特征在于,包括以下步骤:A method for identifying tree species based on leaf picture, is characterized in that, comprises the following steps:
步骤1、采集树叶图片,划分训练集与测试集;Step 1. Collect leaf pictures and divide training set and test set;
步骤2、图片预处理;Step 2, image preprocessing;
步骤3、提取训练集的树叶的特征;Step 3, extract the characteristics of the leaves of the training set;
步骤4、对提取形状特征进行整合作为特征矢量,对特征矢量先进行归一化,再将归一化的特征矢量输入到BP神经网络进行训练,得到树种辨别模型;Step 4. Integrate the extracted shape features as a feature vector, first normalize the feature vector, and then input the normalized feature vector into the BP neural network for training to obtain a tree species identification model;
步骤5、提取测试集的树叶的特征,输入树种辨别模型,输出识别结果。Step 5: Extract the features of the leaves of the test set, input the tree species identification model, and output the identification result.
优选地,所述步骤1中,采集不同树种的图片,树种包括:银杏、枫树、柳树、石榴、白桦,每种树叶数量不少于100,图片大小为300*300像素,将采集的图片作为数据集,把数据集划分为训练集与测试集,训练集与测试集的比例为8:2。Preferably, in the step 1, pictures of different tree species are collected, and the tree species include: ginkgo, maple, willow, pomegranate, and birch. As a data set, the data set is divided into training set and test set, and the ratio of training set and test set is 8:2.
优选地,所述步骤2中,图片预处理包括:去噪、灰度化、二值化、边缘检测、腐蚀、膨胀以及填充;Preferably, in the step 2, the image preprocessing includes: denoising, grayscale, binarization, edge detection, erosion, expansion and filling;
其中去噪的方式选择巴特沃斯低通滤波器去噪、FIR低通滤波器去噪、移动平均滤波去噪、中值滤波去噪、维纳滤波去噪、自适应滤波去噪、小波去噪中的其中一种;Among them, the denoising method chooses Butterworth low-pass filter denoising, FIR low-pass filter denoising, moving average filter denoising, median filter denoising, Wiener filter denoising, adaptive filter denoising, wavelet denoising one of the noises;
其中灰度化采用最大值法对图片进行灰度化,公式如下:The grayscale uses the maximum value method to grayscale the image, and the formula is as follows:
Gray(x,y)=max{R(x,y),G(x,y),B(x,y)} (1)Gray(x, y) = max{R(x, y), G(x, y), B(x, y)} (1)
公式(1)中,R(x,y)、G(x,y)、B(x,y)分别表示RGB三个分量;In formula (1), R(x,y), G(x,y), and B(x,y) respectively represent the three components of RGB;
其中二值化处理,其公式如下:Among them, the binarization process, the formula is as follows:
公式(2)中,T为二值化阈值,二值化中阈值确定选择双峰法、P参数法、最大类方差法、最大熵阈值法、最佳阈值法中的其中一种;In formula (2), T is the binarization threshold, and the threshold in the binarization is determined by selecting one of the bimodal method, the P parameter method, the maximum class variance method, the maximum entropy threshold method, and the optimal threshold method;
其中边缘检测采用Prewitt算子,该算子既能检测边缘,还能抑制噪声的影响;Among them, the edge detection adopts the Prewitt operator, which can not only detect the edge, but also suppress the influence of noise;
优选地,所述步骤3中,提取的特征包括:圆形度、矩形度、最小外接矩形的长宽比、不变矩、傅里叶描述子;Preferably, in the step 3, the extracted features include: circularity, rectangularity, aspect ratio of the smallest circumscribed rectangle, invariant moment, and Fourier descriptor;
其中圆形度表示物体边缘与圆的相似程度,计算公式如下:The circularity represents the similarity between the edge of the object and the circle, and the calculation formula is as follows:
公式(3)中,S表示物体的面积,L表示物体的周长,e表示圆形度;In formula (3), S represents the area of the object, L represents the perimeter of the object, and e represents the circularity;
其中矩形度表示物体与矩形的相似程度,计算公式如下:The degree of rectangle represents the similarity between the object and the rectangle, and the calculation formula is as follows:
公式(4)中,S表示物体的面积,SR表示物体的最小外接矩形的面积,R表示矩形度;In formula (4), S represents the area of the object, S R represents the area of the smallest circumscribed rectangle of the object, and R represents the degree of rectangularity;
其中最小外接矩形的长宽比是最小外接矩形长轴与短轴的比值,计算公式如下:The aspect ratio of the smallest circumscribed rectangle is the ratio of the long axis to the short axis of the smallest circumscribed rectangle. The calculation formula is as follows:
公式(5)中,a表示最小外接矩形长轴,b表示最小外接矩形短轴,ε表示最小外接矩形的长宽比;In formula (5), a represents the long axis of the smallest circumscribed rectangle, b represents the short axis of the smallest circumscribed rectangle, and ε represents the aspect ratio of the smallest circumscribed rectangle;
其中不变矩主要表征了图像区域的几何特征,采用Hu.M.K提出的7个不随水平、旋转、等比缩放变化的矩组,定义如下:Among them, the invariant moment mainly characterizes the geometric features of the image area. The 7 moment groups proposed by Hu.M.K that do not change with horizontal, rotation, and proportional scaling are used, which are defined as follows:
M1=μ20+μ02 (6)M 1 =μ 20 +μ 02 (6)
M2=(μ20-μ02)2+4μ11 2 (7)M 2 =(μ 20 -μ 02 ) 2 +4μ 11 2 (7)
M3=(μ30-3μ12)2+(3μ21-μ03)2 (8)M 3 =(μ 30 -3μ 12 ) 2 +(3μ 21 -μ 03 ) 2 (8)
M4=(μ30+μ12)2+(μ21+μ03)2 (9)M 4 =(μ 30 +μ 12 ) 2 +(μ 21 +μ 03 ) 2 (9)
M5=(μ30-3μ12)(μ30+μ12)[(μ30+μ12)2-3(μ21+μ03)2]+(3μ21-μ03)(μ21+μ03)[3(μ30+μ12)2-(μ21+μ03)2] (10)M 5 =(μ 30 -3μ 12 )(μ 30 +μ 12 )[(μ 30 +μ 12 ) 2 -3(μ 21 +μ 03 ) 2 ]+(3μ 21 -μ 03 )(μ 21 +μ 03 )[3(μ 30 +μ 12 ) 2 -(μ 21 +μ 03 ) 2 ] (10)
M6=(μ20-μ02)[(μ30+μ12)2-(μ21+μ03)2]+4μ11(μ30+μ12)(μ21+μ03) (11)M 6 =(μ 20 -μ 02 )[(μ 30 +μ 12 ) 2 -(μ 21 +μ 03 ) 2 ]+4μ 11 (μ 30 +μ 12 )(μ 21 +μ 03 ) (11)
M7=(3μ21-μ03)(μ30+μ12)[(μ30+μ12)2-3(μ21+μ03)2]-(μ30-3μ12)(μ21+μ03)[3(μ30+μ12)2-(μ21+μ03)2] (12)M 7 =(3μ 21 -μ 03 )(μ 30 +μ 12 )[(μ 30 +μ 12 ) 2 -3(μ 21 +μ 03 ) 2 ]-(μ 30 -3μ 12 )(μ 21 +μ 03 )[3(μ 30 +μ 12 ) 2 -(μ 21 +μ 03 ) 2 ] (12)
公式(6)-(12)中,μpq表示归一化(p+q)阶中心矩,p,q=0,1,2,3;In formulas (6)-(12), μ pq represents the normalized (p+q) order central moment, p, q=0, 1, 2, 3;
傅里叶描述子是描述物体形状边界的傅里叶变换系数,计算公式如下:The Fourier descriptor is the Fourier transform coefficient that describes the shape boundary of the object. The calculation formula is as follows:
假设一个由N点组成的封闭边界,从任一点P开始绕边界一周得到:Assuming a closed boundary consisting of N points, starting from any point P, we get:
s(k)=x(k)+jy(k),k=0,1,...,N-1 (13)s(k)=x(k)+jy(k), k=0, 1, ..., N-1 (13)
公式(13)中,x(k)和y(k)是动点P的坐标,j为系数;In formula (13), x(k) and y(k) are the coordinates of the moving point P, and j is the coefficient;
s(k)的离散傅里叶变换(DFT)为:The discrete Fourier transform (DFT) of s(k) is:
公式(14)中,u=0,1,...,N-1,a(u)是边界的傅里叶描述子In formula (14), u=0,1,...,N-1, a(u) is the Fourier descriptor of the boundary
归一化傅里叶描述子d′(k)为:The normalized Fourier descriptor d'(k) is:
本发明中,取前10个系数作为傅立叶描述子特征。In the present invention, the first 10 coefficients are taken as the Fourier descriptor feature.
优选地,所述步骤4中,对提取形状特征进行整合作为特征矢量,提取了20个特征参数,包括圆形度、矩形度、最小外接矩形的长宽比、7个不变矩、10个傅里叶描述子,整合得到一个20维的特征矢量,对特征矢量先进行归一化,再将归一化的特征矢量输入到BP神经网络进行训练,得到平面几何形状识别模型;Preferably, in the step 4, the extracted shape features are integrated as a feature vector, and 20 feature parameters are extracted, including circularity, rectangularity, aspect ratio of the smallest circumscribed rectangle, 7 invariant moments, 10 The Fourier descriptor is integrated to obtain a 20-dimensional feature vector. The feature vector is first normalized, and then the normalized feature vector is input into the BP neural network for training to obtain a plane geometric shape recognition model;
其中归一化采用线性归一化,公式如下:The normalization adopts linear normalization, and the formula is as follows:
公式(16)中,x为原始数据,xmin表示原始数据集的最小值,xmax表示原始数据集的最大值;In formula (16), x is the original data, x min represents the minimum value of the original data set, and x max represents the maximum value of the original data set;
其中BP神经网络输入层有20个神经元,隐含层有64个神经元,输出层有5个神经元,分别对应5种树,输出层的取值范围为[-1,1],输出层的激活函数是softmax函数,隐含层的激活函数是Sigmoid函数。The BP neural network has 20 neurons in the input layer, 64 neurons in the hidden layer, and 5 neurons in the output layer, corresponding to 5 kinds of trees. The value range of the output layer is [-1, 1]. The activation function of the layer is the softmax function, and the activation function of the hidden layer is the Sigmoid function.
优选地,所述步骤5中,提取测试集的树叶的特征,整合得到20维特征矢量,对特征矢量归一化后输入树种辨别模型输出识别结果,验证得到树种辨别模型的准确率为96.8%。Preferably, in the
本发明的有益效果:Beneficial effects of the present invention:
1、本发明通过采集大量的树叶图片,对图片进行去噪、灰度化、二值化等预处理,有利于后续对树叶特征的提取以及识别。1. The present invention collects a large number of leaf pictures and performs preprocessing such as denoising, grayscale, and binarization on the pictures, which is beneficial to the subsequent extraction and identification of leaf features.
2、通过对提取的特征矢量进行归一化处理,归纳统一样本的统计分布性,提升模型的收敛速度。2. By normalizing the extracted feature vector, the statistical distribution of the unified sample is summarized, and the convergence speed of the model is improved.
3、利用BP神经网络进行训练,得到树种辨别模型,增强了算法的鲁棒性,提高了识别的准确率,可运用于更多场景。3. Using the BP neural network for training, the tree species identification model is obtained, which enhances the robustness of the algorithm, improves the accuracy of identification, and can be used in more scenarios.
附图说明Description of drawings
图1为本发明的均值滤波示意图。FIG. 1 is a schematic diagram of the mean filtering of the present invention.
图2为本发明的原图与灰度图对比图。FIG. 2 is a comparison diagram of the original image and the grayscale image of the present invention.
图3为本发明的二值化示意图。FIG. 3 is a schematic diagram of binarization of the present invention.
图4为本发明的双峰法示意图。Figure 4 is a schematic diagram of the bimodal method of the present invention.
图5为本发明的边缘检测示意图。FIG. 5 is a schematic diagram of edge detection according to the present invention.
图6为本发明的膨胀、腐蚀以及填充示意图。FIG. 6 is a schematic diagram of expansion, corrosion and filling of the present invention.
图7为本发明的预处理后部分数据集示意图。FIG. 7 is a schematic diagram of a partial data set after preprocessing according to the present invention.
图8为本发明的最小外接矩形示意图。FIG. 8 is a schematic diagram of the minimum circumscribed rectangle of the present invention.
图9为本发明的取前10个傅里叶描述子示意图。FIG. 9 is a schematic diagram of taking the first 10 Fourier descriptors according to the present invention.
图10为本发明的BP神经网络训练流程图。FIG. 10 is a flow chart of the BP neural network training of the present invention.
图11为本发明的一种基于树叶图片辨别树种的方法的流程图。FIG. 11 is a flowchart of a method for identifying tree species based on leaf pictures according to the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
如图11所示,一种基于树叶图片辨别树种的方法,包括如下步骤:As shown in Figure 11, a method for identifying tree species based on leaf pictures includes the following steps:
步骤1、采集树叶图片,划分训练集与测试集;Step 1. Collect leaf pictures and divide training set and test set;
采集不同树种的图片,树种包括:银杏、枫树、柳树、石榴、白桦,每种树叶数量为100,总计500,图片大小为300*300像素,将采集的图片作为数据集,把数据集划分为训练集与测试集,训练集与测试集的比例为8:2。Collect pictures of different tree species, tree species include: ginkgo, maple, willow, pomegranate, birch, the number of each leaf is 100, a total of 500, the picture size is 300*300 pixels, the collected pictures are used as a data set, and the data set is divided For training set and test set, the ratio of training set and test set is 8:2.
步骤2、图片预处理;Step 2, image preprocessing;
对采集到的图片进行预处理,预处理包括:去噪、灰度化、二值化、边缘检测、腐蚀、膨胀、填充;Preprocess the collected images, including: denoising, grayscale, binarization, edge detection, erosion, expansion, filling;
其中去噪的方式有巴特沃斯低通滤波器去噪、FIR低通滤波器去噪、移动平均滤波去噪、中值滤波去噪、维纳滤波去噪、自适应滤波去噪、小波去噪等,本发明采用中值滤波去噪,其过程如图1所示。Among them, the denoising methods include Butterworth low-pass filter denoising, FIR low-pass filter denoising, moving average filter denoising, median filter denoising, Wiener filter denoising, adaptive filter denoising, wavelet denoising Noise, etc., the present invention uses median filtering to remove noise, and the process is shown in Figure 1.
其中灰度化的方式有分量法、最大值法、平均值法、加权平均法,本发明采用最大值法对图片进行灰度化,如图2所示,公式如下:The grayscale methods include component method, maximum value method, average value method, and weighted average method. The present invention adopts the maximum value method to grayscale the picture, as shown in FIG. 2 , and the formula is as follows:
Gray(x,y)=max{R(x,y),G(x,y),B(x,y)} (1)Gray(x, y) = max{R(x, y), G(x, y), B(x, y)} (1)
公式(1)中,R(x,y)、G(x,y)、B(x,y)分别表示RGB三个分量;In formula (1), R(x,y), G(x,y), and B(x,y) respectively represent the three components of RGB;
其中二值化处理,如图3所示,其公式如下:The binarization process is shown in Figure 3, and the formula is as follows:
公式(2)中,T为二值化阈值;In formula (2), T is the binarization threshold;
二值化中阈值选取的常用方法有:双峰法、P参数法、最大类方差法、最大熵阈值法、最佳阈值法等,本发明采用双峰法,如图4所示,T取值为200;Common methods for threshold selection in binarization include: bimodal method, P parameter method, maximum class variance method, maximum entropy threshold method, optimal threshold method, etc. The present invention adopts bimodal method, as shown in FIG. 4 , T takes The value is 200;
边缘检测的算法有:Reberts算子、Prewitt算子、Sobel算子、Laplacian算子、Canny算子等等。Edge detection algorithms include: Reberts operator, Prewitt operator, Sobel operator, Laplacian operator, Canny operator, etc.
本发明采用Sobel算子对二值图像进行边缘检测,得到轮廓图,如图5所示,然后对图像进行膨胀与腐蚀运算、图像填充,如图6所示。The present invention uses the Sobel operator to perform edge detection on the binary image to obtain a contour map, as shown in FIG. 5 , and then performs expansion and erosion operations on the image, as shown in FIG.
对采集的图片进行预处理,最终得到的图片如图7所示。The collected images are preprocessed, and the final image is shown in Figure 7.
步骤3、提取训练集的树叶的特征;Step 3, extract the characteristics of the leaves of the training set;
提取的特征包括:圆形度、矩形度、最小外接矩形的长宽比、不变矩、傅里叶描述子,具体参数如下表所示:The extracted features include: circularity, rectangularity, aspect ratio of the smallest circumscribed rectangle, invariant moment, and Fourier descriptor. The specific parameters are shown in the following table:
表1Table 1
其中圆形度表示物体边缘与圆的相似程度,计算公式如下:The circularity represents the similarity between the edge of the object and the circle, and the calculation formula is as follows:
公式(3)中,S表示物体的面积,L表示物体的周长,e表示圆形度,e为1时,图形即为圆形;e越小,图形越不规律,与圆形的差距越大;In formula (3), S represents the area of the object, L represents the perimeter of the object, e represents the circularity, and when e is 1, the figure is a circle; bigger;
其中矩形度表示物体与矩形的相似程度,计算公式如下:The degree of rectangle represents the similarity between the object and the rectangle, and the calculation formula is as follows:
公式(4)中,S表示物体的面积,SR表示物体的最小外接矩形的面积,R表示矩形度,矩形度反映了物体在最小外接矩形中的填充程度;In formula (4), S represents the area of the object, S R represents the area of the smallest circumscribed rectangle of the object, R represents the degree of rectangle, and the degree of rectangle reflects the filling degree of the object in the smallest circumscribed rectangle;
其中最小外接矩形的长宽比是最小外接矩形长轴与短轴的比值,最小外接矩形如图8所示,计算公式如下:The aspect ratio of the smallest circumscribed rectangle is the ratio of the long axis to the short axis of the smallest circumscribed rectangle. The smallest circumscribed rectangle is shown in Figure 8, and the calculation formula is as follows:
公式(5)中,a表示最小外接矩形长轴,b表示最小外接矩形短轴,ε表示最小外接矩形的长宽比;In formula (5), a represents the long axis of the smallest circumscribed rectangle, b represents the short axis of the smallest circumscribed rectangle, and ε represents the aspect ratio of the smallest circumscribed rectangle;
不矩特征主要表征了图像区域的几何特征,又称为几何矩,由于其具有旋转、平移、尺度等特性的不变特征,所以又称其为不变矩,变矩的主要思想是使用对变换不敏感的基于区域的几个矩作为形状特征。The invariant moment feature mainly characterizes the geometric features of the image area, also known as geometric moment. Because it has invariant features such as rotation, translation, scale, etc., it is also called invariant moment. Transform-insensitive region-based moments are used as shape features.
对于二维的(N*M)数字化图像f(x,y),(p+q)阶矩可以定义为:For a two-dimensional (N*M) digitized image f(x,y), the (p+q) moment can be defined as:
其对应的(p+q)阶中心矩可以定义为:Its corresponding (p+q) order central moment can be defined as:
公式(7)中,是质心坐标;In formula (7), is the centroid coordinate;
f(x,y)的归一化(p+q)阶中心矩可以定义为:The normalized (p+q) order central moment of f(x,y) can be defined as:
Hu.M.K提出的7个不随水平、旋转、等比缩放变化的矩组,可以定义为:The 7 moment groups proposed by Hu.M.K that do not change with the level, rotation, and proportional scaling can be defined as:
M1=μ20+μ02 (9)M 1 =μ 20 +μ 02 (9)
M2=(μ20-μ02)2+4μ11 2 (10)M 2 =(μ 20 -μ 02 ) 2 +4μ 11 2 (10)
M3=(μ30-3μ12)2+(3μ21-μ03)2 (11)M 3 =(μ 30 -3μ 12 ) 2 +(3μ 21 -μ 03 ) 2 (11)
M4=(μ30+μ12)2+(μ21+μ03)2 (12)M 4 =(μ 30 +μ 12 ) 2 +(μ 21 +μ 03 ) 2 (12)
M5=(μ30-3μ12)(μ30+μ12)[(μ30+μ12)2-3(μ21+μ03)2]+(3μ21-μ03)(μ21+μ03)[3(μ30+μ12)2-(μ21+μ03)2] (13)M 5 =(μ 30 -3μ 12 )(μ 30 +μ 12 )[(μ 30 +μ 12 ) 2 -3(μ 21 +μ 03 ) 2 ]+(3μ 21 -μ 03 )(μ 21 +μ 03 )[3(μ 30 +μ 12 ) 2 -(μ 21 +μ 03 ) 2 ] (13)
M6=(μ20-μ02)[(μ30+μ12)2-(μ21+μ03)2]+4μ11(μ30+μ12)(μ21+μ03) (14)M 6 =(μ 20 -μ 02 )[(μ 30 +μ 12 ) 2 -(μ 21 +μ 03 ) 2 ]+4μ 11 (μ 30 +μ 12 )(μ 21 +μ 03 ) (14)
M7=(3μ21-μ03)(μ30+μ12)[(μ30+μ12)2-3(μ21+μ03)2]-(μ30-3μ12)(μ21+μ03)[3(μ30+μ12)2-(μ21+μ03)2] (15)M 7 =(3μ 21 -μ 03 )(μ 30 +μ 12 )[(μ 30 +μ 12 ) 2 -3(μ 21 +μ 03 ) 2 ]-(μ 30 -3μ 12 )(μ 21 +μ 03 )[3(μ 30 +μ 12 ) 2 -(μ 21 +μ 03 ) 2 ] (15)
傅里叶描述子是描述物体形状边界的傅里叶变换系数,它是物体边界曲线信号的频域分析结果。The Fourier descriptor is the Fourier transform coefficient that describes the shape boundary of the object, and it is the result of the frequency domain analysis of the object boundary curve signal.
假设一个由N点组成的封闭边界,从任一点P开始绕边界一周得到:Assuming a closed boundary consisting of N points, starting from any point P, we get:
s(k)=x(k)+jy(k),k=0,1,...,N-1 (16)s(k)=x(k)+jy(k), k=0, 1, ..., N-1 (16)
公式(16)中,x(k)和y(k)是动点P的坐标,j为系数;In formula (16), x(k) and y(k) are the coordinates of the moving point P, and j is the coefficient;
s(k)的离散傅里叶变换(DFT)为:The discrete Fourier transform (DFT) of s(k) is:
公式(17)中,u=0,1,...,N-1,a(u)是边界的傅里叶描述子In formula (17), u=0,1,...,N-1, a(u) is the Fourier descriptor of the boundary
归一化傅里叶描述子d′(k)为:The normalized Fourier descriptor d'(k) is:
本发明中,取前10个系数作为傅立叶描述子特征,如图9所示,可知同一树叶不论方向如何变幻,其傅立叶描述子都不变。In the present invention, the first 10 coefficients are taken as the Fourier descriptor feature, as shown in FIG. 9 , it can be seen that the Fourier descriptor of the same leaf remains unchanged no matter how the direction changes.
步骤4、训练树种辨别模型;Step 4. Train the tree species identification model;
对提取形状特征进行整合作为特征矢量,提取了20个特征参数,包括圆形度、矩形度、最小外接矩形的长宽比、7个不变矩、10个傅里叶描述子,整合得到一个20维的特征矢量,对特征矢量先进行归一化,再将归一化的特征矢量输入到BP神经网络进行训练,得到平面几何形状识别模型。The extracted shape features are integrated as a feature vector, and 20 feature parameters are extracted, including circularity, rectangularity, aspect ratio of the smallest circumscribed rectangle, 7 invariant moments, and 10 Fourier descriptors. 20-dimensional feature vector, the feature vector is normalized first, and then the normalized feature vector is input into the BP neural network for training, and the plane geometric shape recognition model is obtained.
其中归一化采用线性归一化,公式如下:The normalization adopts linear normalization, and the formula is as follows:
公式(19)中,x为原始数据,xmin表示原始数据集的最小值,xmax表示原始数据集的最大值。In formula (19), x is the original data, x min represents the minimum value of the original data set, and x max represents the maximum value of the original data set.
如图10所示,其中BP神经网络训练的具体流程如下:As shown in Figure 10, the specific process of BP neural network training is as follows:
BP神经网络输入层有n个神经元,隐含层有p个神经元,输出层有q个神经元。The BP neural network has n neurons in the input layer, p neurons in the hidden layer, and q neurons in the output layer.
步骤S1、变量定义:Step S1, variable definition:
输出层单元到隐含层单元有n*p条连线,连接权值为Wih;There are n*p connections from the output layer unit to the hidden layer unit, and the connection weight is W ih ;
隐含层单元到输出层的单元有p*q条连线,连接权值Who;There are p*q connections from the hidden layer unit to the output layer unit, connecting the weights Who ;
输入向量为x=(x1,……,xn);The input vector is x=(x 1 , ..., x n );
隐含层输入变量为hi=(hi1,……,hip);The input variable of the hidden layer is hi=(hi 1 , ..., hi p );
隐含层输出变量为ho=(ho1,……,hop);The output variable of the hidden layer is ho=(ho 1 ,..., ho p );
输出层输入变量为yi=(yi1,……,yiq);The input variable of the output layer is yi=(yi 1 , ..., yi q );
输出层输入变量为yo=(yo1,……,yoq);The input variable of the output layer is yo=(yo 1 , ..., yo q );
期望输出向量为do=(d1,……,dq);The expected output vector is do = (d 1 , ..., d q ) ;
隐含层各神经元的阈值为bh;The threshold of each neuron in the hidden layer is b h ;
输出层各神经元的阈值为bo;The threshold value of each neuron in the output layer is b o ;
样本数据个数为k=1,2,……,m;The number of sample data is k = 1, 2, ..., m;
激活函数为f(·);The activation function is f( );
误差函数为 The error function is
作为本发明优选的实施例,输入层有20个神经元,隐含层有64个神经元,输出层有5个神经元,分别对应5种树,输出层的取值范围为[-1,1],输出层的激活函数是softmax函数,隐含层的激活函数是Sigmoid函数,公式如下:As a preferred embodiment of the present invention, the input layer has 20 neurons, the hidden layer has 64 neurons, and the output layer has 5 neurons, corresponding to 5 kinds of trees respectively, and the value range of the output layer is [-1, 1], the activation function of the output layer is the softmax function, and the activation function of the hidden layer is the Sigmoid function. The formula is as follows:
步骤S2、网络初始化:给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e,给定计算精度ε和最大学习次数M;Step S2, network initialization: assign a random number in the interval (-1, 1) to each connection weight, set the error function e, and give the calculation accuracy ε and the maximum number of learning times M;
作为本发明优选的实施例,计算精度ε为0.0001,最大学习次数M为500。As a preferred embodiment of the present invention, the calculation accuracy ε is 0.0001, and the maximum number of learning times M is 500.
步骤S3、随机选取:随机选取第k个输入样本以及对应的期望输出;Step S3, random selection: randomly select the kth input sample and the corresponding expected output;
第k个输入样本为x(k)=(x1(k),……,xn(k));The kth input sample is x (k) = (x1(k),...,xn(k));
对应的期望输出为do(k)=(d1(k),……,dq(k));The corresponding expected output is do ( k )=(d 1 (k),...,d q (k));
步骤S4、计算隐含层各神经元的输入和输出;Step S4, calculating the input and output of each neuron in the hidden layer;
hih(k)=f(hih(k)) (h=1,2,......,p) (22)hi h (k)=f(hi h (k)) (h=1, 2, ..., p) (22)
yoo(k)=f(yio(k)) (o=1,2,......,q) (24)yo o (k) = f(yi o (k)) (o = 1, 2, ..., q) (24)
步骤S5、计算全局误差E,公式如下:Step S5, calculate the global error E, the formula is as follows:
步骤S6、求偏导数:利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数δo(k);Step S6, seek partial derivative: use the expected output and actual output of the network to calculate the partial derivative δ o (k) of the error function to each neuron in the output layer;
步骤S7、修正权值:利用输出层各神经元的δo(k)和隐含层各神经元的输出来修正连接权值Who(k);利用隐含层各神经元的δh(k)和输入层各神经元的输出来修正连接权值Wih(k);Step S7, modify the weights: use the δ o (k) of each neuron in the output layer and the output of each neuron in the hidden layer to correct the connection weight W ho (k); use the δ h ( k) and the output of each neuron in the input layer to modify the connection weight Wih (k);
步骤S8、训练是否终止:判断全局误差E和隐含层、输出层误差e是否满足要求,当误差达到预设精度或者学习次数大于设计的最大次数,则结束算法;否则,选取下一个学习样本以及对应的输出期望,返回步骤S4,进入下一轮学习。Step S8, whether the training is terminated: judge whether the global error E and the error e of the hidden layer and output layer meet the requirements, when the error reaches the preset accuracy or the number of learning times is greater than the maximum number of times designed, the algorithm ends; otherwise, select the next learning sample and the corresponding output expectation, return to step S4, and enter the next round of learning.
步骤5、提取测试集的树叶的特征,输入树种辨别模型,输出识别结果。Step 5: Extract the features of the leaves of the test set, input the tree species identification model, and output the identification result.
提取测试集的树叶的特征,整合得到20维特征矢量对特征矢量归一化后输入树种辨别模型输出识别结果。Extract the features of the leaves of the test set, and integrate to obtain a 20-dimensional feature vector. After normalizing the feature vector, input the tree species identification model and output the identification result.
本发明依据上述方法建立树种辨别模型,其结果如表所示,树种识别的准确率为96.8%,具有非常不错的识别效果。The present invention establishes a tree species identification model according to the above method, and the results are shown in the table. The accuracy rate of tree species identification is 96.8%, which has a very good identification effect.
表2Table 2
至此完成了整个方法的流程。So far, the whole process of the method is completed.
结合具体实施,可以得到本发明的优点是,本发明通过对图片进行预处理,有利于后续对树叶特征的提取以及识别;通过对提取的特征矢量进行归一化处理,归纳统一样本的统计分布性,提升模型的收敛速度;利用BP神经网络进行训练,得到树种辨别模型,增强了算法的鲁棒性,可运用于更多场景。Combined with the specific implementation, the advantages of the present invention can be obtained: the present invention preprocesses pictures, which is conducive to the subsequent extraction and identification of leaf features; by normalizing the extracted feature vectors, the statistical distribution of the unified samples is summarized. improve the convergence speed of the model; use the BP neural network for training to obtain a tree species identification model, which enhances the robustness of the algorithm and can be used in more scenarios.
本发明未详述之处,均为本领域技术人员的公知技术。The parts that are not described in detail in the present invention are known techniques of those skilled in the art.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, any technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210158900.3A CN114565525A (en) | 2022-02-21 | 2022-02-21 | A method for identifying tree species based on leaf pictures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210158900.3A CN114565525A (en) | 2022-02-21 | 2022-02-21 | A method for identifying tree species based on leaf pictures |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114565525A true CN114565525A (en) | 2022-05-31 |
Family
ID=81713631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210158900.3A Pending CN114565525A (en) | 2022-02-21 | 2022-02-21 | A method for identifying tree species based on leaf pictures |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114565525A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114972276A (en) * | 2022-06-05 | 2022-08-30 | 长沙烽铭智能科技有限公司 | Automatic driving distance judgment algorithm for vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109522924A (en) * | 2018-09-28 | 2019-03-26 | 浙江农林大学 | A kind of broad-leaf forest wood recognition method based on single photo |
CN111860567A (en) * | 2020-05-09 | 2020-10-30 | 武汉理工大学 | The Construction Method of Leaf Image Recognition Model |
-
2022
- 2022-02-21 CN CN202210158900.3A patent/CN114565525A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109522924A (en) * | 2018-09-28 | 2019-03-26 | 浙江农林大学 | A kind of broad-leaf forest wood recognition method based on single photo |
CN111860567A (en) * | 2020-05-09 | 2020-10-30 | 武汉理工大学 | The Construction Method of Leaf Image Recognition Model |
Non-Patent Citations (2)
Title |
---|
刘念 等: "基于多特征融合和深度信念网络的植物叶片识别", 《北京林业大学学报》, vol. 38, 31 March 2016 (2016-03-31), pages 110 - 119 * |
岑耀东 等著: "《冷轧带钢热镀锌技术》", 30 November 2021, 北京:冶金工业出版社, pages: 38 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114972276A (en) * | 2022-06-05 | 2022-08-30 | 长沙烽铭智能科技有限公司 | Automatic driving distance judgment algorithm for vehicle |
CN114972276B (en) * | 2022-06-05 | 2025-01-21 | 长沙烽铭智能科技有限公司 | An algorithm for determining distance of vehicle autonomous driving |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109003279B (en) | Fundus retina blood vessel segmentation method and system based on K-Means clustering labeling and naive Bayes model | |
CN108520225B (en) | A Fingerprint Detection and Classification Method Based on Spatial Transform Convolutional Neural Network | |
CN110837768B (en) | An online detection and identification method for rare animal protection | |
CN106897673B (en) | A Pedestrian Re-identification Method Based on Retinex Algorithm and Convolutional Neural Network | |
CN109102004A (en) | Cotton-plant pest-insects method for identifying and classifying and device | |
CN107679509B (en) | A kind of cyanobacteria identification method and device | |
CN107194937A (en) | Tongue image partition method under a kind of open environment | |
CN105844285A (en) | Cucumber disease identification method and apparatus based on image information | |
CN110555382A (en) | Finger vein identification method based on deep learning and Wasserstein distance measurement | |
CN109461163B (en) | Edge detection method for magnetic resonance standard water model | |
CN111027570B (en) | Image multi-scale feature extraction method based on cellular neural network | |
CN108537751B (en) | Thyroid ultrasound image automatic segmentation method based on radial basis function neural network | |
CN107944399A (en) | A kind of pedestrian's recognition methods again based on convolutional neural networks target's center model | |
CN111127387B (en) | Quality evaluation method for reference-free image | |
CN111815640B (en) | Memristor-based RBF neural network medical image segmentation algorithm | |
CN110766016B (en) | Code-spraying character recognition method based on probabilistic neural network | |
CN104794440B (en) | A kind of false fingerprint detection method based on the multiple dimensioned LBP of more piecemeals | |
CN101334834A (en) | A Bottom-Up Attention Information Extraction Method | |
CN117593540A (en) | Pressure injury staged identification method based on intelligent image identification technology | |
CN113283371A (en) | Local discharge feature extraction and classification method based on BRISK features | |
CN109191436A (en) | The low-dose CT Lung neoplasm detection algorithm of view-based access control model conspicuousness spectrum residual error method | |
CN116524269A (en) | Visual recognition detection system | |
CN114863189B (en) | Intelligent image identification method based on big data | |
CN114565525A (en) | A method for identifying tree species based on leaf pictures | |
CN114998274A (en) | Object positioning method, apparatus, electronic device and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |