CN114565051A - 基于神经元影响程度的产品分类模型的测试方法 - Google Patents

基于神经元影响程度的产品分类模型的测试方法 Download PDF

Info

Publication number
CN114565051A
CN114565051A CN202210204470.4A CN202210204470A CN114565051A CN 114565051 A CN114565051 A CN 114565051A CN 202210204470 A CN202210204470 A CN 202210204470A CN 114565051 A CN114565051 A CN 114565051A
Authority
CN
China
Prior art keywords
classification model
product classification
neurons
neuron
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210204470.4A
Other languages
English (en)
Other versions
CN114565051B (zh
Inventor
刘祥
张英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuyao City Yisheng Metal Products Co Ltd
Original Assignee
Yuyao City Yisheng Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuyao City Yisheng Metal Products Co Ltd filed Critical Yuyao City Yisheng Metal Products Co Ltd
Priority to CN202210204470.4A priority Critical patent/CN114565051B/zh
Publication of CN114565051A publication Critical patent/CN114565051A/zh
Application granted granted Critical
Publication of CN114565051B publication Critical patent/CN114565051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于神经元影响程度的产品分类模型的测试方法,通过计算神经元重要性,增强后段神经元,削弱前段神经元,以生成更多使产品分类模型错误分类的多样化与产品相关的测试样本图像,提前发现产品分类模型中运行过程中可能存在的异常情况。此外,利用生成的测试样本图像对产品分类模型进行重新训练,可以修复其中的漏洞,使对产品分类模型在在残次品检验判定的过程中更加安全可靠。

Description

基于神经元影响程度的产品分类模型的测试方法
技术领域
本发明属于智能车间的产品分类领域,具体涉及一种基于神经元影响程度的产品分类模型的测试方法。
背景技术
近年来,数据量爆发式增长、计算能力显著性提升、深度学习算法突破性应用,极大地推动了人工智能发展。然而,深度神经网络(Deep Neural Networks,DNNs)潜在的安全问题也给智能驱动的数字世界带来了极大的安全隐患。DNNs在面对不确定输入时,往往会出现意料之外的错误行为,在诸如自动驾驶系统、机器翻译和医疗等安全关键应用,可能会造成灾难性的后果,阻碍深度模型的实际部署。因此,深度神经网络的可靠性问题引起了学术界和工业界的广泛关注。
在工业场景的智能车间中,深度神经网络被构建成产品分类模型,用于对智能车间的生产产品进行残次品的识别和判定。为了避免在分类过程中出现异常判断,需要在对产品分类模型部署之前,对其进行安全性评估和测试。如何全面且高效地对深度产品分类模型进行测试,实现极端情况的评估和监督,进一步提高产品分类模型应用的可靠性,成为安全可靠人工智能研究中的一个关键问题。
目前面向深度学习模型的测试方法可以分为白盒测试与黑盒测试。白盒测试从模型内部结构出发,使得模型展现出更活跃的多样性;黑盒测试不考虑模型内部结构,通过有限次尝试实现模型的全覆盖。白盒反馈指导测试方法DeepHunter利用传统软件测试中模糊测试的方法,利用突变生成测试样本,并以多种覆盖率反馈为指导生成变异样本。Pei等人提出了DeepXplore用于系统地查找可以触发多个模型之间不一致的输入,加快了测试。DeepRoad使用输入图像进行场景变换,并在两个自动驾驶场景(即下雪和下雨)中显示其测试的高效性。模型的黑盒测试同样重要,Wicker等人提出一种尺度不变的特征变换特征引导黑盒测试方法,使用蒙特卡洛树搜索的方式来获取测试样本。DeepMutation是一种不观察模型的运行时内部行为的突变黑盒测试,通过定义一组源级或模型级变异算子,从源级(训练数据和训练程序)或模型级(无需训练直接注入)注入故障用来以评估测试数据质量。
尽管现有测试方法能达到较好的效果,但它们仍面临以下挑战:测试样本无法涵盖多种不同类别的极端案例。因此亟需一种面向产品分类模型的测试方法,能够在早期阶段对模型进行可靠性且全面评估和潜在缺陷的检测,降低模型在运行过程中发生错误的概率,以提高产品分类模型的可靠性。
发明内容
鉴于上述,本发明的目的是提供一种基于神经元影响程度的产品分类模型的测试方法,能发现更多产品分类模型中的潜在缺陷,实现对产品分类模型的安全测试评估。
为实现上述发明目的,实施例提供以下技术方案:
一种基于神经元影响程度的产品分类模型的测试方法,包括以下步骤:
步骤1,获取待测试的产品分类模型和正常产品图像;
步骤2,将正常产品图像输入至产品分类模型,以计算关注网络层的所有神经元的影响程度;
步骤3,依据影响程度将关注网络层的所有神经元划分为前段神经元、中段神经元、以及后端神经元;
步骤4,根据选定的前段神经元和后段神经元构建适应度函数,并依据适应度函数生成扰动,依据扰动生成中间样本图像;
步骤5,将中间样本图像作为正常产品图像后,迭代循环步骤2-步骤4,直到达到迭代终止条件为止,将迭代终止时得到的中间样本图像作为测试样本图像;
步骤6,利用测试样本图像对产品分类模型进行测试,根据产品分类模型的输出结果判断产品分类模型的缺陷情况。
一个实施例中,产品分类模型包括卷积层、Flatten层、池化层、全连接层以及激活层,选择处于卷积层和全连接层中间的Flatten层或池化层作为关注网络层。
一个实施例的步骤2中,采用以下公式计算关注网络层的所有神经元的影响程度σn
Figure BDA0003530885180000031
其中,n为神经元的索引,
Figure BDA0003530885180000032
表示第n个神经元对输入图像x的计算输出,yc表示产品分类模型对于输入图像x关于预测类标c的置信度,
Figure BDA0003530885180000033
表示求偏导,影响程度σn越大,表示神经元对分类标签的贡献越大。
一个实施例的步骤3中,将关注网络层的所有神经元的影响程度降序排列后,选择前a%的神经元为前段神经元,中间b%的神经元为中段神经元,后c%的神经元为后段神经元,其中,a+b+c=100,且a<b<c。
一个实施例的步骤4中,根据选定的前段神经元和后段神经元构建适应度函数lossx为:
Figure BDA0003530885180000041
其中,i为前段神经元的索引,j为后段神经元的索引,k1和k2分别为选定的参与计算适应度函数的前段神经元个数和后段神经元个数,φi(x)和φj(x)分别表示第i个前段神经元和第j个后段神经元对输入图像x的计算输出。
一个实施例的步骤4中,将对适应度函数的求导作为扰动,并将扰动添加到输入的正常产品图像以生成中间样本图像。
一个实施例的步骤5中,迭代终止条件为达到预设最大迭代次数或扰动大于预设阈值。
一个实施例中,利用测试样本图像对产品分类模型进行测试时,根据产品分类模型的输出结果进行如下判断:当产品分类模型的错误分类占比小于设定阈值时,则改变迭代终止条件、增大选定的前段神经元和后段神经元的个数,重新执行步骤2-步骤4,生成更多的测试样本图像,利用新生成的测试样本图像再进行产品分类模型的测试。
一个实施例中,所述方法还包括:步骤7,将测试样本图像和原正常产品图像对产品分类模型进行重新训练,以对产品分类模型进行修复,得到修复后的产品分类模型。
与现有技术相比,本发明具有的有益效果至少包括:
通过计算神经元重要性,增强后段神经元,削弱前段神经元,以生成更多使产品分类模型错误分类的多样化与产品相关的测试样本图像,提前发现产品分类模型中运行过程中可能存在的异常情况。此外,利用生成的测试样本图像对产品分类模型进行重新训练,可以修复其中的漏洞,使对产品分类模型在在残次品检验判定的过程中更加安全可靠。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动前提下,还可以根据这些附图获得其他附图。
图1是实施例提供的基于神经元影响程度的产品分类模型的测试方法的流程图;
图2实施例提供的基于神经元影响程度的产品分类模型的测试方法的框图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
图1是实施例提供的基于神经元影响程度的产品分类模型的测试方法的流程图;图2实施例提供的基于神经元影响程度的产品分类模型的测试方法的框图。如图1和图2所示,实施例提供的基于神经元影响程度的产品分类模型的测试方法,包括以下步骤:
步骤1,获取待测试的产品分类模型和正常产品图像。
实施例中,从窗帘智能车间采集窗帘图像作为正常产品图像。该正常产品图像用来验证产品分类模型并生成测试样本图像。
实施例中,待测试的产品分类模型是用于对产品图像进行缺陷检测,即残次品检验,且经过窗帘图像训练,参数以优化好。产品分类模型采用深度学习网络,具体可以包括卷积层、Flatten层、池化层、全连接层以及激活层,激活层一般使用softmax函数,最后输出预测置信度。需要说明的是,深度学习网络中,卷积层、Flatten层、池化层、全连接层的个数不受限制。
步骤2,将正常产品图像输入至产品分类模型,以计算关注网络层的所有神经元的影响程度。
实施例中,通过产品分类模型对正常产品图像的正向推导过程来计算关注网络层的所有神经元的影响程度。其中,选择处于卷积层和全连接层中间的Flatten层或池化层作为关注网络层,关注网络层内神经元包含了像素特征和高维分类特征,对模型判断结果非常重要,因此,计算关注网络层的神经元的影响程度。具体地,计算过程为:
将正常产品图像输入至产品分类模型中,定义N={n1,n2,…}是关注网络层中的神经元集合,
Figure BDA0003530885180000061
表示第n个神经元的计算输出。对于输入图像x,神经元影响程度σn定义为:
Figure BDA0003530885180000062
其中,yc表示产品分类模型对于输入图像x关于预测类标c的置信度,
Figure BDA0003530885180000063
表示求偏导,神经元影响程度衡量了神经元对下一层的影响大小,影响程度σn越大,表示神经元对分类标签的贡献越大。
步骤3,依据影响程度将关注网络层的所有神经元划分为前段神经元、中段神经元、以及后端神经元。
实施例中,在对所有神经元进行阶段划分时,将关注网络层的所有神经元的影响程度降序排列后,选择前a%的神经元为前段神经元,用Ωf表示;中间b%的神经元为中段神经元,用Ωm表示;后c%的神经元为后段神经元,用Ωt表示;其中,a+b+c=100,且a<b<c。优选地,a取值为10,b取值为30,c取值为60。
步骤4,根据选定的前段神经元和后段神经元构建适应度函数,并依据适应度函数生成扰动,依据扰动生成中间样本图像。
实施例中,采用模糊测试方式生成测试样。模糊测试通过多种策略随机生成大量测试样本来进行多次测试,以观察模型是否出现误分类,由此发现模型中可能存在的漏洞。这些策略可以基于变异、搜索和组合测试。
实施例中,构建适应度函数前,先选定参数构建适应度函数的前段神经元和的后段神经元,具体包括:对于给定输入图像x和同一层上的神经元n1和n2,若σn1>σn2,则神经元n1比神经元n2的重要程度更高,将top-k表示给定输入图像x在l层中重要程度最大的k个神经元,通过自定义参与适应度函数的前段神经元个数k1和后段神经元个数k2,可以确定参与适应度函数的前段神经元和后段神经元。优选地,k1=k2
实施例中,根据选定的前段神经元和后段神经元构建适应度函数lossx为:
Figure BDA0003530885180000071
其中,i为前段神经元的索引,j为后段神经元的索引,φi(x)和φj(x)分别表示Ωf中第i个前段神经元和Ωt中第j个后段神经元对输入图像x的计算输出。该适应度函数中,由于对前段神经元的求和前面为负号,对后段神经元的求和前面为正号,这样即强化了后段神经元,削弱了前段神经元,容易导致产品分类模型出现错误分类。
实施例中,以将对适应度函数的求导作为扰动ρx,并将扰动ρx添加到输入的正常产品图像以生成中间样本图像x’,具体计算公式为:
Figure BDA0003530885180000081
x′=x+ρx×μ
其中,μ为[0,1]区间内的常数,控制扰动的大小,一般设置为0.5。再者,中间样本图像的像素值被限制在0到255之间。
步骤5,将中间样本图像作为正常产品图像后,迭代循环步骤2-步骤4,直到达到迭代终止条件为止,将迭代终止时得到的中间样本图像作为测试样本图像。
实施例中,为了生成多样化和产品相关的测试样本图像,采用迭代循环的方式,即将中间样本图像作为正常产品图像后,迭代循环步骤2-步骤4,直到达到迭代终止条件为止,迭代停止的判断条件为:当前迭代数iter>最大迭代数iter_max,或扰动大小超过阈值,即|x′i-xi|>λ,其中xi表示X中的第i张样本,|·|表示l2范数,λ表示先前设定的阈值,一般为小于0.02的常数。迭代结束时得到中间样本图像即为测试样本图像。
步骤6,利用测试样本图像对产品分类模型进行测试,根据产品分类模型的输出结果判断产品分类模型的缺陷情况。
实施例中,利用测试样本图像对产品分类模型进行测试时,判断产品分类模型的输出结果的正确分类和错误分类的占比,以判断产品分类模型的缺陷情况。当错误分类占比比较少时,认为缺陷比较少。
实施例中,利用测试样本图像对产品分类模型进行测试时,根据产品分类模型的输出结果进行如下判断:当产品分类模型的错误分类占比小于设定阈值时,则改变迭代终止条件,如增加最大迭代数iter_max,或/和增大选定的前段神经元和后段神经元的个数k1和k2,重新执行步骤2-步骤4,生成更多的测试样本图像,利用新生成的测试样本图像再进行产品分类模型的测试。
步骤7,将测试样本图像和原正常产品图像对产品分类模型进行重新训练,以对产品分类模型进行修复,得到修复后的产品分类模型。
实施例中,在测试产品分类模型有缺陷时,利用测试样本图像对缺陷进行修复训练,以得到修复后的产品分类模型。
上述实施例提供的基于神经元影响程度的产品分类模型的测试方法,通过计算不同神经元对于模型预测结果的影响程度划分神经元的前中后段,削弱前段神经元,增强后段神经元,基于梯度和模糊测试生成多样化的测试样本,以触发更多极端案例,提前发现模型中的潜在缺陷。再利用生成的测试样本对模型进行重新训练,可以修复其中的漏洞,且不影响正常样本的分类准确率,使产品分类模型在应用时更加安全可靠。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于神经元影响程度的产品分类模型的测试方法,其特征在于,包括以下步骤:
步骤1,获取待测试的产品分类模型和正常产品图像;
步骤2,将正常产品图像输入至产品分类模型,以计算关注网络层的所有神经元的影响程度;
步骤3,依据影响程度将关注网络层的所有神经元划分为前段神经元、中段神经元、以及后端神经元;
步骤4,根据选定的前段神经元和后段神经元构建适应度函数,并依据适应度函数生成扰动,依据扰动生成中间样本图像;
步骤5,将中间样本图像作为正常产品图像后,迭代循环步骤2-步骤4,直到达到迭代终止条件为止,将迭代终止时得到的中间样本图像作为测试样本图像;
步骤6,利用测试样本图像对产品分类模型进行测试,根据产品分类模型的输出结果判断产品分类模型的缺陷情况。
2.根据权利要求1所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,产品分类模型包括卷积层、Flatten层、池化层、全连接层以及激活层,选择处于卷积层和全连接层中间的Flatten层或池化层作为关注网络层。
3.根据权利要求1或2所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,步骤2中,采用以下公式计算关注网络层的所有神经元的影响程度σn
Figure FDA0003530885170000021
其中,n为神经元的索引,
Figure FDA0003530885170000022
表示第n个神经元对输入图像x的计算输出,yc表示产品分类模型对于输入图像x关于预测类标c的置信度,
Figure FDA0003530885170000023
表示求偏导,影响程度σn越大,表示神经元对分类标签的贡献越大。
4.根据权利要求1所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,步骤3中,将关注网络层的所有神经元的影响程度降序排列后,选择前a%的神经元为前段神经元,中间b%的神经元为中段神经元,后c%的神经元为后段神经元,其中,a+b+c=100,且a<b<c。
5.根据权利要求1所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,步骤4中,根据选定的前段神经元和后段神经元构建适应度函数lossx为:
Figure FDA0003530885170000024
其中,i为前段神经元的索引,j为后段神经元的索引,k1和k2分别为选定的参与计算适应度函数的前段神经元个数和后段神经元个数,φi(x)和φj(x)分别表示第i个前段神经元和第j个后段神经元对输入图像x的计算输出。
6.根据权利要求1或5所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,步骤4中,将对适应度函数的求导作为扰动,并将扰动添加到输入的正常产品图像以生成中间样本图像。
7.根据权利要求1所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,步骤5中,迭代终止条件为达到预设最大迭代次数或扰动大于预设阈值。
8.根据权利要求1或5所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,利用测试样本图像对产品分类模型进行测试时,根据产品分类模型的输出结果进行如下判断:当产品分类模型的错误分类占比小于设定阈值时,则改变迭代终止条件、增大选定的前段神经元和后段神经元的个数,重新执行步骤2-步骤4,生成更多的测试样本图像,利用新生成的测试样本图像再进行产品分类模型的测试。
9.根据权利要求1或8所述的基于神经元影响程度的产品分类模型的测试方法,其特征在于,还包括:
步骤7,将测试样本图像和原正常产品图像对产品分类模型进行重新训练,以对产品分类模型进行修复,得到修复后的产品分类模型。
CN202210204470.4A 2022-03-03 2022-03-03 基于神经元影响程度的产品分类模型的测试方法 Active CN114565051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210204470.4A CN114565051B (zh) 2022-03-03 2022-03-03 基于神经元影响程度的产品分类模型的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210204470.4A CN114565051B (zh) 2022-03-03 2022-03-03 基于神经元影响程度的产品分类模型的测试方法

Publications (2)

Publication Number Publication Date
CN114565051A true CN114565051A (zh) 2022-05-31
CN114565051B CN114565051B (zh) 2024-05-24

Family

ID=81717128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210204470.4A Active CN114565051B (zh) 2022-03-03 2022-03-03 基于神经元影响程度的产品分类模型的测试方法

Country Status (1)

Country Link
CN (1) CN114565051B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115374898A (zh) * 2022-08-02 2022-11-22 清华大学 神经网络测试方法、装置、设备及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109190379A (zh) * 2018-08-03 2019-01-11 清华大学 一种深度学习系统的漏洞检测方法和装置
CN110135558A (zh) * 2019-04-22 2019-08-16 南京邮电大学 基于可变强度组合测试的深度神经网络测试充分性方法
CN111428818A (zh) * 2020-04-22 2020-07-17 浙江工业大学 基于神经通路激活状态的深度学习模型测试方法与装置
CN111753985A (zh) * 2020-06-28 2020-10-09 浙江工业大学 基于神经元覆盖率的图像深度学习模型测试方法与装置
US20210067549A1 (en) * 2019-08-29 2021-03-04 Nec Laboratories America, Inc. Anomaly detection with graph adversarial training in computer systems
CN113076980A (zh) * 2021-03-24 2021-07-06 中山大学 一种基于注意力增强以及输入扰动的分布外图像检测方法
CN113297572A (zh) * 2021-06-03 2021-08-24 浙江工业大学 基于神经元激活模式的深度学习样本级对抗攻击防御方法及其装置
CN113361709A (zh) * 2021-06-08 2021-09-07 北京信息科技大学 基于变异的深度神经网络模型修复方法
US20210357729A1 (en) * 2018-09-27 2021-11-18 Carnegie Mellon University System and method for explaining the behavior of neural networks
CN113762335A (zh) * 2021-07-27 2021-12-07 北京交通大学 一种基于不确定性的智能系统测试数据生成方法
US20220053005A1 (en) * 2020-08-17 2022-02-17 International Business Machines Corporation Detecting trojan neural networks

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109190379A (zh) * 2018-08-03 2019-01-11 清华大学 一种深度学习系统的漏洞检测方法和装置
US20210357729A1 (en) * 2018-09-27 2021-11-18 Carnegie Mellon University System and method for explaining the behavior of neural networks
CN110135558A (zh) * 2019-04-22 2019-08-16 南京邮电大学 基于可变强度组合测试的深度神经网络测试充分性方法
US20210067549A1 (en) * 2019-08-29 2021-03-04 Nec Laboratories America, Inc. Anomaly detection with graph adversarial training in computer systems
CN111428818A (zh) * 2020-04-22 2020-07-17 浙江工业大学 基于神经通路激活状态的深度学习模型测试方法与装置
CN111753985A (zh) * 2020-06-28 2020-10-09 浙江工业大学 基于神经元覆盖率的图像深度学习模型测试方法与装置
US20220053005A1 (en) * 2020-08-17 2022-02-17 International Business Machines Corporation Detecting trojan neural networks
CN113076980A (zh) * 2021-03-24 2021-07-06 中山大学 一种基于注意力增强以及输入扰动的分布外图像检测方法
CN113297572A (zh) * 2021-06-03 2021-08-24 浙江工业大学 基于神经元激活模式的深度学习样本级对抗攻击防御方法及其装置
CN113361709A (zh) * 2021-06-08 2021-09-07 北京信息科技大学 基于变异的深度神经网络模型修复方法
CN113762335A (zh) * 2021-07-27 2021-12-07 北京交通大学 一种基于不确定性的智能系统测试数据生成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANMIN GUO等: "DLFuzz-Differential Fuzzing Testing of Deep Learning Systems", ARXIV:1808.09413, 28 August 2018 (2018-08-28), pages 3 - 4 *
王赞;闫明;刘爽;陈俊洁;张栋迪;吴卓;陈翔;: "深度神经网络测试研究综述", 软件学报, no. 05, 15 May 2020 (2020-05-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115374898A (zh) * 2022-08-02 2022-11-22 清华大学 神经网络测试方法、装置、设备及存储介质
CN115374898B (zh) * 2022-08-02 2023-04-25 清华大学 神经网络测试方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114565051B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
CN109800875A (zh) 基于粒子群优化和降噪稀疏编码机的化工故障检测方法
CN106251059B (zh) 一种基于概率神经网络算法的电缆状态评估方法
Yin et al. Wasserstein Generative Adversarial Network and Convolutional Neural Network (WG‐CNN) for Bearing Fault Diagnosis
CN109978079A (zh) 一种改进的堆栈降噪自编码器的数据清洗方法
CN108647707B (zh) 概率神经网络创建方法、故障诊断方法及装置、存储介质
CN113486078A (zh) 一种分布式配电网运行监控方法及系统
CN109813542A (zh) 基于生成式对抗网络的空气处理机组的故障诊断方法
CN110851654A (zh) 基于张量化数据降维的工业设备故障检测分类方法
CN111310722A (zh) 一种基于改进神经网络的电力设备图像的故障识别方法
CN111079348B (zh) 一种缓变信号检测方法和装置
CN114565051B (zh) 基于神经元影响程度的产品分类模型的测试方法
CN117273440A (zh) 基于深度学习的工程施工物联网监测管理系统及方法
US11373285B2 (en) Image generation device, image generation method, and image generation program
CN115878992A (zh) 综合管廊供电系统的监控方法和监控系统
CN117421571A (zh) 一种基于配电网的拓扑实时辨识方法及系统
CN113343123A (zh) 一种生成对抗多关系图网络的训练方法和检测方法
CN113033898A (zh) 基于k均值聚类与bi-lstm神经网络的电负荷预测方法及系统
CN117669656A (zh) 基于TCN-Semi PN的直流微电网稳定性实时监测方法及装置
CN116302088B (zh) 一种代码克隆检测方法、存储介质及设备
CN116935128A (zh) 一种基于可学习提示的零样本异常图像检测方法
CN107229944B (zh) 基于认知信息粒子的半监督主动识别方法
CN113128130B (zh) 一种判断直流配电系统稳定性的实时监测方法及装置
CN112183745A (zh) 基于粒子群算法和dbn的高压电缆局部放电模式识别方法
Balaram et al. Software Fault Detection using Multi-Distinguished-Features Sampling with Ensemble Random Forest Classifier.
CN111310907A (zh) 一种微波组件故障诊断方法、装置及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant