CN114563283A - Test system and test method for simulating soft rock shear rheology through multi-field coupling - Google Patents
Test system and test method for simulating soft rock shear rheology through multi-field coupling Download PDFInfo
- Publication number
- CN114563283A CN114563283A CN202210141988.8A CN202210141988A CN114563283A CN 114563283 A CN114563283 A CN 114563283A CN 202210141988 A CN202210141988 A CN 202210141988A CN 114563283 A CN114563283 A CN 114563283A
- Authority
- CN
- China
- Prior art keywords
- soft rock
- box body
- pressure
- box
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 75
- 238000012360 testing method Methods 0.000 title claims abstract description 39
- 230000008878 coupling Effects 0.000 title claims abstract description 30
- 238000010168 coupling process Methods 0.000 title claims abstract description 30
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 30
- 238000000974 shear rheometry Methods 0.000 title claims abstract description 27
- 238000010998 test method Methods 0.000 title description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 139
- 238000010008 shearing Methods 0.000 claims abstract description 35
- 230000003068 static effect Effects 0.000 claims description 25
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 18
- 239000011259 mixed solution Substances 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 239000008213 purified water Substances 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 16
- 238000005755 formation reaction Methods 0.000 abstract description 16
- 238000005422 blasting Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 9
- 230000003204 osmotic effect Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 5
- 239000011229 interlayer Substances 0.000 description 14
- 230000035882 stress Effects 0.000 description 10
- 238000005065 mining Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明提供一种多场耦合模拟软岩剪切流变的试验系统,试验系统用于对软岩试样进行剪切试验,系统包括:上剪切盒、下剪切盒、水压力加载装置和机械压力加载装置,上剪切盒和下剪切盒构成一体结构的盒体,盒体内设置软岩试样;水压力加载装置与盒体连接,用于以预设值的水压力向盒体内输入预设PH值的溶液机械压力加载装置与盒体连接,用于对盒体施加预设值的物理压力并对软岩试样进行剪切。以探究软岩地层受到不同渗透压、不同剪切应力、不同爆破参数、不同化学溶液单独或共同作用下的流变效应、强度参数,进而为与本发明中通过多场耦合模拟软岩剪切流变的试验系统所模拟的地层环境相对应的真实地层探究提供有效可靠的试验参照。
The invention provides a multi-field coupling test system for simulating shear rheology of soft rock. The test system is used to perform shear test on soft rock samples. The system includes: an upper shear box, a lower shear box, and a water pressure loading device With the mechanical pressure loading device, the upper shear box and the lower shear box form a box body with an integrated structure, and the soft rock sample is set in the box body; the water pressure loading device is connected with the box body, and is used to press the box body with a preset water pressure. A solution mechanical pressure loading device inputting a preset pH value in the body is connected to the box body, and is used for applying a preset value physical pressure to the box body and shearing the soft rock sample. In order to explore the rheological effects and strength parameters of soft rock formations under different osmotic pressures, different shear stresses, different blasting parameters, and different chemical solutions alone or together, and then to simulate soft rock shearing through multi-field coupling in the present invention The real formation exploration corresponding to the formation environment simulated by the rheological test system provides an effective and reliable test reference.
Description
技术领域technical field
本发明属于岩土体剪切试验技术领域,特别涉及一种多场耦合模拟软岩剪切流变的试验系统及试验方法。The invention belongs to the technical field of shear test of rock and soil mass, and particularly relates to a test system and test method for simulating shear rheology of soft rock by multi-field coupling.
背景技术Background technique
我国西南地区广泛存在含软弱夹层的二叠系石灰岩地层,该地层拥有丰富的优质石灰石矿产资源,是我国大量基础设施建设的重要建材来源,使得软弱夹层的力学性质研究对于评价矿山边坡稳定性至关重要。研究表明,在降雨渗流、爆破开采等因素耦合作用下,受软弱夹层控制的边坡变形趋势呈现出典型的随时间逐渐增大的时效特性。因此,多场耦合下的软弱夹层流变特性研究对保障矿山安全开采具有重要的理论意义和工程实用价值。软弱夹层在初始地应力场下,经受雨水的长期劣化作用,抗剪强度被持续削弱,岩体的塑性和流变特性将发生显著变化;矿山开采中反复进行的爆破,将使软弱夹层损伤累积而力学性能劣化;同时软弱夹层受各种水化学环境如酸雨、被周围环境因素污染的地表水和地下水等的腐蚀破坏现象已越来越多,缓慢腐蚀作用的累积效应从物体表面结构改变深入到物体内部,可使岩体矿物成分、微观结构构造及力学性质发生变化,造成不良的工程效应;因此,在水-力-化学-爆破过程耦合(HMC-爆破振动)的反复、相互作用下,软弱夹层的流变效应显著改变,强度参数不断降低,边坡沿软弱夹层不断产生蠕变变形,当损伤和变形累计达到一定程度时,边坡将产生沿该软弱夹层的整体滑动变形破坏。为研究软弱夹层在实际工程中的流变效应,开展室内剪切流变试验研究是现阶段最简单有效的手段。目前,进行岩石常规剪切流变试验的方法已经非常成熟,但HMC-爆破振动耦合下的剪切流变试验还鲜有报道,更未见不同渗透压、不同剪切应力、不同爆破参数、不同化学溶液单独或共同作用下的岩石剪切流变效应的试验装置和试验方法。。Permian limestone strata with weak interlayers widely exist in southwestern my country. This stratum is rich in high-quality limestone mineral resources and is an important source of building materials for a large number of infrastructure constructions in my country. The mechanical properties of weak interlayers are important for evaluating the stability of mine slopes. critical. The research shows that under the coupling action of rainfall seepage, blasting mining and other factors, the slope deformation trend controlled by the weak interlayer presents a typical aging characteristic that gradually increases with time. Therefore, the research on the rheological properties of weak interlayers under multi-field coupling has important theoretical significance and engineering practical value for ensuring safe mining in mines. Under the initial in-situ stress field, the weak interlayer is subjected to the long-term deterioration of rain, and the shear strength is continuously weakened, and the plasticity and rheological properties of the rock mass will change significantly; repeated blasting in mining will cause the accumulation of damage to the weak interlayer. However, the mechanical properties are degraded; at the same time, the corrosion and damage of the weak interlayer by various hydrochemical environments such as acid rain, surface water and groundwater polluted by surrounding environmental factors have become more and more frequent, and the cumulative effect of slow corrosion has changed from the surface structure of the object. Into the object, the mineral composition, microstructure and mechanical properties of the rock mass can be changed, resulting in adverse engineering effects; , the rheological effect of the weak interlayer changes significantly, the strength parameters continue to decrease, and the slope continues to produce creep deformation along the weak interlayer. When the cumulative damage and deformation reach a certain level, the slope will produce overall sliding deformation failure along the weak interlayer. In order to study the rheological effect of weak interlayers in practical engineering, it is the simplest and most effective method to carry out indoor shear rheological experiments. At present, the method of conducting conventional shear rheological tests of rocks is very mature, but there are few reports on shear rheological tests under HMC-blasting vibration coupling, let alone different osmotic pressures, different shear stresses, different blasting parameters, Test device and test method for the shear-rheological effect of different chemical solutions alone or in combination. .
也即,对于软岩地层在受到多场耦合作用时,也即在受到水-力-化学-爆破过程耦合(HMC-爆破振动)的反复、相互作用下,软弱夹层的流变效应、强度参数等试验探究,现有技术仍然存在空白;That is, when the soft rock formation is subjected to multi-field coupling, that is, under the repeated and interaction of the coupling of water-mechanics-chemical-blasting process (HMC-blasting vibration), the rheological effect and strength parameters of the soft interlayer are There are still gaps in the existing technology, such as experimental exploration;
可见,对于软岩地层在受到不同渗透压、不同剪切应力、不同爆破参数、不同化学溶液单独或共同作用下的流变效应、强度参数的探究,进而为实际的软岩地层探究提供有效可靠的试验参照,是本领域技术人员亟需解决的技术问题。It can be seen that the exploration of rheological effects and strength parameters of soft rock formations under different osmotic pressures, different shear stresses, different blasting parameters, and different chemical solutions alone or together can provide effective and reliable research for actual soft rock formations. It is a technical problem that those skilled in the art need to solve urgently.
发明内容SUMMARY OF THE INVENTION
本发明提供的一种多场耦合模拟软岩剪切流变的试验系统,以至少解决上述技术问题;The present invention provides a multi-field coupling simulation test system for soft rock shear rheology, to at least solve the above technical problems;
为了解决上述问题,本发明的第一方面提供一种多场耦合模拟软岩剪切流变的试验系统,所述试验系统用于对软岩试样进行剪切试验,所述系统包括:上剪切盒;下剪切盒,所述上剪切盒和所述下剪切盒构成一体结构的盒体,所述盒体内设置所述软岩试样;机械压力加载装置,所述机械压力加载装置与所述盒体连接,用于对所述盒体施加预设值的物理压力;水压力加载装置,所述水压力加载装置与所述盒体连接,用于向所述盒体内输入不同压力以及不同PH值的溶液。In order to solve the above problems, a first aspect of the present invention provides a multi-field coupling test system for simulating shear rheology of soft rock, the test system is used to perform shear tests on soft rock samples, and the system includes: A shear box; a lower shear box, the upper shear box and the lower shear box constitute a box body with an integrated structure, and the soft rock sample is set in the box body; a mechanical pressure loading device, the mechanical pressure A loading device is connected to the box body for applying a preset physical pressure to the box body; a water pressure loading device is connected to the box body for inputting input into the box body Solutions of different pressures and different pH values.
在第一方面中,所述机械压力加载装置包括法相静载压力器、水平动载压力器和水平静载压力器;所述法相静载压力器设置在所述上剪切盒的顶部中心处,用于向所述上剪切盒施加垂向压力;所述水平动载压力器设置在所述盒体的一侧,用于向所述盒体施加周期性震动压力;所述水平静载压力器设置在所述盒体的另一侧,且作用于所述下剪切盒,用于向所述下剪切盒施加恒定的水平推力。In the first aspect, the mechanical pressure loading device includes a normal phase static load pressure device, a horizontal dynamic load pressure device and a horizontal static load pressure device; the normal phase static load pressure device is provided at the top center of the upper shear box , used to apply vertical pressure to the upper shear box; the horizontal dynamic load pressure device is arranged on one side of the box body to apply periodic vibration pressure to the box body; the horizontal static load The pressure device is arranged on the other side of the box body, and acts on the lower shear box for applying a constant horizontal thrust to the lower shear box.
在第一方面中,所述系统还包括:中间压力器,所述中间压力器设置在所述法相压力传感器与所述盒体之间,并连通于所述盒体内;所述水压力加载装置还包括:第一水箱,所述第一水箱内装有纯净水;第二水箱,所述第二水箱内设置有调节溶液;第三水箱,所述第三水箱内设置有PH测试仪;其中,所述第一水箱和所述第二水箱均与所述第三水箱相连通,并用于向所述第三水箱输入预设量的所述纯净水或预设量的所述调节溶液,以形成预设PH值的混合溶液;橡胶软管,所述橡胶软管连通所述第三水箱和所述中间压力器,以将所述混合溶液通过所述中间压力器输入至所述盒体内。In the first aspect, the system further includes: an intermediate pressure device, the intermediate pressure device is arranged between the normal phase pressure sensor and the box body, and communicates with the box body; the water pressure loading device It also includes: a first water tank, with pure water in the first water tank; a second water tank, with a conditioning solution in the second water tank; a third water tank, with a pH tester in the third water tank; wherein, Both the first water tank and the second water tank are communicated with the third water tank, and are used to input a preset amount of the pure water or a preset amount of the conditioning solution to the third water tank to form a A mixed solution with a preset pH value; a rubber hose, the rubber hose is connected to the third water tank and the intermediate pressure device, so that the mixed solution is input into the box through the intermediate pressure device.
在第一方面中,所述水压力加载装置包括:水泵,所述水泵设置在所述橡胶软管上;水泵控制器,所述水泵控制器与所述水泵连接,用于控制水泵的输出频率;水压传感器,所述水压传感器设置在所述橡胶软管上,用于检测流经所述橡胶软管内的所述混合溶液的压力,并将所述压力的信号传输至所述水泵控制器。In the first aspect, the water pressure loading device includes: a water pump, the water pump is arranged on the rubber hose; a water pump controller, the water pump controller is connected to the water pump, and is used for controlling the output frequency of the water pump ; Water pressure sensor, the water pressure sensor is arranged on the rubber hose, used to detect the pressure of the mixed solution flowing through the rubber hose, and transmit the signal of the pressure to the water pump controller.
在第一方面中,所述系统还包括:AD转换器,所述AD转换器与所述水压传感器以及所述水泵控制器连接,所述AD转换器用于接收水压传感器检测的水压信号,并将所述水压信号转换为电信号发送至所述水泵控制器。In the first aspect, the system further includes: an AD converter, the AD converter is connected to the water pressure sensor and the water pump controller, and the AD converter is configured to receive a water pressure signal detected by the water pressure sensor , and convert the water pressure signal into an electrical signal and send it to the water pump controller.
在第一方面中,所述系统还包括:空气压缩机,所述空气压缩机的出口也与所述橡胶软管连接,用于通过橡胶软管将空气输入至所述盒体内,对所述试样进行干燥。In the first aspect, the system further includes: an air compressor, the outlet of the air compressor is also connected to the rubber hose for inputting air into the box through the rubber hose, and the The sample is dried.
在第一方面中,所述系统还包括:支架,所述支架包括第一支撑面和第二支撑面,所述第二支撑面位于所述第一支撑面的上方;承载盒,所述承载盒设置在所述第一支撑面上,所述承载盒用于承载所述盒体;所述法向静载压力器设置在所述第二支撑面上,且所述法向静载压力器的输出端穿过所述第二支撑面与所述中间压力器接触。In a first aspect, the system further includes: a bracket, the bracket includes a first support surface and a second support surface, the second support surface is located above the first support surface; a carrying box, the carrying The box is arranged on the first support surface, and the carrying box is used to carry the box body; the normal static load pressure device is arranged on the second support surface, and the normal static load pressure device The output end of the contact with the intermediate pressure device through the second support surface.
在第一方面中,所述第一支撑面上设置有滑轨,且滑轨的长度超出所述第一支撑面和所述第二支撑面之间的覆盖范围,所述承载盒上设置有滑轮,所述滑轮可沿所述滑轨滑动。In the first aspect, a slide rail is provided on the first support surface, and the length of the slide rail exceeds the coverage range between the first support surface and the second support surface, and the carrier box is provided with a slide rail. A pulley is slidable along the slide rail.
在第一方面中,所述系统还包括:第一位移传感器,所述第一位移传感器设置在所述法向静载压力器上,用于检测所述盒体的法向位移;第二位移传感器,所述第二位移传感器设置在所述下盒体上,用于检测所述盒体的水平位移。In the first aspect, the system further includes: a first displacement sensor, the first displacement sensor is arranged on the normal static load pressure device, and is used for detecting the normal displacement of the box body; a second displacement A sensor, the second displacement sensor is arranged on the lower box body, and is used for detecting the horizontal displacement of the box body.
第二方面,本发明提供了一种模拟软岩剪切流变试验的方法,所述方法应用于上述任意一项所述的多场耦合模拟软岩剪切流变的试验系统,所述方法包括:制备软岩试样;所述制备软岩试样包括:依据软岩的实际物理参数,配置与所述软岩的实际物理参数相似的材料,以形成所述软岩试样;将所述软岩试样放置于剪切设备内;向所述剪切设备施加预设的机械震动压力以及向所述剪切设备施加预设水压力;所述向所述剪切设备施加预设的水压力包括:向所述剪切设备内按照预设压力值输入预设PH值的混合溶液;向所述剪切设备施加剪切力;记录所述剪切设备的法向位移和水平位移。In a second aspect, the present invention provides a method for simulating a soft rock shear rheology test. The method is applied to the multi-field coupling simulation soft rock shear rheology test system described in any one of the above, and the method The method includes: preparing a soft rock sample; the preparing a soft rock sample includes: configuring materials similar to the actual physical parameters of the soft rock to form the soft rock sample according to the actual physical parameters of the soft rock; The soft rock sample is placed in a shearing device; a preset mechanical shock pressure is applied to the shearing device and a preset water pressure is applied to the shearing device; the preset mechanical shock pressure is applied to the shearing device; The water pressure includes: inputting a mixed solution with a preset pH value into the shearing device according to a preset pressure value; applying a shearing force to the shearing device; recording the normal displacement and horizontal displacement of the shearing device.
有益效果:本发明提出了一种多场耦合模拟软岩剪切流变的试验系统,通过上剪切盒和下剪切盒形成的一体结构的盒体将软岩试样设置在内,在通过机械压力加载装置向盒体施加预设值的物理压力,以模拟地层不同程度的应力环境,以及通过水压力加载装置以预设值的水压力向盒体内输入预设PH值的溶液,以模拟地层内的渗透和水压环境。在上述应力、渗透和水压环境下对软岩试样进行剪切试验,以探究软岩地层受到不同渗透压、不同剪切应力、不同爆破参数、不同化学溶液单独或共同作用下的流变效应、强度参数,进而为与本发明中通过多场耦合模拟软岩剪切流变的试验系统所模拟的地层环境相对应的真实地层探究提供有效可靠的试验参照。也即,对多场耦合下的软弱夹层流变特性研究对保障矿山安全开采理论意义和工程实用价值提供实验参照。Beneficial effects: The present invention proposes a multi-field coupling test system for simulating shear rheology of soft rock. The soft rock sample is set in the box body with an integrated structure formed by the upper shear box and the lower shear box. The mechanical pressure loading device is used to apply a preset physical pressure to the box to simulate the stress environment of different degrees of the formation, and a solution with a preset pH value is input into the box through the hydraulic pressure loading device with a preset water pressure to Model the infiltration and hydraulic environment within the formation. Shear tests are carried out on soft rock samples under the above stress, permeability and water pressure environments to explore the rheology of soft rock formations under different osmotic pressures, different shear stresses, different blasting parameters, and different chemical solutions alone or in combination. effect and strength parameters, thereby providing an effective and reliable test reference for the real formation exploration corresponding to the formation environment simulated by the multi-field coupling simulation test system for soft rock shear rheology in the present invention. That is to say, the research on the rheological properties of weak interlayers under multi-field coupling provides an experimental reference for the theoretical significance and engineering practical value of ensuring safe mining in mines.
附图说明Description of drawings
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present specification or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例一中多场耦合模拟软岩剪切流变的试验系统的整体结构示意图;1 is a schematic diagram of the overall structure of a test system for multi-field coupling simulation of soft rock shear rheology in Embodiment 1 of the present invention;
图2为本发明实施例一中多场耦合模拟软岩剪切流变的试验系统的侧视图一;2 is a side view 1 of a test system for multi-field coupling simulation of soft rock shear rheology in Embodiment 1 of the present invention;
图3为本发明实施例一中多场耦合模拟软岩剪切流变的试验系统的侧视图二;3 is a second side view of the test system for multi-field coupling simulation of soft rock shear rheology in the first embodiment of the present invention;
图4为本发明实施例二中模拟软岩剪切流变试验的方法的流程框图。FIG. 4 is a flowchart of a method for simulating a soft rock shear rheological test in Embodiment 2 of the present invention.
附图标记说明:Description of reference numbers:
1、法向静载压力器;1. Normal static load pressure device;
2、支架;2. Bracket;
3、支撑柱;3. Support column;
4、水平动载压力器;4. Horizontal dynamic load pressure device;
5、第一位移传感器;5. The first displacement sensor;
6、压力器;6. Pressure device;
7、压力板;7. Pressure plate;
8、螺丝;8. Screws;
9、第二位移传感器;9. The second displacement sensor;
10、上剪切盒;10. Upper cut box;
11、下剪切盒;11. Lower shear box;
12、滚珠;12. Ball;
13、水平静载压力器;13. Horizontal static load pressure device;
14、承载盒;14. Carrying box;
15、滑轮;15. Pulley;
16、滑轨;16. Slide rail;
17、锁扣;17. Lock;
18、橡胶软管;18. Rubber hose;
19、空气压缩机;19. Air compressor;
20、水压传感器;20. Water pressure sensor;
21、AD转换器;21. AD converter;
22、水泵控制器;22. Water pump controller;
23、电压变频器;23. Voltage inverter;
24、水泵;24. Water pump;
25、水箱;25. Water tank;
26、PH测试仪;26. PH tester;
27、水阀;27. Water valve;
28支撑架。28 support frame.
具体实施方式Detailed ways
下面将结合附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by those of ordinary skill in the art based on the embodiments in the present invention fall within the protection scope of the present invention.
同时,本说明书实施例中,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本说明书实施例中所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明目的,并不是旨在限制本发明。Meanwhile, in the embodiments of this specification, when a component is referred to as being "fixed to" another component, it may be directly on the other component or there may also be a central component. When a component is considered to be "connected" to another component, it can be directly connected to the other component or there may be an intervening component at the same time. When a component is considered to be "set on" another component, it may be directly set on the other component or there may be a co-existing centered component. The terms "vertical", "horizontal", "left", "right" and similar expressions used in the embodiments of the present specification are only for the purpose of illustration and are not intended to limit the present invention.
实施例一:Example 1:
如图1-3所示,本实施例一提供了一种多场耦合模拟软岩剪切流变的试验系统,试验系统用于对软岩试样进行剪切试验,系统包括:As shown in Figures 1-3, the first embodiment provides a multi-field coupled test system for simulating shear rheology of soft rock. The test system is used to perform shear tests on soft rock samples. The system includes:
上剪切盒10、下剪切盒11、机械压力加载装置和水压力加载装置;
上剪切盒10和下剪切盒11构成一体结构的盒体,盒体内设置软岩试样;The
水压力加载装置与盒体连接,用于以预设值的水压力向盒体内输入预设PH值的溶液;The water pressure loading device is connected with the box body, and is used for inputting the solution of the preset pH value into the box body with the water pressure of the preset value;
机械压力加载装置与盒体连接,用于对盒体施加预设值的物理压力并对所述软岩试样进行剪切。The mechanical pressure loading device is connected with the box body, and is used for applying a preset physical pressure to the box body and shearing the soft rock sample.
在上述技术方案中,通过上剪切盒10和下剪切盒11形成的一体结构的盒体将软岩试样设置在内,在通过机械压力加载装置向盒体施加预设值的物理压力,以模拟地层不同程度的应力环境,以及通过水压力加载装置以预设值的水压力向盒体内输入预设PH值的溶液,以模拟地层内的渗透和水压环境。在上述应力、渗透和水压环境下对软岩试样进行剪切试验,以探究软岩地层受到不同渗透压、不同剪切应力、不同爆破参数、不同化学溶液单独或共同作用下的流变效应、强度参数,进而为与本发明中通过多场耦合模拟软岩剪切流变的试验系统所模拟的地层环境相对应的真实地层探究提供有效可靠的试验参照。也即,对多场耦合下的软弱夹层流变特性研究对保障矿山安全开采理论意义和工程实用价值提供实验参照。In the above technical solution, the soft rock sample is set in the box body with the integrated structure formed by the
具体来说,对于上述实施例一中的机械压力加载装置而言,本实施例一提出一种实施方式,该实施方式包括:法相静载压力器、水平动载压力器4和水平静载压力器13,具体地,法相静载压力器设置在上剪切盒10的顶部中心处,用于向上剪切盒10施加垂向压力;水平动载压力器4设置在盒体的一侧,用于向盒体施加周期性震动压力,用以模拟底层受到爆破时的震动应力,水平静载压力器13设置在盒体的另一侧,且作用于下剪切盒11,用于向下剪切盒11施加恒定的水平推力,以进行软岩试样的剪切。Specifically, for the mechanical pressure loading device in the above embodiment 1, this embodiment 1 proposes an implementation, which includes: a normal phase static load pressure device, a horizontal dynamic load pressure device 4 and a horizontal static load pressure device Specifically, the normal phase static load pressure device is arranged at the top center of the
具体来说,对于本发明实施例一中的系统而言,还包括中间压力器6,中间压力器6设置在法相压力传感器与盒体之间,并通过一压力板7设置在盒体上,且中间压力器6连通于盒体内;基于此,本实施例一还提出一种实施方式,该实施方式包括:第一水箱,第一水箱内装有纯净水;第二水箱,第二水箱内设置有调节溶液;第三水箱,第三水箱内设置有PH测试仪26;其中,第一水箱和第二水箱均与第三水箱相连通,并用于向第三水箱输入预设量的纯净水和预设量的调节溶液,以形成预设PH值的混合溶液;橡胶软管18,橡胶软管18连通第三水箱和中间压力器6,以将混合溶液通过中间压力器6输入至盒体内,以模拟复杂的地下水环境。同时,第一水箱、第二水箱和第三水箱通过一支撑架28支撑,且第一水箱和第二水箱的设置位置高于第三水箱,且第一水箱和第二水箱的出水口设置有水阀27,当水阀27打开后,第一水箱和第二水箱内的溶液通过重力流入至第三水箱内。Specifically, for the system in the first embodiment of the present invention, it also includes an intermediate pressure device 6, the intermediate pressure device 6 is arranged between the normal phase pressure sensor and the box body, and is arranged on the box body through a pressure plate 7, And the intermediate pressure device 6 is connected to the box body; based on this, the first embodiment also proposes an implementation, the implementation includes: a first water tank, the first water tank is filled with pure water; a second water tank, the second water tank is provided with There is a conditioning solution; the third water tank is provided with a
同时,为了使上述实施例一中的橡胶软管18输出预设的水压值,本实施例一还提出一种实施方式,该实施方式对水压力加载装置提出另一种实施方,该实施方式包括:水泵24、水泵控制器22和水压传感器,水泵24设置在橡胶软管18上;水泵控制器22与水泵24连接,用于控制水泵24的输出频率;水压传感器设置在橡胶软管18上,用于检测流经橡胶软管18内的混合溶液的压力,并将压力的信号传输至水泵控制器22。具体而言,水泵控制器22内还设置有编译码,能够根据工作人员编辑的预设压力数值进行对应的信号编译,以将预设压力数值的信号传输至水泵控制器22内的电压变频器23,该电压变频器23根据接收到的信号,进行电压频率转换,例如:若水压小于预设值,水泵控制器22会控制水泵24内的电压变频器23,使水泵24的输入电压变大,从而使得水泵24的功率变大,输出的水压也变大:若水压大于预设值,水泵控制器22会控制水泵24内的电压变频器23,使水泵24的输入电压变小,从而使得水泵24的功率变小,输出的水压也变小,从而精确控制渗透压。At the same time, in order to make the
进一步地,对于本发明实施例中的系统而言,本实施例一还提出一种实施方式,该实施方式包括:AD转换器21,AD转换器21与水压传感器以及水泵控制器22连接,AD转换器21用于接收水压传感器检测的水压信号,并将水压信号转换为电信号发送至水泵控制器22。这样就使得水压的控制更加精确,减小了实验误差。Further, for the system in the embodiment of the present invention, this embodiment 1 also proposes an implementation, the implementation includes: an
对于本发明实施例一的系统而言,本实施例一还提出一种实施方式,该实施方式还包括:空气压缩机19,空气压缩机19的出口也与橡胶软管18连接,用于通过橡胶软管18将空气输入至盒体内,对试样进行干燥。For the system of the first embodiment of the present invention, the first embodiment also proposes an implementation, which further includes: an
对于本发明实施例一的系统而言,本实施例一还提出一种实施方式,该实施方式还包括:支架2和承载盒14,支架2包括第一支撑面和第二支撑面,第二支撑面位于第一支撑面的上方;承载盒14设置在第一支撑面上,承载盒14用于承载盒14体;法向静载压力器1设置在第二支撑面上,且法向静载压力器1的输出端穿过第二支撑面与中间压力器6接触。For the system of the first embodiment of the present invention, the first embodiment also proposes an implementation, which further includes: a bracket 2 and a carrying
进一步地,对于上述实施例一中的支架2而言,本是实施例一还提出一种实施方式,该实施方式包括:第一支撑面上设置有滑轨15,且滑轨15的长度超出第一支撑面和第二支撑面之间的覆盖范围,承载盒14上设置有滑轮16,滑轮16可沿滑轨15滑动,这样就能更准确的使得盒体的中心对准法向静载压力器1和水平静载器,减少实验误差。Further, for the bracket 2 in the above-mentioned first embodiment, the first embodiment also proposes an implementation, the implementation includes: the first support surface is provided with a
本发明实施例一的系统而言,本实施例一还提出一种实施方式,该实施方式还包括:第一位移传感器5和第二位移传感器9,第一位移传感器5设置在法向静载压力器1上,用于检测盒体的法向位移;第二位移传感器9设置在下盒体上,用于检测盒体的水平位移。For the system of the first embodiment of the present invention, the first embodiment also proposes an implementation, which further includes: a
具体来说,对于上述实施例一中的盒体与承载盒14的连接方式而言,本实施例一还提出一种实施方式,该实施方式包括:盒体与承载盒14上有锁扣17,可以使得承载盒14移动的时候剪切盒跟着一起移动,到达合适位置后解除锁扣17,即可开始加压力。Specifically, for the connection method between the box body and the carrying
进一步地,对于上述实施例一中的盒体与承载盒14的连接方式而言,本实施例一又提出一种实施方式,该实施方式包括:在承载盒14与盒体的连接位置通过螺接的方式连接,也即通过螺孔和螺丝8的相互配合达到二者可拆卸的连接方式。Further, with regard to the connection method between the box body and the carrying
再进一步地,对于上述实施例一中的盒体与承载盒14的连接方式而言,本实施例一在提出一种实施方式,该实施方式包括:在承载盒14与下盒体之间布设有若干滚珠12。Still further, for the connection method between the box body and the
以及,为了使承载盒14与盒体在移动过程中不发生偏离,本实施例一还提出一种实施方式,该实施方式包括:在承载盒14上设置有锁扣17,以及在下盒体上设置有锁环,当需要对承载盒14和盒体进行移动时,将锁扣17扣设在锁环上,以临时对二者进行固定。And, in order to keep the
实施例二:Embodiment 2:
如图4所示,本实施例二提供了一种模拟软岩剪切流变试验的方法,方法应用于上述任意一项的多场耦合模拟软岩剪切流变的试验系统,方法包括:先制备软岩试样;制备软岩试样包括:依据软岩的实际物理参数,配置与软岩的实际物理参数相似的材料,以形成软岩试样;在将软岩试样放置于剪切设备内;然后向剪切设备施加预设的机械震动压力以及向剪切设备施加预设水压力;向剪切设备施加预设的水压力包括:向剪切设备内按照预设压力值输入预设PH值的混合溶液;在向剪切设备施加剪切力;最后记录剪切设备的法向位移和水平位移。As shown in Figure 4, the second embodiment provides a method for simulating a soft rock shear rheology test. The method is applied to any one of the above-mentioned multi-field coupling simulation soft rock shear rheology test systems, and the method includes: The soft rock sample is prepared first; the preparation of the soft rock sample includes: according to the actual physical parameters of the soft rock, configure materials similar to the actual physical parameters of the soft rock to form the soft rock sample; Then apply preset mechanical shock pressure to the shearing device and apply preset water pressure to the shearing device; applying the preset water pressure to the shearing device includes: inputting the preset pressure value into the shearing device Mixed solution with preset pH value; apply shear force to the shearing device; finally record the normal displacement and horizontal displacement of the shearing device.
进一步地,对于上述实施例二中向剪切设备内按照预设压力值输入预设PH值的混合溶液后,本实施例二还提出一种实施方式,该实施方式还包括:利用空气干燥设备,向盒体内的软岩试样注入空气,以对软岩试样进行干燥。Further, after the mixed solution with the preset pH value is input into the shearing device according to the preset pressure value in the second embodiment, the second embodiment also proposes an implementation, which further includes: using an air drying device. , inject air into the soft rock sample in the box to dry the soft rock sample.
由于该实施例二与实施例一为同一发明构思下的一个实施例,其部分结构完全相同,因此对实施例二中与实施例一实质相同的结构不在详细阐述,未详述部分请参阅实施例一即可。Since the second embodiment and the first embodiment are an embodiment under the same inventive concept, and their partial structures are completely the same, therefore, the substantially same structure in the second embodiment as that of the first embodiment will not be described in detail. Example one will do.
最后应说明的是:以上上述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。Finally, it should be noted that the above-mentioned embodiments are only specific implementations of the present invention, and are used to illustrate the technical solutions of the present invention, but not to limit them. The protection scope of the present invention is not limited thereto, although referring to the foregoing implementation The present invention has been described in detail by the examples, and those of ordinary skill in the art should understand that: any person skilled in the art can still modify or modify the technical solutions described in the foregoing embodiments within the technical scope disclosed by the present invention. Changes can be easily conceived, or equivalent replacements can be made to some of the technical features; and these modifications, changes or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention. All should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although the embodiment of the present invention has been disclosed as above, it is not limited to the application listed in the description and the embodiment, and it can be applied to various fields suitable for the present invention. For those skilled in the art, it can be easily Therefore, the invention is not limited to the specific details and illustrations shown and described herein without departing from the general concept defined by the appended claims and the scope of equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210141988.8A CN114563283B (en) | 2022-02-16 | 2022-02-16 | A test system and test method for multi-field coupling simulation of soft rock shear rheology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210141988.8A CN114563283B (en) | 2022-02-16 | 2022-02-16 | A test system and test method for multi-field coupling simulation of soft rock shear rheology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114563283A true CN114563283A (en) | 2022-05-31 |
CN114563283B CN114563283B (en) | 2024-11-26 |
Family
ID=81713993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210141988.8A Active CN114563283B (en) | 2022-02-16 | 2022-02-16 | A test system and test method for multi-field coupling simulation of soft rock shear rheology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114563283B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115078128A (en) * | 2022-06-29 | 2022-09-20 | 江河工程检验检测有限公司 | Test equipment and test method for simulating rock shear failure in real underwater environment |
CN116907995A (en) * | 2023-09-14 | 2023-10-20 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | A testing system and testing method for detecting multi-field coupling mechanical properties of mixed rock |
CN117250068A (en) * | 2023-11-20 | 2023-12-19 | 华侨大学 | Soft rock sample preparation equipment and sample preparation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106771072A (en) * | 2016-12-26 | 2017-05-31 | 大连理工大学 | Continue the Mineral rheology pilot system of water environment effect |
CN107063962A (en) * | 2016-12-16 | 2017-08-18 | 河海大学 | Rock couples infiltration experiment device and method |
US20190011344A1 (en) * | 2017-07-06 | 2019-01-10 | Inst Rock & Soil Mech Cas | Ring Shear and Seepage-Coupled Apparatus and Ring Shear and Seepage-Coupled Test System for Rock and Rock Fracture under Tension or Compression Stress |
CN110779811A (en) * | 2019-10-25 | 2020-02-11 | 武汉科技大学 | Rainfall seepage and blasting vibration coupling simulation soft rock shear rheology test system |
-
2022
- 2022-02-16 CN CN202210141988.8A patent/CN114563283B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107063962A (en) * | 2016-12-16 | 2017-08-18 | 河海大学 | Rock couples infiltration experiment device and method |
CN106771072A (en) * | 2016-12-26 | 2017-05-31 | 大连理工大学 | Continue the Mineral rheology pilot system of water environment effect |
US20190011344A1 (en) * | 2017-07-06 | 2019-01-10 | Inst Rock & Soil Mech Cas | Ring Shear and Seepage-Coupled Apparatus and Ring Shear and Seepage-Coupled Test System for Rock and Rock Fracture under Tension or Compression Stress |
CN110779811A (en) * | 2019-10-25 | 2020-02-11 | 武汉科技大学 | Rainfall seepage and blasting vibration coupling simulation soft rock shear rheology test system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115078128A (en) * | 2022-06-29 | 2022-09-20 | 江河工程检验检测有限公司 | Test equipment and test method for simulating rock shear failure in real underwater environment |
CN115078128B (en) * | 2022-06-29 | 2023-10-20 | 江河安澜工程咨询有限公司 | Rock shear failure test equipment and test method for simulating real underwater environment |
CN116907995A (en) * | 2023-09-14 | 2023-10-20 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | A testing system and testing method for detecting multi-field coupling mechanical properties of mixed rock |
CN116907995B (en) * | 2023-09-14 | 2023-12-05 | 中国铁道科学研究院集团有限公司铁道建筑研究所 | A testing system and testing method for detecting multi-field coupling mechanical properties of mixed rock |
CN117250068A (en) * | 2023-11-20 | 2023-12-19 | 华侨大学 | Soft rock sample preparation equipment and sample preparation method |
CN117250068B (en) * | 2023-11-20 | 2024-01-30 | 华侨大学 | Soft rock sample preparation equipment and sample preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114563283B (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114563283A (en) | Test system and test method for simulating soft rock shear rheology through multi-field coupling | |
CN114152510B (en) | Dynamic water grouting reinforcement model test device and test method for water-rich broken rock layer | |
WO2016141621A1 (en) | Integrated test system for true-triaxial flow pressure fracturing, slotting, leakage and gas expulsion | |
CN205483943U (en) | Experimental device for mud dipes stratum formation sludge -biofilm among simulation slurry shield | |
CN105334142B (en) | An experimental device for simulating the formation of shield mud film | |
CN107941658A (en) | A kind of inclined shaft grouting behind shaft or drift lining model test apparatus and test method | |
CN113935093B (en) | Design method for using amount of temporary plugging agent for steering fracturing based on shale geology-engineering parameters | |
CN111707805A (en) | A model test system and operation method for simulating excavation tunnel-like rock piles | |
CN110887775A (en) | A system and method for testing triaxial grout permeability of post-peak fractured rock | |
CN105865930B (en) | A kind of experimental rig realized in rock pore different stress paths and add off-load | |
CN106053239A (en) | Anchor system aging characteristic testing system and method based on reaction frame | |
CN110409400B (en) | A test device and test method for measuring the temporal and spatial evolution characteristics of mud turbidity | |
CN105181549A (en) | Test system and method for testing seepage and solidification time characteristic of grouting | |
CN106596290A (en) | Rock structural surface on-site hydraulic coupling direct shearing test structure device and construction method thereof | |
WO2023197821A1 (en) | Overlying strata damage partition and height determination method based on permeability-damage relationship | |
CN115343416A (en) | Coal seam post-mining flowing water grouting simulation device and test method | |
CN107167387A (en) | A kind of landslide slip rheological test instrument and landslide slip rheological test method | |
CN115165699B (en) | A device and method for multi-angle visual measurement of the seepage effect of magnetic mortar plugging rock fissures | |
CN205262912U (en) | Experimental device for it constructs sludge -biofilm formation to be used for simulating shield | |
CN112730055B (en) | A test device and method for simulating constant resistance soil anchor pulling in deep soil layer | |
Maloney et al. | Results of borehole breakout simulation tests | |
CN108571330A (en) | Method for treating leakage water of post-cast strip of subway bottom plate | |
CN113324899B (en) | An experimental device and method for measuring the friction properties of soil and conduit under high stress consolidation state | |
CN115855656A (en) | Mining filling maintenance environment analysis and test device and method | |
CN114183147B (en) | Tunnel environment simulation model and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |