CN114558417A - 一种稻田温室气体的减排方法 - Google Patents

一种稻田温室气体的减排方法 Download PDF

Info

Publication number
CN114558417A
CN114558417A CN202210151638.XA CN202210151638A CN114558417A CN 114558417 A CN114558417 A CN 114558417A CN 202210151638 A CN202210151638 A CN 202210151638A CN 114558417 A CN114558417 A CN 114558417A
Authority
CN
China
Prior art keywords
emission
ferrate
rice field
greenhouse gases
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210151638.XA
Other languages
English (en)
Other versions
CN114558417B (zh
Inventor
傅志强
周文涛
王泓睿
张雅兰
叶芷汐
徐莹
龙攀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Original Assignee
Hunan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University filed Critical Hunan Agricultural University
Priority to CN202210151638.XA priority Critical patent/CN114558417B/zh
Publication of CN114558417A publication Critical patent/CN114558417A/zh
Application granted granted Critical
Publication of CN114558417B publication Critical patent/CN114558417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2101/00Agricultural use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/22Methane [CH4], e.g. from rice paddies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Fertilizers (AREA)
  • Cultivation Of Plants (AREA)

Abstract

一种稻田温室气体的减排方法,将稻田减排材料施入稻田中使稻田减排材料和土壤混合均匀即可,其中,所述稻田减排材料为高铁酸盐改性生物炭。本发明以高铁酸盐改性生物炭作为稻田减排材料,高铁酸盐溶于水后会产生大量的氧原子,能够对稻田土壤中的甲烷厌氧菌等实现有效抑制,从而减少稻田甲烷、氧化亚氮等温室气体的排放;生物炭表面丰富的孔隙结构和多种官能团对温室气体有显著的吸附效果,两种材料混合有助于在稻田温室气体减排方面产生协同效应。

Description

一种稻田温室气体的减排方法
技术领域
本发明属于环境保护领域,尤其涉及一种稻田温室气体的减排方法。
背景技术
CH4和N2O分别作为全球第二、第三大温室气体,其增温潜势分别是CO2的34和298倍,农业生产是其最主要的排放源。稻田是CH4排放的重要来源,其排放占我国农业生产CH4总排放的17.83%,农业土壤N2O排放量占到全球人类活动引起的总N2O排放量的60%。因而,稻田温室气体减排的作用不容忽视。
发明内容
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种稻田温室气体的减排方法。
为解决上述技术问题,本发明提出的技术方案为:
一种稻田温室气体的减排方法,将稻田减排材料施入稻田中使稻田减排材料和土壤混合均匀即可,其中,所述稻田减排材料为高铁酸盐改性生物炭。
上述的稻田温室气体的减排方法,优选的,将稻田减排材料施入稻田中后,通过翻耕使稻田减排材料与0~20cm耕层土壤混合均匀。
上述的稻田温室气体的减排方法,优选的,每平方稻田施入1~6kg稻田减排材料。
上述的稻田温室气体的减排方法,优选的,所述稻田减排材料在水稻移栽前3~5天施入。
上述的稻田温室气体的减排方法,优选的,所述稻田温室气体包括甲烷和氧化亚氮中的至少一种。
上述的稻田温室气体的减排方法,优选的,所述高铁酸盐改性生物炭中,高铁酸盐附着在生物炭孔隙的内部和表面。
本发明以生物炭为载体,利用其丰富的孔隙结构和其中保留的氧、氮基官能团对稻田中温室气体进行有效吸附,同时能够迅速提升土壤碳、氮库的稳定性;此外负载在生物质炭表面的高铁酸盐,溶于水后能释放大量的原子氧,增加土壤中的氧气,抑制甲烷和氧化亚氮的生成,同时会迅速形成三价铁和氢氧化铁沉淀物,而三价铁作为甲烷氧化菌生化反应过程的末端电子受体,其量增加可以促进甲烷氧化菌的活性,减少甲烷的排放。
上述的稻田温室气体的减排方法,优选的,所述高铁酸盐改性生物炭是通过以下制备方法获得的:将生物炭、高铁酸盐混合并搅拌均匀,使高铁酸盐附着在生物炭孔隙的内部和表面,即得到稻田减排材料。
上述的稻田温室气体的减排方法,优选的,所述生物炭与高铁酸盐的质量比为(50~100):2。
上述的稻田温室气体的减排方法,优选的,所述高铁酸盐包括高铁酸钾、高铁酸钠、高铁酸钙中的至少一种。
与现有技术相比,本发明的优点在于:
(1)本发明以高铁酸盐改性生物炭作为稻田减排材料,高铁酸盐溶于水后会产生大量的氧原子,能够对稻田土壤中的甲烷厌氧菌等实现有效抑制,从而减少稻田甲烷、氧化亚氮等温室气体的排放;生物炭表面丰富的孔隙结构和多种官能团对温室气体有显著的吸附效果,两种材料混合有助于在稻田温室气体减排方面产生协同效应。
(2)本发明的稻田温室气体的减排方法的处理工艺简单。
附图说明
图1是不同处理在水稻整个生育期的甲烷累积排放量。
图2是不同处理在水稻整个生育期的氧化亚氮累积排放量。
图3是不同处理甲烷和氧化亚氮对全球增温趋势(GWP)的影响。
图4是不同处理对GHGI值影响。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例:
一、制备稻田减排材料高铁酸钠改性生物炭
将生物炭、高铁酸钠混合并搅拌均匀,使高铁酸钠充分附着在生物炭孔隙的内部和表面,其中,生物炭、高铁酸钠的质量比为100:2,即得到稻田减排材料。
二、实施方案
2.1试验地点
本试验在湖南省长沙市北山镇基地开展,东经112°56′15〞,北27°54′55〞。地处东亚季风区中,属于亚热带季风湿润气候,气候温和,热量丰富,降雨充沛,日照较足,四季分明。
2.2试验设计
生物炭施用为1000kg/亩,高铁酸钠施用比例设置为生物炭含量的2%,三次重复,共计4个处理,分别为:对照(CK)、施用生物炭(BC)、施用高铁酸钠(SFe)、施用高铁酸钠改性生物炭(BC+SFe)。
设置三次重复,共计12个小区。小区间用铺塑料薄膜的土埂隔开,单排单灌。随机区组排列,小区面积30m2,其中,CK不施入任何改性材料,BC组施入45kg生物炭,SFe组施入0.9kg高铁酸钠,BC+SFe组施入45.9Kg高铁酸钠改性生物炭(45kg生物炭与0.9kg高铁酸钠混合改性获得的),外设保护行。生物炭、高铁酸钠、高铁酸钠改性生物炭于水稻移栽之前,将其施入稻田,并用翻耕机翻入土壤耕层,使其与0-20cm耕层土壤混合均匀,稳定4天后,移栽水稻。田间管理一致,大田试验一季稻播种日期:4月5日,移栽规格为15cm×25cm,收获日期:9月20日。N、P2O5、K2O施肥量分别为120kg·ha-1、60kg·ha-1、120kg·ha-1
2.3温室气体采集与测定
稻田CH4、N2O排放通量采用静态暗箱-气相色谱法测定。采样箱箱体由聚乙烯材料制成,规格为直径0.38m,高0.50m,外面包裹保温膜,箱体顶部有一采样孔,连接采气三通阀,计算排放总量和排放均值,估算CH4、N2O排放量;重点比较排放高峰期的差异,考察品种的CH4、N2O排放能力。此外,箱体顶部安置小风扇以充分混合箱内气体,并且还安装了一个温度计用以测定箱内温度。水稻移栽后每7天采样一次,此外,采样的具体日期和频率视肥料的施用和降水适当调整。温室气体采样时间固定在上午9:00-11:00,采样时间分别为罩箱后的0、10、20、30min,每次抽取45mL气体样品。气体样品采用Agilent7890A气相色谱仪分析,标准气体由国家标准物质中心提供。气体排放率由4个气样浓度值经线性回归分析得出。数据处理稻田温室气体排放通量计算公式如下:
F=ρ·273/(273+T)·H·dC/dt(1)
式中:F为排放通量;ρ为标准大气压下的CH4、N2O密度,分别为0.714kg·m-3、1.98kg·m-3;T为采样过程中采样箱内的平均温度,℃;H是采样箱的箱罩的净高度,m;dC/dt是采样箱内温室气体浓度的变化率。
CH4、N2O累积排放量计算公式:
Figure BDA0003510750280000031
C是气体累积排放量(kg·ha-1),Fi和Fi+1为两个连续相邻采样时期的气体排放通量(mg·m-2·h-1),d是两个连续相邻采样时间所相隔的天数。
全球增温潜势(globalwarmingpotential,GWP)计算公式:
GWP=25(CH4)+298(N2O)(3)
式中:CH4和N2O排放折算为CO2当量,其系数分别为25和298。
温室气体排放强度(greenhousegasintensity,GHGI)计算公式:
GHGI=GWP/Y(4)
式中:GWP表示N2O和CH4综合增温潜势(kg CO2e·hm-2);Y表示该处理单位面积平均产量(kg·hm-2),是综合评价试验各处理温室效应的指标。
三、结果与分析
3.1稻田CH4排放
不同处理在水稻整个生育期的甲烷累积排放量介于153.01~400.95kg·ha-1,见图1所示。从图1能够看出,SFe组和BC+SFe组处理的甲烷累积排放量较低,分别较CK组低27%、51%。但与CK组相比,只添加生物炭的处理(BC组)具有增排效果,比CK组、SFe组、BC+SFe组高28%、75%、162%。由此可知,BC+SFe组的减排效果最佳、其次是仅添加SFe。虽然仅添加生物炭会促进甲烷排放,但是与高铁酸钠的联合作用,会使CH4排放迅速减少。
3.2稻田N2O排放
不同处理在水稻整个生育期的氧化亚氮累积排放量介于0.71~2.37kg·ha-1,见图2所示。从图2能够看出,BC+SFe组较CK组低,低30%。但与CK组相比,只添加生物炭(BC组)、只添加高铁酸钠(SFE组)的处理具有增排效果,比CK组分别高134%、94%。由此可知,BC+SFe组具有减少N2O排放的效果。
3.3BC、SFE、BC+SFe处理下的温室效应
不同处理甲烷和氧化亚氮对全球增温趋势(GWP)的影响,如图3所示。由图3可知,全球增温趋势以BC+SFe组的最低,BC组最高,其次是CK组、SFe组。较CK组处理,SFe、BC+SFe组分别降低22%、50%。图4可知,稻温室气体排放强度(GHGI)介于0.4~1.1之间,其中最低的是BC+SFe组,最高的是BC组,其次是CK组、SFe组,BC+SFe组较CK组的GHGI低50%。因此,更进一步说明,BC+SFe组的稻田温室效应低,稻田添加高铁酸盐改性生物碳具有明显的减排效果。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换也应视为本发明的保护范围。

Claims (9)

1.一种稻田温室气体的减排方法,其特征在于,将稻田减排材料施入稻田中使稻田减排材料和土壤混合均匀即可,其中,所述稻田减排材料为高铁酸盐改性生物炭。
2.如权利要求1所述的稻田温室气体的减排方法,其特征在于,将稻田减排材料施入稻田中后,通过翻耕使稻田减排材料与0~20cm耕层土壤混合均匀。
3.如权利要求1所述的稻田温室气体的减排方法,其特征在于,每平方稻田施入1~6kg稻田减排材料。
4.如权利要求1所述的稻田温室气体的减排方法,其特征在于,所述稻田减排材料在水稻移栽前3~5天施入。
5.如权利要求1所述的稻田温室气体的减排方法,其特征在于,所述稻田温室气体包括甲烷和氧化亚氮中的至少一种。
6.如权利要求1~5中任一项所述的稻田温室气体的减排方法,其特征在于,所述高铁酸盐改性生物炭中,高铁酸盐附着在生物炭孔隙的内部和表面。
7.如权利要求1~5中任一项所述的稻田温室气体的减排方法,其特征在于,所述高铁酸盐改性生物炭是通过以下制备方法获得的:将生物炭、高铁酸盐混合并搅拌均匀,使高铁酸盐附着在生物炭孔隙的内部和表面,即得到稻田减排材料。
8.如权利要求7所述的稻田温室气体的减排方法,其特征在于,所述生物炭与高铁酸盐的质量比为(50~100):2。
9.如权利要求7所述的稻田温室气体的减排方法,其特征在于,所述高铁酸盐包括高铁酸钾、高铁酸钠、高铁酸钙中的至少一种。
CN202210151638.XA 2022-02-18 2022-02-18 一种稻田温室气体的减排方法 Active CN114558417B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210151638.XA CN114558417B (zh) 2022-02-18 2022-02-18 一种稻田温室气体的减排方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210151638.XA CN114558417B (zh) 2022-02-18 2022-02-18 一种稻田温室气体的减排方法

Publications (2)

Publication Number Publication Date
CN114558417A true CN114558417A (zh) 2022-05-31
CN114558417B CN114558417B (zh) 2024-06-07

Family

ID=81713174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210151638.XA Active CN114558417B (zh) 2022-02-18 2022-02-18 一种稻田温室气体的减排方法

Country Status (1)

Country Link
CN (1) CN114558417B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885780A (zh) * 2022-06-06 2022-08-12 南京信息工程大学 一种水稻田ch4减排方法
CN116267465A (zh) * 2022-09-09 2023-06-23 上海交通大学 一种稻田活性氮协同减排的方法
CN116584328A (zh) * 2023-07-17 2023-08-15 中国农业科学院农业资源与农业区划研究所 乙烯在降低水稻生产中碳足迹的应用与方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544456A (zh) * 2009-05-11 2009-09-30 合肥工业大学 减少温室气体排放的复合材料及应用
US20150000358A1 (en) * 2013-03-15 2015-01-01 The Administrators Of The Tulane Educational Fund Utilization of iron salts to stabilize and/or disinfect biosolids
CN104671923A (zh) * 2015-01-07 2015-06-03 湖南省土壤肥料研究所 一种稻田甲烷减排的肥料及其施用方法
CN104817384A (zh) * 2015-04-20 2015-08-05 广东大众农业科技股份有限公司 一种稻草生物质炭基钙镁磷肥及其制备方法
CN105289485A (zh) * 2015-10-12 2016-02-03 环境保护部华南环境科学研究所 一种碱性条件下高铁酸盐氧化制备改性生物炭的方法
CN105315098A (zh) * 2015-06-04 2016-02-10 浙江科技学院 一种减少稻田温室气体排放的稻秸炭基肥料制备方法
CN105794351A (zh) * 2016-03-18 2016-07-27 常州大学 一种生物炭在南北方稻田系统中的固碳减排方法
CN106495893A (zh) * 2016-11-08 2017-03-15 黑龙江省农业科学院耕作栽培研究所 一种利用生物炭有益于固碳减排的水稻栽培方法
US20170282229A1 (en) * 2014-10-13 2017-10-05 Guangdong Institute Of Eco-Environmental Science & Technology Iron-based biochar material, preparation therefor and use thereof in soil pollution control
CN206832775U (zh) * 2017-06-16 2018-01-02 湖南农业大学 一种测定水稻甲烷排放速率的装置
CN108014634A (zh) * 2017-11-15 2018-05-11 广东省生态环境技术研究所 一种加速甲烷减排的方法
US20190084843A1 (en) * 2016-05-26 2019-03-21 University Of Idaho System and method for water treatment
CN109912154A (zh) * 2019-03-19 2019-06-21 哈尔滨工业大学 一种微生物电解池高效产氢并且抑制产甲烷的方法
CN110002709A (zh) * 2019-04-24 2019-07-12 中国科学院广州能源研究所 一种新型市政污泥调理剂
CN110140616A (zh) * 2018-12-24 2019-08-20 黑龙江省农业科学院耕作栽培研究所 一种黑龙江地区固碳减排增产增效的水稻栽培方法
CN111518843A (zh) * 2020-04-30 2020-08-11 同济大学 一种以剩余污泥为原料的厌氧发酵产氢方法及添加剂
CN111569831A (zh) * 2020-04-21 2020-08-25 哈尔滨工业大学 一种长期稳定的生物炭-零价铁复合材料及其一步制备方法
NL2026438A (en) * 2020-09-10 2020-10-20 China Nat Rice Res Inst Method for reducing methane emissions from rice fields by changing rhizosphere oxygen environment
CN111972233A (zh) * 2020-07-17 2020-11-24 江苏省农业科学院 一种在稻田中施用生物炭与木醋酸的方法及其在稻田温室气体减排中的应用
KR102254919B1 (ko) * 2020-12-02 2021-05-21 순천대학교 산학협력단 대나무 바이오차 및 당밀농축액을 포함하는 펠렛 형태의 토양개량제 및 이의 제조방법
CN113185367A (zh) * 2021-05-14 2021-07-30 上海交通大学 一种具有控污增效功能的沼渣改性生物炭及其制备与应用
CN113277492A (zh) * 2021-05-20 2021-08-20 新疆心连心能源化工有限公司 一种农林废弃物制备腐植酸钾和生物质炭的方法
CN113755183A (zh) * 2021-09-30 2021-12-07 湖南农业大学 一种土壤改良剂及其制备方法和应用

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544456A (zh) * 2009-05-11 2009-09-30 合肥工业大学 减少温室气体排放的复合材料及应用
US20150000358A1 (en) * 2013-03-15 2015-01-01 The Administrators Of The Tulane Educational Fund Utilization of iron salts to stabilize and/or disinfect biosolids
US20170282229A1 (en) * 2014-10-13 2017-10-05 Guangdong Institute Of Eco-Environmental Science & Technology Iron-based biochar material, preparation therefor and use thereof in soil pollution control
CN104671923A (zh) * 2015-01-07 2015-06-03 湖南省土壤肥料研究所 一种稻田甲烷减排的肥料及其施用方法
CN104817384A (zh) * 2015-04-20 2015-08-05 广东大众农业科技股份有限公司 一种稻草生物质炭基钙镁磷肥及其制备方法
CN105315098A (zh) * 2015-06-04 2016-02-10 浙江科技学院 一种减少稻田温室气体排放的稻秸炭基肥料制备方法
WO2016192403A1 (zh) * 2015-06-04 2016-12-08 浙江科技学院 一种减少稻田温室气体排放的稻秸炭基肥料制备方法
CN105289485A (zh) * 2015-10-12 2016-02-03 环境保护部华南环境科学研究所 一种碱性条件下高铁酸盐氧化制备改性生物炭的方法
CN105794351A (zh) * 2016-03-18 2016-07-27 常州大学 一种生物炭在南北方稻田系统中的固碳减排方法
US20190084843A1 (en) * 2016-05-26 2019-03-21 University Of Idaho System and method for water treatment
CN106495893A (zh) * 2016-11-08 2017-03-15 黑龙江省农业科学院耕作栽培研究所 一种利用生物炭有益于固碳减排的水稻栽培方法
CN206832775U (zh) * 2017-06-16 2018-01-02 湖南农业大学 一种测定水稻甲烷排放速率的装置
CN108014634A (zh) * 2017-11-15 2018-05-11 广东省生态环境技术研究所 一种加速甲烷减排的方法
CN110140616A (zh) * 2018-12-24 2019-08-20 黑龙江省农业科学院耕作栽培研究所 一种黑龙江地区固碳减排增产增效的水稻栽培方法
CN109912154A (zh) * 2019-03-19 2019-06-21 哈尔滨工业大学 一种微生物电解池高效产氢并且抑制产甲烷的方法
CN110002709A (zh) * 2019-04-24 2019-07-12 中国科学院广州能源研究所 一种新型市政污泥调理剂
CN111569831A (zh) * 2020-04-21 2020-08-25 哈尔滨工业大学 一种长期稳定的生物炭-零价铁复合材料及其一步制备方法
CN111518843A (zh) * 2020-04-30 2020-08-11 同济大学 一种以剩余污泥为原料的厌氧发酵产氢方法及添加剂
CN111972233A (zh) * 2020-07-17 2020-11-24 江苏省农业科学院 一种在稻田中施用生物炭与木醋酸的方法及其在稻田温室气体减排中的应用
NL2026438A (en) * 2020-09-10 2020-10-20 China Nat Rice Res Inst Method for reducing methane emissions from rice fields by changing rhizosphere oxygen environment
KR102254919B1 (ko) * 2020-12-02 2021-05-21 순천대학교 산학협력단 대나무 바이오차 및 당밀농축액을 포함하는 펠렛 형태의 토양개량제 및 이의 제조방법
CN113185367A (zh) * 2021-05-14 2021-07-30 上海交通大学 一种具有控污增效功能的沼渣改性生物炭及其制备与应用
CN113277492A (zh) * 2021-05-20 2021-08-20 新疆心连心能源化工有限公司 一种农林废弃物制备腐植酸钾和生物质炭的方法
CN113755183A (zh) * 2021-09-30 2021-12-07 湖南农业大学 一种土壤改良剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何国鸿等: "高铁酸钾预处理强化污泥破解及厌氧产酸", 工业安全与环保, vol. 44, no. 4, pages 74 - 77 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885780A (zh) * 2022-06-06 2022-08-12 南京信息工程大学 一种水稻田ch4减排方法
CN114885780B (zh) * 2022-06-06 2023-11-21 南京信息工程大学 一种水稻田ch4减排方法
CN116267465A (zh) * 2022-09-09 2023-06-23 上海交通大学 一种稻田活性氮协同减排的方法
CN116584328A (zh) * 2023-07-17 2023-08-15 中国农业科学院农业资源与农业区划研究所 乙烯在降低水稻生产中碳足迹的应用与方法
CN116584328B (zh) * 2023-07-17 2024-01-30 中国农业科学院农业资源与农业区划研究所 乙烯在降低水稻生产中碳足迹的应用与方法

Also Published As

Publication number Publication date
CN114558417B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
Ma et al. The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems
Li et al. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China
Zhu et al. The contribution of nitrogen transformation processes to total N 2 O emissions from soils used for intensive vegetable cultivation
CN114558417B (zh) 一种稻田温室气体的减排方法
Niu et al. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize-wheat rotation in the North China Plain
Yin et al. Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation
Bayer et al. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate
Bharati et al. Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India
Liu et al. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China
Meijide et al. Nitrogen oxide emissions affected by organic fertilization in a non-irrigated Mediterranean barley field
Hou et al. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems
CN105175180A (zh) 一种生物碳与有机肥组配改良盐碱地的方法
Niu et al. No-tillage did not increase organic carbon storage but stimulated N2O emissions in an intensively cultivated sandy loam soil: A negative climate effect
Rubin et al. Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils
Bo et al. Effects of Chinese milk vetch (Astragalus sinicus L.) residue incorporation on CH4 and N2O emission from a double-rice paddy soil
Liu et al. Impact of biochar application on gas emissions from liquid pig manure storage
Xu et al. Conversion of winter flooded rice paddy planting to rice-wheat rotation decreased methane emissions during the rice-growing seasons
Liao et al. Effect of field-aged biochar on fertilizer N retention and N2O emissions: A field microplot experiment with 15N-labeled urea
CN109650948A (zh) 一种减少畜禽粪堆肥温室气体排放的添加剂及其应用
Rassaei Nitrous oxide emissions from rice paddy: Impacts of rice straw and water management
Lim et al. Soil carbon changes in paddy fields amended with fly ash
Gangopadhyay et al. A new methodological approach to the establishment of sustainable agricultural ecology in drought vulnerable areas of eastern India
Li et al. Applying biochar under topsoil facilitates soil carbon sequestration: A case study in a dryland agricultural system on the Loess Plateau
Li et al. Using nitrogen-loaded biochar for soil improvement to decrease applied nitrogen and stabilize rice yield under alternate wet-dry irrigation
Rassaei Assessing the efficacy of water management and wheat straw addition in mitigating methane emissions from rice paddy fields

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant