CN114556845B - 用于波束失败恢复(bfr)的方法和设备 - Google Patents

用于波束失败恢复(bfr)的方法和设备 Download PDF

Info

Publication number
CN114556845B
CN114556845B CN202080027633.5A CN202080027633A CN114556845B CN 114556845 B CN114556845 B CN 114556845B CN 202080027633 A CN202080027633 A CN 202080027633A CN 114556845 B CN114556845 B CN 114556845B
Authority
CN
China
Prior art keywords
bfr
cell
procedure
resources
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080027633.5A
Other languages
English (en)
Other versions
CN114556845A (zh
Inventor
蔡馨玺
靳亨立
陈宏镇
游家豪
魏嘉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FG Innovation Co Ltd
Original Assignee
FG Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Co Ltd filed Critical FG Innovation Co Ltd
Publication of CN114556845A publication Critical patent/CN114556845A/zh
Application granted granted Critical
Publication of CN114556845B publication Critical patent/CN114556845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种由用户设备(UE)执行的用于波束失败恢复(BFR)的方法包括:UE从基站(BS)接收指示与BS的第一小区相关联的第一参考信号(RS)的第一配置;通过基于第一RS评估第一无线电链路质量来确定在第一小区上是否检测到第一波束失败事件;当在第一小区上检测到第一波束失败事件时,针对第一小区触发第一BFR过程;以及当触发并且未取消第一BFR过程时,执行包括以下项的操作:确定UE是否分配有能够用于发送BFR报告的上行链路(UL)资源,其中UL资源是物理上行链路共享信道(PUSCH)资源;当UE分配有UL资源时,响应于第一BFR过程而生成BFR报告;以及在UL资源上将BFR报告发送到BS;以及当UE未被分配有UL资源时,响应于第一BFR过程而触发BFR的调度请求(SR)过程。

Description

用于波束失败恢复(BFR)的方法和设备
相关申请的交叉引用
本公开要求2019年7月22日提交的名称为“Method and Apparatus forInitialization of Beam Failure Recovery”的临时美国专利申请序列号62/877,257(“‘257临时案”)的权益和优先权。‘257临时案的内容出于所有目的以引用方式完全并入本文中。
技术领域
本公开总体涉及无线通信,并且更特别地,涉及用于波束失败恢复(Beam FailureRecovery,BFR)的方法和设备。
背景技术
随着连接装置数量的巨大增长以及用户/网络业务量的快速增加,已经作出各种努力以通过改进数据速率、时延、可靠性和移动性来改进下一代无线通信系统(诸如第五代(fifth-generation,5G)新无线电(New Radio,NR))的无线通信的不同方面。
5G NR系统被设计成提供灵活性和可配置性来使网络服务和类型最优化,从而适应各种使用情况(诸如增强型移动宽带(enhanced Mobile Broadband,eMBB)、大规模机器类型通信(massive Machine-Type Communication,mMTC)以及超可靠和低时延通信(Ultra-Reliable and Low-Latency Communication,URLLC))。
然而,随着对无线电接入的需求持续增加,本领域需要进一步改进。
发明内容
本公开针对用于BFR的方法和设备。
根据本公开的一方面,提供了一种由用户设备(User Equipment,UE)执行的用于BFR的方法。所述方法包括:所述UE从基站(Base Station,BS)接收指示与所述BS的第一小区相关联的第一参考信号(RS)的第一配置;通过基于所述第一RS评估第一无线电链路质量来确定在所述第一小区上是否检测到第一波束失败事件;当在所述第一小区上检测到所述第一波束失败事件时,针对所述第一小区触发第一BFR过程;以及当触发并且未取消所述第一BFR过程时,执行包括以下项的操作:确定所述UE是否分配有能够用于发送BFR报告的上行链路(UL)资源,其中所述UL资源是物理上行链路共享信道(PUSCH)资源;当所述UE分配有所述UL资源时,响应于所述第一BFR过程而生成所述BFR报告;以及在所述UL资源上将所述BFR报告发送到所述BS;以及当所述UE未被分配有所述UL资源时,响应于所述第一BFR过程而触发BFR的调度请求(SR)过程。
根据本公开的另一方面,提供了一种UE。所述UE包括:存储器;以及耦接到所述存储器的至少一个处理器。所述至少一个处理器可被配置来:从BS接收指示与所述BS的第一小区相关联的第一RS的第一配置;通过基于所述第一RS评估第一无线电链路质量来确定在所述第一小区上是否检测到第一波束失败事件;当在所述第一小区上检测到所述第一波束失败事件时,针对所述第一小区触发第一BFR过程;并且当触发并且未取消所述第一BFR过程时,执行包括以下项的操作:确定所述UE是否分配有能够用于发送BFR报告的UL资源,其中所述UL资源是PUSCH资源;当所述UE分配有所述UL资源时,响应于所述第一BFR过程而生成所述BFR报告;并且在所述UL资源上将所述BFR报告发送到所述BS;以及当所述UE未被分配有所述UL资源时,响应于所述第一BFR过程而触发BFR的SR过程。
附图说明
当结合附图来阅读以下详细描述时,可最好地理解本公开的方面。各种特征并未按比例绘制。为了讨论清楚起见,可任意增大或减小各种特征的尺寸。
图1展示根据本公开的实施方式的针对辅小区(Secondary Cell,SCell)触发的BFR过程。
图2展示根据本公开的实施方式的SR触发过程。
图3展示根据本公开的实施方式的由UE执行的方法的流程图。
图4展示根据本公开的实施方式的由UE执行的方法的流程图。
图5展示根据本公开的实施方式的由UE执行的方法的流程图。
图6展示根据本公开的各个方面的用于无线通信的节点的方框图。
具体实施方式
以下描述包含与本公开中的示例性实施方式有关的具体信息。本公开中的附图及其随附详细描述仅仅针对示例性实施方式。然而,本公开不仅仅限于这些示例性实施方式。本领域技术人员将想到本公开的其他变型和实施方式。除非另外指出,否则附图中相似或对应的元件可由相似或对应的附图标记指示。此外,本公开中的附图和图示通常未按比例绘制,并且不意图对应于实际相对尺寸。
出于一致性和易于理解的目的,相似的特征在示例性附图中由数字标识(尽管在一些示例中未示出)。然而,不同实施方式中的特征可在其他方面有所不同,并且因此不应将其狭窄地局限于附图中所示的内容。
对“一个实施方式”、“实施方式”、“示例性实施方式”、“各种实施方式”、“一些实施方式”、“本公开的实施方式”等的提及可指示如此描述的本公开的一个或多个实施方式可包括特定特征、结构或特性,但并非本公开的每一个可能的实施方式都必须包括所述特定特征、结构或特性。此外,短语“在一个实施方式中”、“在示例性实施方式中”或“实施方式”的重复使用不一定指代相同的实施方式,尽管它们可能如此。此外,如“实施方式”结合“本公开”的短语的任何使用绝不意指特征在于本公开的所有实施方式必须包括所述特定特征、结构或特性,而是应理解为意指“本公开的至少一些实施方式”包括所陈述的特定特征、结构或特性。术语“耦接”被定义为连接,不论是直接连接还是通过中间部件间接连接,并且不一定限于物理连接。术语“包括”在利用时意指“包括但不一定限于”;其具体指示在如此描述的组合、组、系列和等效物中的开放式包括或成员身份。
术语“和/或”在本文中仅是用于描述相关联对象的关联关系,并且表示可存在三种关系,例如,A和/或B可表示:A单独存在,A和B同时存在,以及B单独存在。“A和/或B和/或C”可表示存在A、B和C中的至少一者。另外,本文所用的字符“/”通常表示前者和后者相关联对象处于“或”关系。
另外,出于非限制性解释的目的,阐述诸如功能实体、技术、协议、标准等的具体细节,以提供对所描述技术的理解。在其他示例中,省略对众所周知的方法、技术、系统、架构等的详细描述,以免不必要的细节使描述模糊。
本公开中所描述的以下段落、(子)项目符号、要点、动作、行为、术语或权利要求中的任何两者或两者以上可逻辑地、合理地且适当地组合以形成具体方法。另外,本公开中所描述的任何句子、段落、(子)项目符号、要点、动作、行为、术语或权利要求可独立地且单独地实施以形成具体方法。
例如“基于”、“更具体地”、“优选地”、“在一个实施例中”等的依赖关系在以下发明中只是并不约束具体方法的一个可能的示例。
本领域技术人员将直接认识到,本公开中所描述的任何一个或多个网络功能或算法可由硬件、软件或者软件和硬件的组合来实施。所描述的功能可对应于可以是软件、硬件、固件或其任何组合的模块。软件实施方式可包括存储在诸如存储器或其他类型的存储装置的计算机可读介质上的计算机可执行指令。例如,具有通信处理能力的一个或多个微处理器或通用计算机可编程有对应的可执行指令,并且实施所描述的一个或多个网络功能或算法。微处理器或通用计算机可由专用集成电路(Applications Specific IntegratedCircuitry,ASIC)、可编程逻辑阵列形成并且/或者使用一个或多个数字信号处理器(Digital Signal Processor,DSP)形成。尽管本说明书中所描述的示例性实施方式中的一些面向在计算机硬件上安装和执行的软件,但是实施为固件或硬件或硬件和软件的组合的替代示例性实施方式完全在本公开的范围内。
计算机可读介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable ProgrammableRead-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically ErasableProgrammable Read-Only Memory,EEPROM)、闪存存储器、光盘只读存储器(Compact DiscRead-Only Memory,CD-ROM)、磁带盒、磁带、磁盘存储装置或能够存储计算机可读指令的任何其他等效介质。
无线电通信网络架构(例如,长期演进(Long Term Evolution,LTE)系统、高级LTE(LTE-Advanced,LTE-A)系统、高级LTE Pro系统)通常包括至少一个基站(BS)、至少一个UE以及提供朝向网络的连接的一个或多个任选网络元件。UE通过由BS建立的无线电接入网络(Radio Access Network,RAN)与网络(例如,核心网络(Core Network,CN)、演进分组核心(Evolved Packet Core,EPC)网络、演进通用地面无线电接入网络(Evolved UniversalTerrestrial Radio Access network,E-UTRAN)、下一代核心(Next-Generation Core,NGC)或互联网)进行通信。
应注意,在本公开中,UE可包括但不限于移动站、移动终端或装置、用户通信无线电终端。例如,UE可以是便携式无线电设备,其包括但不限于具有无线通信能力的移动电话、平板电脑、可穿戴装置、传感器或个人数字助理(Personal Digital Assistant,PDA)。UE被配置来通过空中接口接收信号以及向RAN中的一个或多个小区发送信号。
BS可包括但不限于如通用移动电信系统(Universal Mobile TelecommunicationSystem,UMTS)中的节点B(Node B,NB)、如LTE-A中的演进节点B(evolved Node B,eNB)、如UMTS中的无线电网络控制器(Radio Network Controller,RNC)、如全球移动通信系统(Global System for Mobile communication,GSM)/GSM EDGE无线电接入网络(GSM EDGERadio Access Network,GERAN)中的基站控制器(Base Station Controller,BSC)、如与5GC相连的E-UTRA BS中的ng-eNB、如5G接入网络(5G Access Network,5G-AN)中的下一代节点B(next generation Node B,gNB)以及能够控制无线电通信和管理小区内的无线电资源的任何其他设备。BS可通过到网络的无线电接口连接以服务于一个或多个UE。
BS可被配置来根据以下无线电接入技术(Radio Access Technology,RAT)中的至少一种提供通信服务:全球微波接入互操作(Worldwide Imeroperability for MicrowaveAccess,WiMAX)、GSM(通常称为2G)、GERAN、通用分组无线电服务(General Packet RadioService,GPRS)、基于基本宽带码分多址(Wideband-Code Division Multiple Access,W-CDMA)的UMTS(通常称为3G)、高速分组接入(High-Speed Packet Access,HSPA)、LTE、LTE-A、eLTE、NR(通常称为5G)以及LTE-A Pro。然而,本公开的范围不应限于以上提到的协议。
BS可能可操作来使用RAN所包括的多个小区来向特定地理区域提供无线电覆盖。BS可支持小区的操作。每个小区可操作来向其无线电覆盖范围内的至少一个UE提供服务。在一些实施方式中,每个小区(通常称为服务小区)可提供服务以服务于其无线电覆盖范围内的一个或多个UE(例如,每个小区将下行链路(Downlink,DL)资源和任选的UL资源调度给其无线电覆盖范围内的至少一个UE以用于DL和任选的UL分组发送)。BS可通过多个小区与无线电通信系统中的一个或多个UE通信。小区可分配侧链路(sidelink,SL)资源以用于支持邻近服务(ProSe)。每个小区可具有与其他小区重叠的覆盖区域。在MR-DC情况下,主小区组(Master Cell Group,MCG)或辅小区组(Secondary Cell Group,SCG)的主小区可称为特殊小区(Special Cell,SpCell)。主小区(Primary Cell,PCell)可指代MCG的SpCell。主辅小区(Primary Secondary Cell,PSCell)可指代SCG的SpCell。MCG意指与主节点(MasterNode,MN)相关联的服务小区组,包括SpCell和任选的一个或多个辅小区(SCell)。SCG意指与辅节点(Secondary Node,SN)相关联的服务小区组,包括SpCell和任选的一个或多个SCell。
如以上所讨论,NR的帧结构是为了支持灵活配置以用于适应各种下一代(例如,5G)通信要求,诸如eMBB、mMTC和URLLC,同时满足高可靠性、高数据速率和低时延要求。如第3代合作伙伴项目(3rd Generation Partnership Project,3GPP)中商定的正交频分复用(orthogonal frequency-division multiplexing,OFDM)技术可用作NR波形的基线。也可使用可扩展OFDM数字方案,诸如自适应子载波间距、信道带宽和循环前缀(cyclic prefix,CP)。另外,针对NR考虑两种译码方案:(1)低密度奇偶校验(low-density parity-check,LDPC)码和(2)极性码。译码方案适应可基于信道条件和/或服务应用进行配置。
此外,还考虑在单个NR帧的发送时间间隔中,应至少包括DL发送数据、保护时段和UL发送数据,其中DL发送数据、保护时段、UL发送数据的相应部分也应可例如基于NR的网络动态来配置。另外,还可在NR帧中提供侧链路资源以支持ProSe服务。
新RAT上的5G的目标是标识并开发NR系统所需的能够使用范围为至少多达100GHz的任何频谱带的技术部件。支持多达100GHz的载波频率给无线电传播领域带来许多挑战。随着载波频率增加,路径损耗也增加。
在较低频带(例如,<6GHz)中,可通过形成用于发送DL公共信道的宽扇形波束来提供所需的小区覆盖范围。然而,当在较高频率(例如,>6GHz)上利用宽扇形波束时,小区覆盖范围在天线增益相同的情况下可能以会减少。因此,可需要更高的天线增益来补偿增加的路径损耗,以在更高的频带上提供所需的小区覆盖范围。
波束形成是在天线阵列中用于定向信号发送/接收的信号处理技术。对于波束形成,波束可通过以使得处于特定角度的信号经历相长干涉而其他角度的信号经历相消干涉的方式将元件组合在相控天线阵列中来形成。可使用多个天线阵列同时利用不同的波束。为了增加宽扇形波束上的天线增益,可使用更大的天线阵列(例如,天线元件的数量范围为几十到几百)来形成高增益波束。
尽管如此,高增益波束的波束宽度与宽扇形波束相比可能较窄,因此可需要用于发送DL公共信道的多个波束来覆盖所需的小区区域。接入点能够形成的并发高增益波束的数量可受所利用的收发器架构的成本和复杂度的限制。在实践中,在较高频率上,并发高增益波束的数量可比覆盖小区区域所需的波束的总数量少得多。换句话说,接入点能够在任何给定时间通过使用波束子集仅覆盖小区区域的一部分。
结果,BS(例如,gNB)可利用多个波束来覆盖整个覆盖区域,并且每个UE可与那些波束中的一个相关联。当UE移动和/或环境变化时,UE的最佳波束可改变。第1层(L1)/第2层(L2)波束管理过程(或L1/L2波束间移动性管理过程)可用于将UE的当前波束切换到新波束。波束可在DL控制信道上使用。波束的设计可与覆盖距离和对UE移动性的鲁棒性相关。考虑到对控制信道的低数据速率要求和高可靠性要求,波束可需要足够宽,以允许合理的UE移动性和潜在的阻塞。选择窄波束可在控制信道上生成不必要的频繁波束切换和潜在的频繁连接丢失。
然而,波束上的失准可导致控制信道的正在进行的链路丢失(这可称为“波束失败(事件)”)。在此状况下,gNB可能无法使用相同的波束管理过程切换到新波束。因此,可利用BFR机制。BFR机制可由UE应用。
UE可通过测量某个或某些DL RS、控制信道和/或数据信道来检测波束失败事件。例如,在波束失败事件期间,UE可基于用于波束管理的DL RS的测量结果来检测当前服务波束的非常低的参考信号接收功率(Reference Signal Received Power,RSRP)。如果检测到波束失败,则UE可通过某个或某些UL发送向gNB通知波束失败事件。然后,gNB可相应地起作用(例如,改变服务波束)。
UE可配置有BFR过程在所述BFR过程期间,当在(多个)服务SSB/(多个)CSI-RS上检测到波束失败时,UE可向服务gNB通知新同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。对于波束失败检测(Beam Failure Detection,BFD),gNB可向UE配置(多个)BFD RS(例如,(多个)SSB或(多个)CSI-RS),并且当来自物理(Physical,PHY)层的波束失败实例指示的数量在所配置定时器到期之前达到所配置阈值时,UE可声明/检测到波束失败。基于SSB的BFD过程可基于与初始DL带宽部分(Bandwidth Part,BWP)相关联的SSB来执行,并且可仅被配置用于初始DL BWP和包含与初始DL BWP相关联的SSB的(多个)DL BWP。对于其他DLBWP,BFD过程可仅基于CSI-RS来执行。
在一些实施方式中,当(例如,在SpCell上)检测到波束失败时,UE可执行基于随机接入信道(Random Access Channel,RACH)的BFR过程,所述基于RACH的BFR过程包括:
-通过在SpCell上发起随机接入(Random Access,RA)过程来触发BFR过程;以及
-选择合适的波束来执行BFR过程(例如,如果gNB已经向UE提供用于某些波束的专用RA资源,则那些波束可优先被UE选择)。
在RA过程完成时,可认为BFR过程完成。
在3GPP版本15(Rel-15)中,基于RACH的BFR机制仅可应用于SpCell(例如,PCell和/或PSCell)。在此状况下,如果在SCell上发生波束阻塞和/或波束失败,则UE可依靠网络(Network,NW)来处置它。例如,基于SCell中没有对所调度的DL发送的确认(Acknowledgement,ACK)/否定确认(Negative Acknowledgement,NACK)反馈,或取决于SCell的信道质量指示符(Channel Quality Indicator,CQI)报告,NW可确定在SCell上检测到波束失败。如果发生波束失败,则NW可释放此SCell并重新调度数据传输。然而,此方法可降低调度效率并增加(多个)较高层(例如,无线电资源控制(Radio Resource Control,RRC)层)的信令传播时延。在一些实施方式中,为了使波束从SCell上的波束失败快速恢复(例如,改变服务波束),可提供信令配置和/或波束失败恢复过程以支持SCell上的BFR。
图1展示根据本公开的实施方式的针对SCell触发的BFR过程。如图1所示,针对SCell触发的BFR过程包括动作102、动作104、动作106和动作108。在一些实施方式中,动作102、动作104、动作106和动作108中的一个或多个可从针对SCell触发的BFR过程省略。
在动作102中,可执行BFD操作。在BFD操作期间,BFD RS(例如,SSB和/或CSI-RS)可由BS 184显式地或隐式地配置以供UE 182检测波束失败事件。例如,UE 182的PHY层可根据BFD RS来测量无线电链路质量。当无线电链路质量在特定时间段内比阈值更差时,UE 182的PHY层可向更高层(例如,媒体访问控制(Medium Access Control,MAC)实体)提供波束失败实例指示。
从UE 182的MAC实体的角度来看,如果(连续)检测到的波束失败实例的数量超过所配置最大数量(例如,beamfailureInstanceMaxCount),则可以检测到波束失败事件。在一些实施方式中,beamfailureInstanceMaxCount可基于BWP/小区/小区组(Cell Group,CG)子集/CG来配置。在另一方面,UE 182可使用计数器(例如,BFI_COUNTER)对来自PHY层的波束失败实例的数量进行计数。在一些实施方式中,BFI_COUNTER可基于BWP/小区/CG子集/CG来应用。在一个实施方式中,当在UE 182处维持的BFD定时器(例如,beamFailureDetectionTimer)到期时,可重设BFI_COUNTER的值。在一些实施方式中,beamFailureDetectionTimer可基于BWP/小区/CG子集/CG来配置。
在一些实施方式中,当在(多个)SCell上检测到波束失败事件时,UE 182可针对(多个)SCell触发BFR过程和/或触发BFR的SR过程。
在动作104中,可执行新波束标识(New Beam Identification,NBI)过程。在NBI过程期间,UE 182可基于NBI RS的测量结果来为(多个)SCell(在其上检测到波束失败事件)搜索并选择新波束(或“候选波束”)。例如,UE 182可选择L1-RSRP测量结果高于阈值的波束作为用于(多个)SCell的候选波束。
在动作106中,可执行波束失败恢复请求(Beam Failure Recovery Request,BFRQ)操作。在BFRQ操作期间,UE 182可在PCell、PSCell和/或SCell上发送BFR调度请求(BFR-Scheduling Request,BFR-SR)(在图1中标示为动作“1A”)。BFR-SR可以是BFR的SR(例如,由信息元素(Information Element,IE)schedulingRequestID-BFR-SCell指示的特定SR),其可用于向BS 184通知在(多个)SCell上检测到的波束失败事件和/或用于请求UL资源(例如,以发送更多关于波束失败事件的信息)。在一些实施方式中,UE 182是否发送BFR-SR可取决于是否存在(多个)可用UL资源(用于发送BFR报告)。例如,如果存在(多个)可用UL资源以供UE使用和/或如果存在(多个)UL资源可用于BFR报告发送(例如,(多个)UL资源可容纳BFR报告),则UE 182可不发送BFR-SR。
在一些实施方式中,如果存在可用于BFR报告发送的(多个)UL资源(例如,(多个)UL资源可容纳BFR报告),则UE 182可(直接)将BFR报告发送到BS 184(例如,基于MAC控制元素(Control Element,CE))(在图1中标示为“2A”)。BFR报告可包括关于(多个)波束失败分量载波(Component Carrier,CC)和/或经由(多个)小区索引的(多个)波束失败服务小区(例如,SpCell和/或SCell)的信息、关于(多个)新波束/候选波束(例如,UE 182可通过测量(多个)NBI RS来选择新波束/候选波束)的信息以及无新波束信息中的至少一者。在一个实施方式中,无新波束信息可用于指示UE 182未发现任何(合格的)新波束/候选波束(例如,UE 182未发现对应的L1-RSRP高于阈值的任何新波束/候选波束)。在一个实施方式中,BFR报告可指示新波束/候选波束的存在。另外,在一些实施方式中,BFR报告(仅)可经由BFR-SR所请求的UL授权来发送。在一些实施方式中,BFR报告可经由(多个)任意UL授权(例如,随机接入响应(Random Access Response,RAR)中所提供的UL授权、经由物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)提供的动态UL授权和/或所配置授权)来发送。
在动作108中,可执行BFR响应操作。在BFR响应操作期间,UE可在发送BFRQ(例如,BFR-SR和/或BFR报告)之后尝试监视来自BS 184的BFR响应(例如,经由PDCCH监视)。在一些实施方式中,BFR响应可在PCell、PSCell和/或SCell上发送。在一些实施方式中,BFR响应可在CC和/或UE 182在其上发送BFRQ的服务小区(例如,在其上检测到波束失败事件的SCell)上发送。在接收到BFR响应时,UE 182可认为针对SCell触发的BFR过程完成。
BFR-SR触发
缓冲区状态报告(Buffer Status Report,BSR)可用于为服务质量(Quality ofService,QoS)感知分组调度提供支持。例如,UE可执行BSR过程以发送BSR以便向NW通知针对UE中的逻辑信道组(Logical Channel Group,LCG)在(多个)发送缓冲区中缓冲的数据量。当触发BSR过程时(例如,当新数据到达UE的发送缓冲区时),如果不存在可供UE发送BSR的(多个)UL资源,则UE可进一步触发SR过程以将SR发送到NW。在NR中,SR过程仅可通过(常规)BSR过程触发。表1中为上述UE行为的示例性文本建议(Text Proposal,TP)。
表1
在一些实施方式中,UE可配置有一个或多个SR配置。UE可基于SR配置来执行SR过程。每个SR配置可对应于一个或多个逻辑信道(Logical Channel,LCH),其中每个LCH可映射到零个或一个SR配置。表2中为LCH的配置(例如,LogicalChannelConfig)的示例性TP。
表2
SchedulingRequestId:如果存在,则参数SchedulingRequestId可指示适用于此LCH的调度请求配置。
另外,表3中为BSR(过程)的示例性TP。
表3
在一些实施方式中,LCH的触发常规BSR(过程)的SR配置(如果这种配置存在)可被视为所触发的SR(过程)的对应SR配置。在另一方面,对于响应于BSR重传定时器(例如,retxBSR-Timer)到期而触发的常规BSR(过程),UE可认为触发常规BSR的LCH是在触发常规BSR时具有可用于发送的数据的最高优先级LCH,因此对应SR配置可基于此最高优先级LCH。此外,如果LCH未映射到任何SR配置而且LCH触发BSR(过程),则UE可发起RA过程以请求UL资源。
图2展示根据本公开的实施方式的SR触发过程200。如图2所示,在动作202中,UE可确定包含可用数据的LCH满足某些标准。在动作204中,UE可针对/通过LCH触发BSR(过程),其中LCH可映射到SR配置。在动作206中,UE可触发与映射到LCH的SR配置相关联的SR(过程)。
在传统无线通信系统(例如,由3GPP版本15定义)中,SR过程可仅通过(常规)BSR过程触发,并且(常规)BSR过程可仅通过包含可用UL数据的LCH触发。
在一些实施方式中,如果在(多个)SCell上检测到波束失败事件,则UE可发送BFRQ以令NW知道此状况和/或以向NW提供用于BFR的相关信息。例如,UE可在物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)资源上发送BFR-SR以请求UL资源(例如,PUSCH资源),并且/或者经由UL资源发送BFR报告。波束失败事件(例如,在SCell上检测到的)可由UE基于(多个)BFDRS(例如,与SCell相关联)的测量结果来检测。例如,当基于(多个)BFD RS评估的无线电链路质量在特定时间段内比阈值更差时,UE可确定在(多个)SCell上检测到波束失败事件。另外,如果检测到波束失败事件,则UE可针对(多个)SCell触发BFR过程。
在当前的NR系统中,当检测到波束失败事件时,如果在LCH中不存在可用UL数据,则不能触发BSR过程。在此状况下,也不能触发SR过程。然而,在不触发SR过程的情况下,UE可能无法获得(多个)UL资源以发送BFR报告。因此,在本公开的一些实施方式中,提供了改进的BFR的SR触发机制。基于改进的BFR的SR触发机制触发的SR过程在本公开中可称为“BFR-SR过程”或“BFR的SR过程”。在BFR-SR过程期间,UE可发送BFR-SR(或“BFR的SR”)。
在一些实施方式中,如果满足以下条件(a1)-(a11)中的至少一个,则可触发BFR-SR过程:
(a1)当已经检测到波束失败事件例如,针对SCell)时;
(a2)当已经发起/触发(并且未取消)BFR过程(针对SCell)对:
因为在UE侧处检测到波束失败事件,所以NW在没有来自UE的任何信息的情况下可能不知道发生了波束失败事件。BFR-SR可用于向NW(例如,BS)通知检测到波束失败事件并向NW请求UL资源以发送BFR报告。因此,当检测到波束失败事件和/或已经触发(并且未取消)BFR过程时,UE可相应地触发BFR-SR过程。在一些实施方式中,可在不考虑是否存在(多个)可用UL资源的情况下触发BFR-SR过程。在一些实施方式中,可基于是否检测到波束失败事件来触发BFR-SR过程。在一些实施方式中,可基于是否触发了BFR过程来触发BFR-SR过程。
(a3)如果不存在UL资源分配用于新发送:
在一些实施方式中,BFR-SR可用于请求UL授权以发送BFR相关信息(例如,BFR报告)。因此,如果不存在用于新发送的(多个)可用UL资源,则可触发BFR-SR。相反,如果UE具有可用于发送BFR报告的(多个)UL资源,则UE可不需要触发BFR-SR过程和/或发送BFR-SR。在一些实施方式中,UL资源可通过动态授权、所配置授权和/或RAR中的UL授权提供。在一些实施方式中,BFR-SR过程可由UE基于是否存在可用UL资源(用于新发送)来触发。在一些实施方式中,当MAC实体具有任一类型的所配置UL授权的活动配置时,或如果MAC实体已接收到动态UL授权,或如果这两个条件都满足,则UE可认为分配了UL资源。
(a4)如果UE分配有用于新发送的UL资源,但UL资源不能容纳BFR报告(由于逻辑信道优先排序(Logical Channel Prioritization,LCP)):因为即使存在可用UL资源,但如果BFR报告无法包括在UL资源中(例如,基于LCP过程),则UE也可能需要进一步请求更多的UL资源来容纳BFR报告(例如,更大大小的UL资源)。从这个意义上说,UE可通过进一步考虑(多个)可用UL资源是否不能容纳BFR报告(或BFR MAC控制元素(CE))来确定是否触发BFR-SR过程。在一些实施方式中,当UE执行新发送时,可应用LCP过程。UE可通过包括MAC CE和/或基于MAC CE的相应优先级的数据(例如,优先级值/索引)来生成MAC协议数据单元(ProtocolData Unit,PDU)。当MAC PDU不能包括(完整的)BFR报告(或BFR MAC CE)时,可用UL资源可能无法容纳BFR报告。例如,MAC PDU的大小可基于UL资源的空间来确定。更具体地,BFR报告可包括MACCE和子报头。
(a5)如果UE分配有用于新发送的UL资源,但UL资源不被允许用于发送BFR报告:
在一些实施方式中,UE可配置有针对使用UL资源的一个或多个LCP约束,例如,allowedSCS-List、maxPUSCH-Duration、configuredGrantType1Allowed、allowedServingCells等。当将LCP过程应用于新发送时,MAC CE和/或数据可被约束使用UL资源。因此,UE可不使用可用UL资源来发送BFR报告,因为UL资源可能未满足某些LCP约束。在此状况下,UE可需要触发BFR-SR过程以请求另一UL资源。在一个实施方式中,波束失败事件可能是需要尽快解决的严重事件,因为当由于链路质量差而发生波束失败事件时,UE可能不例如在CC上执行数据传输。如果UL资源未满足BFR报告延迟要求,例如,如果UL资源的PUSCH持续时间(maxPUSCH-Duration)太长,则UE可能不使用此UL资源来进行BFR报告。BFR-MAC-CE特定PUSCH持续时间(例如,maxPUSCH-Duration)可按BFR配置预先配置。例如,在接收到用于PUSCH发送的UL授权的情况下,一旦PUSCH发送的持续时间满足BFR-MAC-CE特定PUSCH持续时间(例如,maxPUSCH-Duration)约束,UE的MAC实体就可(仅)将BFR MAC CE多路复用到对应于PUSCH发送的MAC PDU中。在此情形下,UE可触发BFR-SR过程以请求另一UL资源。在一些实施方式中,如果UE分配有用于新发送的UL资源,则UE可基于针对UL资源的某个(或某些)约束(例如,(多个)LCP约束)来确定是否触发BFR-SR过程。在一个实施方式中,BFR报告可仅在隐式地或显式地指示特定信息的特定UL资源上发送。如果UL资源不指示特定信息,则可不允许在BFR报告中使用所述UL资源。
(a6)如果UE分配有用于新发送的UL资源,但UL资源(仅)分配在已经检测到波束失败事件的小区上:
在一些实施方式中,UE可分配有用于新发送的UL资源。然而,UL资源可(仅)分配在已经检测到波束失败事件的小区上。例如,UL资源可经由下行链路控制信息(DownlinkControl Information,DCI)通过动态授权来调度,其中DCI可包括小区信息(例如,小区索引、载波指示符等)。例如,UL资源可以是所配置UL资源,其中所配置UL资源可配置在已经检测到波束失败事件的小区上。例如,UL资源可跨小区调度。例如,DCI/PDCCH可由UE接收在第一小区上,并且UL资源(例如,由DCI指示的PUSCH资源)可调度在已经检测到波束失败事件的第二小区上。在一些实施方式中,UL资源可通过动态授权、所配置授权和/或RAR中的UL授权提供。
(a7)如果没有其他BFR过程正在进行:
在一些实施方式中,其他BFR过程可以是基于RACH的BFR过程(例如,在PCell或PSCell上发生波束失败事件)或针对SCell触发的另一BFR过程(例如,在另一个(或另一些)SCell上发生波束失败事件)。因为BFR-SR可在PCell或PSCell的PUCCH资源上发送,所以如果其他BFR过程是基于RACH的BFR过程,则这可暗示PCell或PSCell上的DL发送和/或UL发送可能不合格。因此,在此情形下,UE可停止尝试执行(多个)BFR-SR发送。在另一情形下,如果其他BFR过程是针对SCell触发的BFR过程,则这可暗示UE已经触发并且未取消BFR-SR过程,因此,在此情形下,UE可不需要触发另一BFR-SR过程。例如,当不存在其他正在进行的BFR过程时,UE可触发BFR-SR过程。
(a8)如果没有其他BFR-SR待处理:
在一些实施方式中,在UE触发BFR-SR过程之后,可认为BFR-SR过程是“待处理”的,直到BFR-SR过程被取消为止。因为多个BFR-SR过程可对应于相同配置(例如,每个BFR-SR过程只有一个PUCCH资源配置),所以UE可不一次触发多个BFR-SR过程。在另一方面,对于BFRQ发送,UE可经由BFR报告(例如,图1中的动作2A)来报告对应的波束失败信息。BFR报告可包括多于一个CC的波束失败信息。因此,即使在UE针对第一CC触发BFR-SR过程之后在第二CC上发生波束失败事件,UE也可在同一BFR报告中包括第一CC和第二CC两者的波束失败信息。在一些实施方式中,如果在UE处存在待处理的BFR-SR,则UE可不触发BFR-SR过程。在一些实施方式中,UE可不同时(例如,在同一符号/时隙/子帧/帧中)触发多个BFR-SR过程。
(a9)如果没有其他与相同BFR-SR配置相关联的BFR-SR待处理:
在一些实施方式中,UE可配置有多个BFR-SR配置,其中每个BFR-SR配置可与一组小区相关联。例如,第一BFR-SR配置可与SCell 1和SCell 2相关联,并且第二BFR-SR配置可与SCell3和SCell4相关联。每个BFR-SR配置可包括BFR-SR配置的(多个)BFD RS。如果基于第一BFR-SR配置的(多个)第一BFD RS检测到第一波束失败事件,则UE可触发第一BFR-SR过程。同时,如果基于第二BFR-SR配置的(多个)第二BFD RS检测到第二波束失败事件,则UE可针对第二波束失败事件触发第二BFR-SR过程。在此状况下,UE可同时触发第一BFR-SR过程和第二BFR-SR过程(例如,在触发第一BFR-SR过程和第二BFR-SR过程中的一者时/之后触发第一BFR-SR过程和第二BFR-SR过程中的另一者)。然而,在基于与第一BFR-SR配置相关联的(多个)BFD RS检测到第三波束失败事件的情况下,因为第一BFR-SR配置的BFR-SR过程仍然待处理,所以UE可不针对第三波束失败事件触发BFR-SR。
(a10)如果UE具有用于BFR-SR的有效PUCCH贸源:
在一些实施方式中,UE可配置有用于BFR-SR发送的有效PUCCH资源。如果UE具有用于BFR-SR发送的有效PUCCH资源,则UE可在所述有效PUCCH资源上发送BFR-SR以请求PUSCH资源。然而,如果UE不具有任何有效PUCCH资源,则UE可使用其他方法(例如,发起RA过程、执行特定回退机制等)来请求PUSCH资源。在一些实施方式中,如果有效PUCCH资源被释放,则有效PUCCH资源可变成无效。在一些实施方式中,如果BFR-SR已经发送了多次(例如,由计数器计数)或一段时间(例如,基于定时器来确定),则UE可释放用于BFR-SR的PUCCH资源。在一些实施方式中,当与主定时提前组(Primary Timing Advance Group,PTAG)相关联的时间调准定时器到期时,UE可针对所有服务小区释放PUCCH资源。在一些实施方式中,当与定时提前组(Timing Advance Group,TAG)相关联的时间调准定时器到期时,UE可针对属于TAG的所有服务小区释放PUCCH资源。在一些实施方式中,当停用SCell时,UE可释放SCell上的PUCCH资源。
(a11)如果没有BFR-SR定时器在运行:
在一些实施方式中,BFR-SR定时器可用于控制BFR-SR发送。例如,当BFR-SR定时器正在运行时,UE可在用于BFR-SR的有效PUCCH资源上发送BFR-SR。当BFR-SR定时器不在运行时,UE可不发送BFR-SR(即使BFR-SR的BFR-SR过程是待处理的也是如此)。当BFR-SR定时器正在运行时,可认为对应的BFR-SR过程是待处理的。在一个实施方式中,如果UE在(多个)第一SCell上检测到第一波束失败事件,则UE可触发BFR-SR过程,并且对应的BFR-SR定时器可开始运行。如果UE在(多个)第二SCell上检测到第二波束失败事件,则UE可不在BFR-SR定时器正在运行时触发另一BFR-SR过程。UE可基于是否有任何BFR-SR定时器正在运行来确定是否触发BFR-SR过程。
表4中为用于触发BFR-SR过程的UE行为的示例性TP。
表4
参考图1,动作2A是UE发送BFR报告。在一些实施方式中,BFR报告可包括所检测到的波束失败状况(例如,故障CC)的详细信息、新波束信息等。然而,为了携载更多关于所检测到的波束失败状况的信息,可能很难使用预先配置的专用UL资源(例如,PUCCH资源)来发送这样的信息,因为这可能浪费太多资源。因此,在一些实施方式中,BFR报告可通过(多个)MAC CE来发送,所述(多个)MAC CE可经由PUSCH资源来发送。以此方式,UE可需要确定何时生成BFR报告。在一些实施方式中,BFR报告可包括BFR MAC CE和BFR MAC CE的子报头。
在一些实施方式中,当满足以下条件(b1)-(b6)中的至少一者时,可生成BFR报告(例如,包括BFR MAC CE和BFR MAC CE的子报头):
(b1)当检测到波束失败事件(针对SCell)时;
(b2)当发起BFR过程(针对SCell)时和/或当已经发起/触发并且未取消BFR过程时;
(b3)当触发BFR-SR过程时和/或当BFR-SR过程待处理时;
(b4)如果(多个)UL资源可用于新发送;
(b5)如果(多个)UL资源能够容纳BFR报告(加上BFR报告的子报头,由于LCP);以及
(b6)如果(多个)UL资源被允许用于发送BFR报告(例如,基于某个(或某些)指示或约束)。
在一些实施方式中,如果触发BFR过程,则UE可基于是否存在(多个)可用UL资源来确定是否生成BFR报告。如果UE具有可用于新发送的(多个)UL资源并且(多个)UL资源能够容纳BFR报告,则UE可生成BFR报告。如果不存在可用于新发送的UL资源,则UE可触发BFR-SR过程。
在一些实施方式中,如果触发BFR过程,则UE可触发BFR-SR过程,并且UE可基于是否存在(多个)可用UL资源来确定是否生成BFR报告。如果UE具有可用于新发送的(多个)UL资源并且(多个)UL资源能够容纳BFR报告,则UE可生成BFR报告。另外,当生成BFR报告时,UE可取消BFR-SR过程。
在一些实施方式中,如果UE的MAC实体具有任一类型的所配置UL授权的活动配置,或如果MAC实体已接收到动态UL授权,或如果上述这两个条件都满足,则可认为(多个)UL资源可用。
在一些实施方式中,(多个)UL资源可通过动态授权、所配置授权和/或RAR中的UL授权提供。
在一些实施方式中,UE可仅使用特定UL资源来发送BFR报告。特定UL资源可通过特定UL授权提供。例如,特定UL授权可包括指示此UL授权用于发送BFR报告的特定指示符。特定UL授权可具有特定大小的资源。例如,所述特定大小可具有与BFR报告(例如,包括其子报头的BFR MAC CE)相同的大小。UL授权的调度(例如,经由PDCCH)可在特定定时发送。例如,特定定时可在BFR-SR发送之后、在特定窗口内或在特定定时器正在运行(特定定时器可在发送BFR-SR时启动)时。例如,特定定时可以是在UE触发BFR-SR过程之后或在UE发送BFR-SR之后接收到的第一UL授权。(多个)特定UL资源可在时域中具有特定PUSCH持续时间。例如,(多个)特定UL资源的PUSCH持续时间可低于阈值。(多个)特定UL资源可映射到特定小区(例如,(多个)特定UL资源可分配在特定小区上)。
在一些实施方式中,(多个)特定UL资源可由NW/BS隐式地或显式地指示以用于BFR目的。在此状况下,(多个)特定UL资源可仅用于发送BFR报告。在一些实施方式中,(多个)特定UL资源可经由特定UL授权来调度,其中特定UL授权可指示(多个)UL资源用于BFR(目的)的信息。例如,UL授权可通过用特定类型的无线电网络临时标识符(Radio NetworkTemporary Identifier,RNTI)加扰的DCI来调度。例如,UL授权可通过具有特定DCI格式的DCI来调度。例如,UL授权可通过具有指示特定信息(例如,用于BFR目的)的特定字段的DCI来调度。
在一些实施方式中,特定UL授权可通过特定PDCCH来调度,其中特定PDCCH可在特定搜索空间/控制资源集(Control Resource Set,CORESET)上由UE监视。在一些实施方式中,UE可监视特定搜索空间/CORESET以接收用于BFR报告的UL授权。在一些实施方式中,UE可监视SpCell或SCell上的特定搜索空间/CORESET。在一些实施方式中,特定搜索空间/CORESET可经由(SCell)BFR过程的配置来配置。在一些实施方式中,特定搜索空间/CORESET可与特定搜索空间标识(Identity,ID)或特定CORESET ID相关联。在一些实施方式中,当UE发送BFR-SR时,UE可监视特定搜索空间/CORESET上的PDCCH(以接收UL资源)。在一些实施方式中,当UE发送BFR报告时,UE可监视特定搜索空间/CORESET上的PDCCH(以接收BFR响应)。在一些实施方式中,特定搜索空间/CORESET(例如,recoverySearchSpace)可用于接收BFR响应。
在一些实施方式中,用于BFR报告发送的(多个)UL资源可满足以下LCP过程中的特定条件中的一者或多者:允许的SCS列表(allowedSCS-List)、最大PUSCH持续时间(maxPUSCH-Duration)、允许的所配置授权类型(configuredGrantType1Allowed)、以及允许的服务小区(allowedServingCells)。如果UL资源满足(多个)特定条件,则UE可生成BFR报告并经由UL资源发送BFR报告。相比之下,如果UL资源未满足(多个)特定条件中的任何一个,则UE可不生成BFR报告。(多个)特定条件可在BFR-SR过程的配置或针对SCell触发的BFR过程的配置中配置。
在一些实施方式中,(多个)UL资源可与特定UL所配置授权配置(例如,配置ID或类型1/类型2)相关联。例如,特定UL所配置授权配置可被配置用于BFR报告发送。如果可用UL资源是映射到特定所配置授权配置的所配置授权,则UE可生成BFR报告并经由UL资源发送BFR报告。
在一些实施方式中,如果(多个)UL资源未分配在已经检测到波束失败事件、已经触发并且未取消BSR-SR过程或已经触发并且未取消BFRQ确认过程的小区中,则可认为这(多个)UL资源可用。
在一些实施方式中,可基于小区或基于小区组来触发BFR过程。这种BFR过程可称为按小区(或小区组)的BFR过程。例如,如果满足以下条件(c1)和(c2)中的至少一者,则可触发特定小区(或特定小区组)的按小区(或小区组)的BFR过程。当满足某些条件时,例如,当UE发送包含所述特定小区(或特定小区组)的BFR相关信息的BFR报告时,UE可取消所触发的特定小区(或特定小区组)的按小区(或小区组)的BFR过程。
(c1)当已经在特定小区(或特定小区组)上检测到波束失败事件(针对SCell)时;以及
(c2)当已经在特定小区(或特定小区组)上发起BFR过程(针对SCell)时。
在一个实施方式中,MAC实体可进一步基于所触发的按小区(或小区组)的BFR过程的存在来确定是否指示PHY层发送BFR-SR。在一些实施方式中,可基于是否在特定SCell(或特定小区组)中检测到波束失败事件来触发特定SCell的BFR过程。在一些实施方式中,可基于是否在特定SCell(或特定小区组)中触发BFR过程来触发特定SCell的BFR过程。在一个实施方式中,当已经在具有索引i的SCell上检测到波束失败事件时和/或当已经在具有索引i的SCell上发起BFR过程时,可触发与具有索引i的SCell相对应的按小区的BFR过程。当满足某一或某些条件时,例如,当发送包含小区i的BFR相关信息的BFR报告(MAC CE)时,UE可取消与索引i相对应的所触发的按小区的BFR过程。
在一个实施方式中,当已经在具有索引i的第一SCell和/或具有索引j的第二SCell上检测到波束失败事件时,和/或当已经在具有索引i和/或j的SCell上发起BFR过程时,可触发与具有索引i的第一SCell和具有索引j的第二SCell相对应的小区组的BFR过程。当满足某一或某些条件时,例如,当发送包含小区i和/或小区j的BFR相关信息的BFR报告时,UE可取消与索引i和/或索引j相对应的所触发的按小区的BFR过程。在一些实施方式中,如果满足以下条件
(d1)-(d7)中的至少一者,则UE的MAC实体可指示PHY层发送BFR-SR。
(d1)已经触发并且未取消BFR过程;
(d2)如果分配给UE的(多个)UL资源不可用于新发送;
(d3)如果分配给UE的(多个)UL资源无法容纳BFR报告(加上其子报头,由于LCP);
(d4)如果分配给UE的(多个)UL资源不被允许用于BFR报告(例如,基于某一或某些指示或约束);
(d5)如果UE具有用于BFR-SR发送的有效PUCCH资源;(d6)如果在UE处没有其他BFR过程正在进行:
在一些实施方式中,其他BFR过程可以是基于RACH的BFR过程(例如,在PCell或PSCell上发生波束失败事件)或另一基于PUCCH的BFR过程(例如,在另一SCell上发生波束失败事件)。因为BFR-SR可在PCell或PSCell的PUCCH资源上发送,所以如果在UE处存在另一正在进行的基于RACH的BFR过程,则这可暗示PCell或PSCell上的DL发送和/或UL发送不合格,因此,在此情况下,UE的MAC实体可不指示PHY层发送BFR-SR。在一些实施方式中,如果在UE处存在另一正在进行的基于PUCCH的BFR过程,则这可暗示MAC实体已经由于另一SCell上的BFD而指示PHY层发送BFR-SR。因为PUCCH资源可不专用于特定SCell,所以MAC实体可不必再指示PHY层发送BFR-SR。在一些实施方式中,仅当在UE处不存在其他BFR过程正在进行时,UE可触发BFR-SR过程。
(d7)如果BFR-SR定时器不在运行:
在一些实施方式中,如果UE在发送BFR-SR之后的特定时间段期间未从NW接收到任何响应,则BFR-SR定时器可用于令UE执行某一或某些回退机制(例如,RA过程)。例如,当BFR-SR定时器到期时,UE可发起RA过程。此定时器可在发送BFR-SR时启动。从这个意义上说,如果BFR-SR定时器已经在运行,则MAC实体可不再次指示PHY层发送BFR-SR。在一些实施方式中,MAC实体可基于BFR-SR定时器是否正在运行来确定是否通知PHY层发送BFR-SR。例如,如果BFR-SR定时器正在运行,则MAC实体可指示PHY层在对于发送BFR-SR有效的每个PUCCH资源上发送BFR-SR。在另一示例中,如果BFR-SR定时器已经启动,则MAC实体可指示PHY层在对于发送BFR-SR有效的PUCCH资源上开始发送BFR-SR。当BFR-SR定时器停止或到期时,MAC实体可指示PHY层停止发送BFR-SR。
在一个实施方式中,如果已经触发并且未取消BFR过程,则MAC实体可需要基于UE是否分配有用于新发送的(多个)可用UL资源来确定是否指示PHY层发送BFR-SR。如果UE未被分配有用于新发送的(多个)可用UL资源,则MAC实体可指示PHY层执行BFR-SR发送。
在一个实施方式中,如果已经触发并且未取消BFR过程,则MAC实体可向PHY层指示发送BFR-SR。UE可基于是否存在分配给UE的可用UL资源来确定是否生成BFR报告(例如,MACCE)。
在一个实施方式中,如果已经触发并且未取消BFR过程,则MAC实体可指示PHY层发送BFR-SR。UE可不具有专用于发送BFR报告(例如,MAC CE)的UL资源。
在一个实施方式中,如果已经触发并且未取消BFR过程,则MAC实体可向PHY层指示发送一个或多个BFR-SR。另外,UE可基于是否存在分配给UE的(多个)可用UL资源来确定是否生成BFR报告(例如,MAC CE)。如果存在可用于新发送的(多个)UL资源并且(多个)UL资源能够容纳BFR报告(MAC CE),则UE可生成BFR报告(MAC CE)。在一些实施方式中,当生成BFR报告(MAC CE)时,UE可取消BFR过程。在一些实施方式中,当生成BFR报告(MAC CE)时,UE可停止发送BFR-SR。
在一些实施方式中,(多个)UL资源可与特定UL所配置授权配置(例如,配置ID或类型1/类型2)相关联。例如,特定UL所配置授权配置可被配置用于BFR报告发送。如果分配给UE的可用UL资源是映射到特定所配置授权配置的所配置授权,则UE可生成BFR报告并经由UL资源发送BFR报告。BS(例如,gNB)可经由RRC或DCI信令指示所配置授权配置是特定所配置授权配置。
在一些实施方式中,如果UL资源未分配在已经检测到波束失败事件的小区、已经触发并且未取消BSR-SR过程的小区或已经触发并且未取消BFR过程的小区中,则可认为所述UL资源可用。
在一些实施方式中,UE可不使用分配在已经检测到波束失败事件的小区上的(多个)UL资源。在一个实施方式中,UE可在第一小区上检测到波束失败事件并执行BFR过程。UE可接收分配在第一小区上的UL资源。UE可不使用第一小区上的UL资源来进行BFR报告发送。在一些实施方式中,UL资源可经由DCI通过动态授权来调度,其中DCI可包括小区信息(例如,小区索引、载波指示符等)。在一些实施方式中,UL资源可以是所配置UL资源,其中所配置UL资源可配置在已经检测到波束失败事件的小区上。在一些实施方式中,UL资源可跨小区调度。例如,DCI/PDCCH可接收在第一小区上,并且UL资源(例如,PUSCH资源)可调度在已经检测到波束失败事件的第二小区上。
在一些实施方式中,UE可通过忽略/跳过UL资源和/或对应的UL授权来不使用UL资源。
BFR-SR发送约束
在一些实施方式中,在使用上述“BFR-SR触发”方法(例如,基于BFR的SR过程)来执行SCell BFR过程时,可将所触发的BFR-SR视为待处理的,直到它被取消为止。当BFR-SR过程待处理时,UE可保持在对于BFR-SR发送有效的PUCCH资源上发信号通知/发送BFR-SR,因为UE不能仅通过少数BFR-SR发送成功获得用于发送BFR报告的可用UL资源。在一些实施方式中,仅在BFR-SR发送期间活动的BWP上的PUCCH资源可被认为是(对于BFR-SR发送)有效的。
在一些实施方式中,PHY层可在MAC指示之后保持在对于BFR-SR发送有效的PUCCH资源上发信号通知/发送BFR-SR,因为UE不能仅通过少数BFR-SR发送成功获得用于发送BFR报告的可用UL资源。在一些实施方式中,仅在BFR-SR发送时机期间活动的BWP上的PUCCH资源可被认为是(对于BFR-SR发送)有效的。
然而,UE与NW之间的无线电质量可能较差,并且UE可能在一段时间内无法发送BFR-SR(例如,UE可能若干次发送BFR-SR,但UE仍然没有接收到任何(多个)可用UL资源)。因此,在一些实施方式中,提供方法来约束BFR-SR发送。可使用以下方法(方法1和方法2)中的至少一种。
方法1-基于定时器
在一些实施方式中,特定定时器(例如,“BFR-SR定时器”)可用于控制BFR-SR发送。例如,当BFR-SR定时器正在运行时,UE可在用于BFR-SR的有效PUCCH资源(例如,对于BFR-SR发送有效的PUCCH资源)上发送BFR-SR。当BFR-SR定时器不在运行时,UE可不发送BFR-SR(即使对应的BFR-SR过程是待处理的也是如此)。当BFR-SR定时器正在运行时,可认为对应的BFR-SR过程是待处理的。当BFR-SR定时器到期时,可取消对应的BFR-SR过程和/或对应的BFR过程。
在一些实施方式中,当满足以下条件(e1)-条件(e5)中的至少一者时,可启动或重启BFR-SR定时器:
(e1)触发对应于BSR-SR定时器的BFR-SR过程;
(e2)发起对应于BSR-SR定时器的BFR过程(针对SCell);
(e3)检测到波束失败事件(针对SCell);
(e4)切换/停用活动BWP;以及
(e5)MAC实体指示PHY层执行BFR-SR发送。
在一些实施方式中,当满足以下条件(f1)-条件(f12)中的至少一者时,
可停止BFR-SR定时器:
(f1)取消所触发的对应于BSR-SR定时器的BFR-SR过程;
(f2)取消对应于BSR-SR定时器的BFR过程(针对SCell);
(f3)完成对应于BSR-SR定时器的BFR过程(阵对SCell);
(f4)重新配置对应于BSR-SR定时器的BFR-SR配置;
(f5)重新配置BFR配置(针对SCell的)的任何配置(例如,计数器、定时器等);
(f6)重新配置BFR-SR的对应UL资源、BFD RS的对应UL资源和/或NBI RS的对应UL资源;
(f7)触发另一BFR过程(针对SpCell或另一SCell);
(f8)停用(多个)对应的SCell;
(f9)发送MAC PDU,其中MAC PDU可包括BFR报告(例如,MAC CE)加上其子报头(针对SCell);
(f10)发送MAC PDU,其中MAC PDU可包括BFR报告(例如,MAC CE),所述BFR报告包括在MAC PDU装配之前检测到波束失败事件的所有SCell;
(f11)取消BFR过程;以及
(f12)切换/停用(活动)BWP。
在一些实施方式中,当BFR-SR定时器到期时,UE可执行以下操作(g1)-操作(g5)中的至少一者:
(g1)取消对应的BFR-SR过程(例如,取消待处理的BFR-SR过程);
(g2)取消BFR过程(针对SCell);
(g3)发起另一BFR过程(例如,针对SpCell);
(g4)发起RA过程(在SpCell上);以及
(g5)停用(多个)对应的SCell。
在一些实施方式中,BFR-SR定时器可通过RRC来配置。例如,BFR-SR定时器可包括在BFR-SR配置中,或者包括在(多个)SCell的BFR的配置中。
在一些实施方式中,BFR-SR定时器的单位可为毫秒、时隙、符号、BFR-SR的发送周期或BFR-SR资源的发生周期。
在一些实施方式中,另一特定定时器(其称为“BFR-SR禁止定时器”)可用于以相反方式控制BFR-SR发送。例如,当BFR-SR禁止定时器正在运行时,UE可不在用于BFR-SR的有效PUCCH资源上发送BFR-SR(即使对应的BFR-SR过程是待处理的也是如此)。当BFR-SR禁止定时器不在运行时,UE可发送BFR-SR。
在一些实施方式中,当满足以下条件(h1)和条件(h2)中的至少一者时,可启动或重启BFR-SR禁止定时器:
(h1)发送对应的BFR-SR;以及
(h2)发送BFR-SR并且BFR-SR禁止定时器不在运行。
在一些实施方式中,当满足以下条件(i1)-条件(i10)中的至少一者时,可停止BFR-SR禁止定时器:
(i1)取消对应于BFR-SR禁止定时器的BFR过程(针对SCell);
(i2)完成对应于BFR-SR禁止定时器的BFR过程(针对SCell);
(i3)重新配置对应于BFR-SR禁止定时器的BFR-SR配置;
(i4)重新配置BFR配置(针对SCell)的任何配置(例如,计数器、定时器等);
(i5)重新配置BFR-SR的对应UL资源、BFD RS的对应UL资源和/或NBI RS的对应UL资源;
(i6)触发另一BFR过程(针对SpCell或SCell);
(i7)切换/停用(活动)BWP;
(i8)停用对应于BFR-SR禁止定时器的(多个)SCell(例如,UE触发(多个)SCell上的BFR过程并针对此BFR过程执行BFR-SR禁止定时器);
(i9)发送MAC PDU,所述MAC PDU包括BFR报告(M4C CE)加上其子报头(针对SCell);以及
(i10)发送MAC PDU,所述MAC PDU包括BFR报告(M4C CE),所述BFR报告包括在MACPDU装配之前检测到波束失败事的所有SCell。
方法2-基于计数器
在一些实施方式中,特定计数器(其称为“BFR-SR计数器”)用于控制BFR-SR发送。例如,UE可使用BFR-SR计数器来对BFR-SR发送了多少次进行计数。NW可向UE配置BFR-SR计数器的最大数量。当UE发送BFR-SR时,UE可使BFR-SR计数器递增1。
如果BFR-SR计数器达到最大数量,则UE可执行以下操作(j1)-操作(j9)中的至少一者:
(j1)取消对应的BFR-SR过程(例如,待处理的BFR-SR过程);
(j2)取消BFR过程((针对SCell);
(j3)发起另一BFR过程(例如,针对SpCell);
(j4)发起RA过程(在SpCell上);
(j5)释放PUCCH(针对(多个)对应的SCell或针对所有服务小区);
(j6)释放探测参考信号(Sounding Reference Signal,SRS)(针对(多个)对应的SCell或针对所有服务小区);
(j7)清除所配置DL分派和/或UL授权((多个)对应的SCell的或针对所有服务小区的);
(j8)清除用于半持久性CSI报告的PUSCH资源;以及
(j9)停用(多个)对应的SCell。
在一些实施方式中,当满足以下条件(k1)-条件(k10)中的至少一者时,可重设BFR-SR计数器:
(k1)如果UE的MAC实体的重设由UE的(多个)上层(例如,RRC层)请求;
(k2)重新配置对应于BFR-SR计数器的BFR-SR配置;
(k3)重新配置BFR配置(针对SCell)的任何配置(例如,计数器、定时器等);
(k4)重新配置BFR-SR的对应UL资源、BFD RS的对应UL资源和/或NBI RS的对应UL资源;
(k5)完成对应于BFR-SR计数器的BFR过程(针对SCell);
(k6)切换/停用活动BWP;
(k7)停用对应于BFR-SR计数器的(多个)SCell(例如,UE触发(多个)SCell上的BFR过程并针对此BFR过程应用BFR-SR计数器);
(k8)如果触发BFR-SR过程并且在UE处不存在其他待处理BFR-SR过程;
(k9)如果触发BFR过程并且在UE处不存在其他已触发且未取消的BFR-BFR过程;以及
(k10)BFR-SR计数器达到最大数量。
在一些实施方式中,对应的BWP可以是活动UL和/或DL BWP。对应的BWP可以是用于发送BFR-SR的BWP。对应的BWP可以是用于发送BFR报告的BWP。对应的BWP可以是SpCell或SCell的BWP。
在一些实施方式中,对应的BWP可在发起RA过程时通过指示DL分派或UL授权的PDCCH、通过BWP不活动定时器(例如,bwp-InactivityTimer)、通过RRC信令或通过MAC实体本身切换/停用。切换(对应的)BWP可包括激活不活动BWP和/或停用活动BWP。
在一些实施方式中,(多个)对应的SCell可以是触发(针对SCell的)BFR过程的(多个)已激活的SCell。(多个)对应的SCell可以是用于发送BFR-SR的(多个)已激活的SCell。(多个)对应的SCell可以是用于发送BFR报告的SCell。
在一些实施方式中,(多个)对应的SCell可由NW停用(例如基于SCell激活/停用MAC CE)或由UE停用(例如,基于SCell停用定时器)。
在一些实施方式中,RA过程(在SpCell/SCell上)或BFR过程(针对SpCell/SCell)可由于BFR-SR定时器到期和/或BFR-SR计数器达到预先配置的值而发起。在一些实施方式中,当满足以下条件(l1)和条件(l2)中的至少一者时,UE可停止BFR-SR定时器和/或BFR-SR禁止定时器。
(l1)发送BFR报告(例如,BFR MAC CE):
在一个实施方式中,当UE在通过动态授权/所配置授权/RAR提供的UL资源上发送MAC PDU时,可停止正在进行的RA过程(在SpCell/SCell上)或BFR过程(在SpCell/SCell上)。此MAC PDU可包括BFR MAC CE和BFRQ MAC CE的子报头。在一个实施方式中,仅在BFRMAC CE包括在MAC PDU装配之前检测到波束失败事件的所有SCell的情况下,可停止正在进行的RA过程(在SpCell/SCell上)或正在进行的BFR过程(针对SpCell/SCell)。
(12)UL资源可用于新发送:
在一个实施方式中,如果UL资源可用于发送BFR MAC CE,则UE的MAC实体可停止正在进行的RA过程(在SpCell/SCell上)或正在进行的BFR过程(针对SpCell/SCell)。
在一个实施方式中,BFR MAC CE确认可以是基于小区或基于小区组的。
在一个实施方式中,UL资源可通过动态授权、所配置UL授权类型1/类型2和/或RAR中的UL授权来提供。
在一个实施方式中,UL资源可以是专用于发送BFR MAC CE的资源。NW可经由DCI或RRC信令向UE指示对应的UL资源用于发送BFRMAC CE。
在一个实施方式中,当UL资源可容纳BFR MAC CE(加上BFR MAC CE的子报头)时,UL资源可用于新发送。
在一个实施方式中,当UL资源基于某一或某些约束用于BFR MAC CE发送时,UL资源可用于新发送。在一些实施方式中,BFR MAC CE可仅在特定UL资源上发送。例如,特定UL资源可隐式地或显式地指示特定信息。如果UE确定所分配UL资源指示特定信息,则UE可知道所述UL资源被允许用于BFR MAC CE发送。
在一个实施方式中,如果(多个)UL资源未分配在已经检测到波束失败事件的小区、已经触发并且未取消BSR-SR过程的小区或已经触发并且未取消BFR过程的小区中,则可认为所述UL资源可用。
在一个实施方式中,BFR MAC CE可以是基于小区的。也就是说,BFR MAC CE可按服务小区由UE生成。例如,如果基于与小区1相关联的第一BFD RS检测到第一波束失败事件,则UE可生成对应于小区1的第一BFR MAC CE;如果基于与小区2相关联的第二BFD RS检测到第二波束失败事件,则UE可生成对应于小区2的第二BFR MAC CE,等等。在一些实施方式中,对应于不同小区的BFR MAC CE生成(例如,第一BFR MAC CE和第二BFR MAC CE)可由UE独立执行。例如,第一BFR MAC CE可用于发送包括仅小区1的BFR相关信息的BFR MAC CE,而第二BFR MAC CE可用于发送包括仅小区2的BFRQ相关信息的BFR MAC CE。在一些实施方式中,一个BFD RS(集)可与(仅)一个小区相关联。
在一个实施方式中,BFR MAC CE可以是基于CG的。例如,如果基于与小区1相关联的第一BFD RS检测到第一波束失败事件并且基于与小区2相关联的第二BFD RS检测到第二波束失败事件,则UE可一次对小区1和小区2两者生成BFR MAC CE(其是基于CG的)。例如,UE可通过生成单个BFR MAC CE来发送包括小区1和小区2两者的BFR相关信息的BFR MAC CE。在一些实施方式中,一个BFD RS(集)可与一个小区组相关联。
图3展示根据本公开的实施方式的由UE执行的方法300的流程图。应注意,尽管在图3中将动作302、动作304、动作306、动作308、动作310、动作312和动作314描绘为表示为独立方框的单独动作,但不应将这些单独描绘的动作解释为一定是次序相依的。图3中执行动作的次序并不意图解释为限制,并且可按任何次序组合任何数量个所描述的方框以实施方法或替代方法。
此外,在本发明实施方式中的一些中,可省略动作302、动作304、动作306、动作308、动作310、动作312和动作314中的一个或多个。
在动作302中,UE可从BS接收指示与BS的第一小区相关联的第一RS(例如,(多个)BFD RS)的第一配置。例如,在BFD操作期间,BS可向UE配置(多个)BFD RS作为(多个)第一RS。第一配置可以是(多个)BFD RS的测量配置,所述测量配置可包括(多个)BFD RS的(多个)ID。在一些实施方式中,第一RS可以是SSB或CSI-RS。
在一些实施方式中,第一小区可以是SCell。
在动作304中,UE可通过基于第一RS评估第一无线电链路质量来确定在第一小区上是否检测到第一波束失败事件。例如,当第一小区的第一无线电链路质量比阈值更差(例如,基于第一RS评估的第一无线电链路质量低于阈值)时,UE的PHY层可向UE的更高层(例如,MAC实体)提供波束失败实例指示。如果UE的MAC实体发现所检测到的波束失败实例的数量在特定时间段(例如,由BFD定时器beamFailureDetectionTimer定义)内超过所配置最大数量(例如,beamfailureInstanceMaxCount),UE可确定检测到第一波束失败事件。
在动作306中,当在第一小区上检测到第一波束失败事件时,UE可针对第一小区触发第一BFR过程。在一些实施方式中,第一BFR过程可以是针对第一小区触发的BFR过程。一旦触发第一BFR过程,UE就可开始执行诸如NBI操作、BFRQ操作和/或BFR响应操作的操作。
另外,当触发并且未取消第一BFR过程时,UE可执行动作308、动作310和动作312(如果UE分配有用于BFR报告发送的(多个)可用UL资源)以及动作308和动作314(如果UE未被分配有用于BFR报告发送的(多个)可用UL资源)。
如图3所示,在动作308中,UE可确定UE是否分配有可用于发送BFR报告的可用UL资源。在一些实施方式中,当UL资源可用于新发送和/或能够容纳BFR报告(例如,BFR MAC CE)和BFR报告的子报头时,UE可确定UL资源可用于发送BFR报告。
在一些实施方式中,UL资源可以是PUSCH资源。
在动作310和动作312中,当UE分配有可用UL资源时,UE可响应于第一BFR过程而生成BFR报告并在UL资源上将BFR报告发送到BS。
在一些实施方式中,BFR报告可包括关于故障小区的信息(例如,第一小区的小区索引/标识)、关于(多个)新波束的信息(例如,第一小区的第一候选波束指示符)和无新波束信息(例如,第一小区的第一波束存在指示符)中的至少一者。例如,第一波束存在指示符可设置为第一值或第二值以指示UE是否发现任何合格的新波束/候选波束。
在动作314中,当UE未被分配有可用UL资源时,UE可响应于第一BFR过程而触发BFR的SR过程(或“BFR-SR过程”)。与响应于包含可用UL数据的LCH的(常规)BSR过程而触发的传统SR过程相比,BFR的SR过程的触发原因可有所不同。具体地,BFR的SR过程可响应于BFR过程而不是响应于BSR过程而触发。在BFR的SR过程期间,UE可将BFR的SR(或“BFR-SR”)发送到BS以请求用于BFR报告发送的UL资源。
在一些实施方式中,UE可针对在每个小区(例如,SpCell或SCell)上检测到的每个波束失败事件触发BFR过程。如图4所示,在此状况下,在UE处可同时存在多个所触发的BFR过程(正在进行)。
图4展示根据本公开的实施方式的由UE执行的方法400的流程图。如图4所示,在动作402中,UE可从BS接收指示与BS的第二小区相关联的第二RS的第二配置。例如,在BFD操作期间,BS可向UE配置(多个)BFD RS作为(多个)第二RS。第二配置可以是(多个)BFD RS的测量配置,所述测量配置可包括(多个)BFD RS的(多个)ID。在一些实施方式中,第二RS可以是SSB或CSI-RS。
在一些实施方式中,第二小区可以是SpCell或SCell。
在动作404中,UE可通过基于第二RS评估第二无线电链路质量来确定在第二小区上是否检测到第二波束失败事件。例如,当第二小区的第二无线电链路质量比阈值更差(例如,基于第二RS评估的第一无线电链路质量低于阈值)时,UE的PHY层可向UE的更高层(例如,MAC实体)提供波束失败实例指示。如果UE的MAC实体发现所检测到的波束失败实例的数量在特定时间段(例如,由BFD定时器beamFailureDetectionTimer定义)内超过所配置最大数量(例如,beamfailureInstanceMaxCount),UE可确定检测到第二波束失败事件。
在动作406中,当在第二小区上检测到第二波束失败事件时,UE可针对第二小区触发第二BFR过程。
在一些实施方式中,UE可通过单个BFR报告(例如,单个MAC CE)发送每个故障小区(例如,在其上检测到波束失败事件的小区)的(BFR相关)信息。例如,在图3中的动作310中生成的BFR报告还可包括第二小区的(BFR相关)信息(例如,第二小区的第二小区索引/标识、第二小区的第二波束存在指示符和第二小区的第二候选波束指示符中的至少一者)。
在一些实施方式中,在触发BFR的SR过程之后,如果UE未配置有PUCCH资源和/或如果不存在用于发送BFR的SR的有效PUCCH资源,则UE可触发/发起RA过程。
图5展示根据本公开的实施方式的由UE执行的方法500的流程图。如图5所示,当触发并且未取消BFR的SR过程时,可执行动作502、动作504和动作506。
在动作502中,UE可确定UE是否被配置有对于发送BFR的SR有效的PUCCH资源。
在动作504中,当UE配置有对于发送BFR的SR有效的PUCCH资源时,UE可在PUCCH资源上发送BFR的SR。
在动作506中,当UE未配置有PUCCH资源和/或不存在用于发送BFR的SR的有效PUCCH资源时,UE可针对第一BFR过程发起RA过程。
在一些实施方式中,方法500还可包括动作508和动作510。
在动作508中,如果UE配置有用于BFR-SR发送的PUCCH资源,则当已经在PUCCH资源上发送BFR的SR的次数达到预先配置的值(例如,由BS配置,或在没有来自BS的任何信令的情况下预先存储在UE中)时,UE可释放PUCCH资源。
在动作510中,在发起RA过程之后,当已经在通过来自BS的动态授权或所配置授权提供的另一UL资源(例如,在RA过程期间UL资源不是通过RAR提供的)上发送BFR报告时,UE可停止RA过程。
以下提供某些术语的非限制性描述。
在一些实施方式中,CC、小区和/或服务小区可以是PCell、PSCell和/或SCell。
在一些实施方式中,SpCell可包括PCell和PSCell。
在一些实施方式中,UL资源可以是RACH资源、PUCCH资源和/或PUSCH资源。UL资源可通过动态授权(例如,经由PDCCH)、RAR来调度,并且/或者通过RRC(例如,类型l/类型2所配置UL授权,或预先配置在RRC配置中)来配置。
在一些实施方式中,当检测到((多个)SCell的)波束失败事件时,UE可(针对(多个)SCell)触发BFR过程。
在一些实施方式中,当检测到(SpCell的)波束失败事件时,UE可(针对SpCell)触发BFR过程。
在一些实施方式中,BFR过程可用于从在(多个)SpCell和/或SCell上检测到的波束失败事件恢复。
在一些实施方式中,基于RACH的BFR过程可基于无竞争RA过程和/或基于竞争的RA过程来执行。当发起对应的RA过程时,可发起基于RACH的BFR过程。当对应的RA过程正在进行时,可认为基于RACH的BFR过程正在进行。当对应的RA过程停止时,基于RACH的BFR过程停止。当对应的RA过程完成时,基于RACH的BFR过程完成。
在一些实施方式中,MAC实体/PHY层/RRC层可指代UE。
在一些实施方式电针对SCell触发的BFR过程的BFR-SR发送(例如,图1所展示的动作1A)可由物理随机接入信道(Physical Random Access Channel,PRACH)发送替换。例如,在BFRQ操作的BFR-SR发送中,UE可执行PRACH发送(例如,发送前导码)以请求用于BFR报告发送的UL资源。
在一些实施方式中,针对SCell触发的BFR过程的BFRQ操作的BFR报告(MAC CE)发送(例如,图1所展示的动作2A)可由发送上行链路控制信息(Uplink ControlInformation,UCI)替换。例如,UCI可包括BFR相关信息,诸如(1)(故障)CC/小区信息(例如,小区索引),(2)(多个)(故障)小区集/组(例如,所述集/组可由NW预先配置),(3)(故障)发送/接收点(Transmission/Reception Point,TRP)信息,(4)(故障)CC、小区集/组或TRP的对应测量结果(例如,RSRP、信噪比(Signal to Interference plus Noise Ratio,SINR)等),(5)候选波束信息/指示符(或“新波束信息”)(例如,指示基于(多个)NBI RS的测量结果选择的一个或多个合格波束),(6)无新波束信息(例如,指示UE不能找到RSRP高于(故障)CC、小区集/组、TRP等的阈值的任何新波束)。
在一些实施方式中,NW可指代NW节点、BS、gNB、eNB、TRP或小区。
在一些实施方式中,TRP可提供网络覆盖或者直接与UE通信。TRP也可称为分布式单元(distributed unit,DU)。
在一些实施方式中,小区可由(多个)相关联TRP组成。例如,小区的覆盖范围可由所有相关联TRP组成。小区可由BS控制。小区可指代TRP组(TRP Group,TRPG)。
在一些实施方式中,UE的服务波束可以是由NW生成的波束,所述波束可用于与UE通信(例如,用于发送和/或接收)。
在一些实施方式中,为了覆盖发送和/或接收的所有可能的方向,可需要许多波束。波束扫掠可以是在一定时间间隔内生成波束子集并在(多个)其他时间间隔内改变所生成的(多个)波束(例如,在时域中改变波束)的操作。以此方式,在若干时间间隔之后可覆盖所有可能的方向。
在一些实施方式中,NW可具有多个TRP(例如,集中式或分布式)。每个TRP可形成用于发送和/或接收的多个波束。时域/频域中波束的数量和同时波束的数量可取决于天线阵列元件的数量和TRP处的射频(Radio Frequency,RF)。TRP可将波束形成应用于数据和控制信令发送或接收两者。由TRP同时生成的波束数量可取决于TRP的能力(例如,由同一小区中不同TRP同时生成的最大波束数量可相同,而由不同小区中不同TRP同时生成的最大波束数量可不同)。在一些实施方式中,提供不同方向的控制信令可需要波束扫掠。
在一些实施方式中,波束可以是DL波束或UL波束。波束可以是发送(Tx)波束和/或接收(Rx)波束。波束可以是UE波束和/或NW波束。波束可指代RS(例如,SSB、CSI-RS或SRS)和/或发送配置指示(Transmission Configuration Indication,TCI)状态(或与其相关联)。
在一些实施方式中,(新/候选)波束可经由RS(例如,SSB、CSI-RS和/或SRS)和/或TCI状态向UE指示。
在一些实施方式中,术语“波束”可由术语“空间滤波器”替换。例如,当UE报告优选gNB Tx波束时,UE可选择gNB所使用的空间滤波器。术语“波束信息”可用于提供关于正在使用/选择哪个波束/空间滤波器的信息。在一个实施方式中,可通过应用单独的波束(空间滤波器)来发送单独的RS。因此,波束或波束信息可通过(多个)RS资源索引来表示。
在一些实施方式中,MAC实体(或UE)可配置有零个、一个或多个BFR-SR配置。BFR-SR配置可由一个PUCCH资源或用于跨不同BWP和小区进行SR发送的PUCCH资源集组成。
在一些实施方式中,BFR报告可包括MAC CE和MAC CE的子报头。
在一些实施方式中,SR(例如,传统SR过程中使用的)可用于请求用于新发送的上行链路共享信道(Uplink Shared Channel,UL-SCH)资源(例如,PUSCH资源)。UE可配置有零个、一个或多个SR配置。SR配置可由用于跨不同BWP和小区进行SR的PUCCH资源集组成。对于LCH,可每BWP配置至多一个用于SR的PUCCH资源。每个SR配置可对应于一个或多个LCH。每个LCH可映射到零个或一个SR配置。LCH的触发BSR的SR配置(如果这种配置存在)可被视为所触发的SR的对应SR配置。当触发SR时,应将所述SR视为待处理的,直到它被取消为止。
在一些实施方式中,BFR-SR可在BFRQ操作的BFR-SR发送(例如,图1所展示的动作1A)中发选BFR-SR可在用于BFR的专用的类似SR的PUCCH资源上发送。BFR-SR可用于向NW通知波束失败事件和/或用于请求UL-SCH资源以进行BFR报告发送。BFR-SR所需的UL资源可(仅)用于BFR(报告发送)。UE可配置有零个、一个或多个BFR-SR配置。用于BFR-SR的PUCCH资源可按BWP、按TRP、按CC、按CC集、按CG和/或按UE配置。用于BFR-SR的PUCCH资源可配置在PCell、PSCell和/或(PUCCH)SCell上。BFR-SR可相应地在PCell、PSCell和/或SCell上发送。在一些实施方式中,BFR-SR可通过跨小区发送来发送(例如,在SCell上发生波束失败事件,并且在PCell上发送与波束失败事件相对应的BFR-SR)。在一些实施方式中,BFR-SR配置可以是并非SR配置中的一个的特定配置(例如,BFR-SR配置的ID不与参数schedulingRequestid共享)。在一些实施方式中,BFR-SR配置可以是SR配置中的一个(例如,BFR-SR配置的ID与schedulingRequestid共享)。在一些实施方式中,BFR-SR可在配置给UE的所有SR配置中具有最高优先级。在一些实施方式中,BFR-SR配置可按BWP、按TRP、按CC、按CC集、按CG和/或按UE配置。
在一些实施方式中,BFR报告可经由BFRQ操作的BFR报告(MAC CE)发送(例如,图1所展示的动作2A)来发送。BFR报告可在可容纳BFR报告的任何可用UL授权上发送。在一些实施方式中,BFR报告(仅)可在BFR-SR所请求的特定UL授权上发送。在一些实施方式中,可基于某种隐式或显式方法来指示BFR-SR是否请求特定UL授权。在一些实施方式中,术语“BFRMAC CE”可用于描述通过MAC CE发送的BFR报告。在一些实施方式中,BFR报告可通过(多个)MAC CE来发送。在一些实施方式中,BFR报告可在PUSCH上发送。在一些实施方式中,BFR报告可包括以下项(m1)-项(m6)中的至少一者:
(m1)(故障)CC(或小区)信息(例如,小区素引/ID);
(m2)(多个(故障)小区集/组(例如,所述集/组可由NW预先配置);
(m3)(故障)TRP信息;
(m4)(故障)CC(或小区集/组、TRP等)的对应测量结果(例如,RSRP、SINR等);
(m5)候选波束信息/指示符(或“新波束信息”)(例如,可基于(多个)NBI RS的测量结果选择一个或多个合格波束);以及
(m6)无新波束信息(例如,波束存在指示符,其可在UE无法找到其RSRP高于(故障)CC(或小区集/组、TRP等)的阈值的任何新波束的情况下提供)。
在一些实施方式中,BFD RS可以是可用于波束失败检测的RS(例如,SSB和/或CSI-RS)集。不同的BFD RS集可与不同的CC(或小区)、不同的小区集/组或不同的TRP相关联。例如,如果第一BFD RS集与第一CC相关联,并且UE检测到第一BFD RS集的质量在一段时间内低于阈值,则UE可确定第一CC发生故障(或检测到波束失败事件)。在另一方面,如果未针对CC(或小区)提供BFD RS以用于波束失败检测,则UE可基于针对所述CC(或小区)的PDCCH的已激活TCI状态来执行波束监视。BFD RS可在当前CC或(例如同一频带内的)另一CC(的活动BWP)中发送。在一些实施方式中,BFD RS和BFR-SR可配置在同一配置中。
在一些实施方式中,NBI RS可以是可用于新波束标识的RS(例如,SSB和/或CSI-RS)集。不同的NBI RS集可针对不同的CC(或小区)、小区集/组或TRP来配置。例如,如果第一NBI RS集是针对第一CC(或小区)配置的,并且UE在第一CC(或小区)上检测到波束失败事件,则UE可基于第一NBI RS集的测量结果来选择新波束/候选波束。例如,UE可在第一NBIRS集内选择具有最高RSRP(或具有大于阈值的RSRP)的波束作为用于BFR的新波束。UE可将NBI RS的信息包括在BFR报告中。NBI RS(例如,SSB和/或CSI-RS)可在配置有波束失败恢复机制的CC或同一频带内的另一CC(的活动BWP)中发送。
图6展示根据本公开的各个方面的用于无线通信的节点的方框图。如图6所示,节点600可包括收发器606、处理器608、存储器602、一个或多个呈现部件604和至少一根天线610。节点600还可包括RF频谱带模块、BS通信模块、网络通信模块和系统通信管理模块、输入/输出(Input/Output,I/O)端口、I/O部件和电源(图6中未明确展示出)。这些部件中的每一者可通过一根或多根总线624直接地或间接地彼此通信。在一个实施方式中,节点600可以是执行本文例如参考图1至图5所描述的各种功能的UE或BS。
具有发射器616(例如,发送(transmitting/transmission)电路)和接收器618(例如,接收(receiving/reception)电路)的收发器606可被配置来发送和/或接收时间和/或频率资源划分信息。在一些实施方式中,收发器606可被配置来在不同类型的子帧和时隙中进行发送,所述子帧和时隙包括但不限于可使用的、不可使用的和可灵活使用的子帧和时隙格式。收发器606可被配置来接收数据并控制信道。
节点600可包括多种计算机可读介质。计算机可读介质可以是可由节点600访问的任何可用介质,并且包括易失性(和非易失性)介质和可移动(和不可移动)介质两者。以举例而非限制的方式,计算机可读介质可包括计算机存储介质和通信介质。计算机存储介质可包括根据任何方法或技术实施来存储诸如计算机可读的信息的易失性(和非易失性)和可移动(和不可移动)介质两者。
计算机存储介质包括RAM、ROM、EEPROM、闪存存储器(或其他存储技术)、CD-ROM、数字通用光盘(Digital Versatile Disk,DVD)(或其他光盘存储装置)、磁带盒、磁带、磁盘存储(或其他磁存储装置)等。计算机存储介质不包括传播数据信号。通信介质通常可在诸如载波或其他传输机制的已调制数据信号中体现计算机可读指令、数据结构、过程模块或其他数据,并且包括任何信息递送介质。术语“已调制数据信号”可意指一个信号,所述信号具有的一个或多个特征以在信号中编码信息的方式设定或改变。以举例而非限制的方式,通信介质可包括有线介质(诸如有线网络或直接有线连接)和无线介质(诸如声学、RF、红外线以及其他无线介质)。任何上述介质的组合也应包括在计算机可读介质的范围内。
存储器602可包括呈易失性和/或非易失性存储器形式的计算机存储介质。存储器602可以是可移动的、不可移动的或它们的组合。例如,存储器602可包括固态存储器、硬盘驱动器、光盘驱动器等。如图6所展示,存储器602可存储计算机可读的和/或计算机可执行的指令614(例如,软件代码),所述计算机可读的和/或计算机可执行的指令614被配置来在被执行时致使处理器608执行本文例如参考图1至图5所描述的各种功能。替代地,指令614可能不可由处理器608直接执行,而是可被配置来致使节点600(例如,当被编译并执行时)执行本文所描述的各种功能。
处理器608(例如,具有处理电路)可包括智能硬件装置、中央处理单元(CentralProcessing Unit,CPU)、微控制器、ASIC等。处理器608可包括存储器。处理器608可处理从存储器602接收的数据612和指令614,以及通过收发器606、基带通信模块和/或网络通信模块的信息。处理器608还可处理要发送到收发器606以通过天线610发送的信息、要发送到网络通信模块以发送到核心网络的信息。
一个或多个呈现部件604可将数据指示呈现给人或其他装置。呈现部件604的示例可包括显示装置、扬声器、打印部件、振动部件等。
根据以上描述,显然,在不脱离本申请中所描述的概念的范围的情况下,可使用各种技术来实施那些概念。此外,虽然已经具体参考某些实施方式描述了概念,但本领域普通技术人员可认识到,在不脱离这些概念的范围的情况下,可在形式和细节上做出改变。因此,应在所有方面将所描述的实施方式认为是说明性而非限制性的。还应理解,本申请不限于以上所描述的特定实施方式,而是在不脱离本公开的范围的情况下,许多重新布置、修改和替换是可能的。

Claims (20)

1.一种由用户设备UE执行的用于波束失败恢复BFR的方法,所述方法包括:
从基站BS接收第一配置,所述第一配置指示与所述BS的第一小区相关联的第一参考信号RS;
通过基于所述第一RS评估第一无线电链路质量来确定在所述第一小区上是否检测到第一波束失败事件;
当在所述第一小区上检测到所述第一波束失败事件时,针对所述第一小区触发第一BFR过程;以及
当所述第一BFR过程被触发并且未被取消时,
确定所述UE是否被分配有能够用于发送BFR报告的上行链路UL资源,所述UL资源是物理上行链路共享信道PUSCH资源;
当所述UE被分配有所述UL资源时,
响应于所述第一BFR过程而生成所述BFR报告;以及
在所述UL资源上将所述BFR报告发送到所述BS,以及
当所述UE未被分配有所述UL资源时,
响应于所述第一BFR过程而触发用于BFR的调度请求SR过程。
2.如权利要求1所述的方法,其特征在于,所述BFR报告包括所述第一小区的第一小区标识、所述第一小区的第一波束存在指示符和所述第一小区的第一候选波束指示符中的至少一者。
3.如权利要求2所述的方法,其还包括:
从所述BS接收第二配置,所述第二配置指示与所述BS的第二小区相关联的第二RS;
通过基于所述第二RS评估第二无线电链路质量来确定在所述第二小区上是否检测到第二波束失败事件;以及
当在所述第二小区上检测到所述第二波束失败事件时,针对所述第二小区触发第二BFR过程。
4.如权利要求3所述的方法,其特征在于,所述BFR报告包括所述第二小区的第二小区标识、所述第二小区的第二波束存在指示符和所述第二小区的第二候选波束指示符中的至少一者。
5.如权利要求3所述的方法,其特征在于,所述第二小区是特殊小区SpCell或辅小区SCell。
6.如权利要求1所述的方法,其特征在于,所述第一小区是辅小区SCell。
7.如权利要求1所述的方法,所述方法还包括:
当所述UL资源能够容纳所述BFR报告和所述BFR报告的子报头时,确定所述UL资源能够用于发送所述BFR报告。
8.如权利要求1所述的方法,所述方法还包括:
当所述BFR的SR过程被触发并且未被取消时,
确定所述UE是否被配置有对于发送用于BFR的SR有效的物理上行链路控制信道PUCCH资源;
当所述UE被配置有所述PUCCH资源时,在所述PUCCH资源上发送所述用于BFR的SR;以及
当所述UE未被配置有所述PUCCH资源时,针对所述第一BFR过程发起随机接入RA过程。
9.如权利要求8所述的方法,所述方法还包括:
当在通过来自所述BS的动态授权或所配置授权提供的另一UL资源上发送所述BFR报告时,停止所述RA过程。
10.如权利要求8所述的方法,所述方法还包括:
当在所述PUCCH资源上发送所述用于BFR的SR的次数达到预先配置的值时,释放所述PUCCH资源。
11.一种用于执行波束失败恢复BFR的用户设备UE,所述UE包括:
存储器;以及
耦接到所述存储器的至少一个处理器,所述至少一个处理器被配置来:
从基站BS接收第一配置,所述第一配置指示与所述BS的第一小区相关联的第一参考信号RS;
通过基于所述第一RS评估第一无线电链路质量来确定在所述第一小区上是否检测到第一波束失败事件;
当在所述第一小区上检测到所述第一波束失败事件时,针对所述第一小区触发第一BFR过程;并且
当所述第一BFR过程被触发并且未被取消时,
确定所述UE是否被分配有能够用于发送BFR报告的上行链路UL资源,所述UL资源是物理上行链路共享信道PUSCH资源;
当所述UE被分配有所述UL资源时,
响应于所述第一BFR过程而生成所述BFR报告;并且
在所述UL资源上将所述BFR报告发送到所述BS,并且
当所述UE未被分配有所述UL资源时,
响应于所述第一BFR过程而触发BFR的调度请求SR过程。
12.如权利要求11所述的UE,其特征在于,所述BFR报告包括所述第一小区的第一小区标识、所述第一小区的第一波束存在指示符和所述第一小区的第一候选波束指示符中的至少一者。
13.如权利要求12所述的UE,其特征在于,所述至少一个处理器进一步被配置来:
从所述BS接收第二配置,所述第二配置指示与所述BS的第二小区相关联的第二RS;
通过基于所述第二RS评估第二无线电链路质量来确定在所述第二小区上是否检测到第二波束失败事件;并且
当在所述第二小区上检测到所述第二波束失败事件时,针对所述第二小区触发第二BFR过程。
14.如权利要求13所述的UE,其特征在于,所述BFR报告包括所述第二小区的第二小区标识、所述第二小区的第二波束存在指示符和所述第二小区的第二候选波束指示符中的至少一者。
15.如权利要求13所述的UE,其特征在于,所述第二小区是特殊小区SpCell或辅小区SCell。
16.如权利要求11所述的UE,其特征在于,所述第一小区是辅小区SCell。
17.如权利要求11所述的UE,其特征在于,所述至少一个处理器进一步被配置来:
当所述UL资源能够容纳所述BFR报告和所述BFR报告的子报头时,确定所述UL资源能够用于发送所述BFR报告。
18.如权利要求11所述的UE,其特征在于,所述至少一个处理器进一步被配置来:
当所述BFR的SR过程被触发并且未被取消时,
确定所述UE是否被配置有对于发送BFR的SR有效的物理上行链路控制信道PUCCH资源;
当所述UE被配置有所述PUCCH资源时,在所述PUCCH资源上发送所述BFR的SR;并且
当所述UE未被配置有所述PUCCH资源时,针对所述第一BFR过程发起随机接入RA过程。
19.如权利要求18所述的UE,其特征在于,所述至少一个处理器进一步被配置来:
当在通过来自所述BS的动态授权或所配置授权提供的另一UL资源上发送所述BFR报告时,停止所述RA过程。
20.如权利要求18所述的UE,其特征在于,所述至少一个处理器进一步被配置来:
当在所述PUCCH资源上发送所述BFR的SR的次数达到预先配置的值时,释放所述PUCCH资源。
CN202080027633.5A 2019-07-22 2020-07-21 用于波束失败恢复(bfr)的方法和设备 Active CN114556845B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962877257P 2019-07-22 2019-07-22
US62/877257 2019-07-22
PCT/CN2020/103300 WO2021013150A1 (en) 2019-07-22 2020-07-21 Methods and apparatuses for beam failure recovery (bfr)

Publications (2)

Publication Number Publication Date
CN114556845A CN114556845A (zh) 2022-05-27
CN114556845B true CN114556845B (zh) 2023-07-28

Family

ID=74190027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080027633.5A Active CN114556845B (zh) 2019-07-22 2020-07-21 用于波束失败恢复(bfr)的方法和设备

Country Status (4)

Country Link
US (1) US11239897B2 (zh)
EP (1) EP4005141A4 (zh)
CN (1) CN114556845B (zh)
WO (1) WO2021013150A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828058B (zh) * 2019-06-28 2023-04-11 中兴通讯股份有限公司 用于无线射频链路恢复的方法
CN114208228A (zh) * 2019-07-31 2022-03-18 Lg电子株式会社 用于在无线通信系统中与bsr有关地操作ue的方法和装置
TWI733559B (zh) * 2019-08-14 2021-07-11 香港商鴻穎創新有限公司 用於上行鏈路傳輸優先排序之方法及裝置
JP7358480B2 (ja) * 2019-08-15 2023-10-10 株式会社Nttドコモ 端末、無線通信方法及びシステム
CN112584443A (zh) * 2019-09-27 2021-03-30 苹果公司 辅助小区链路恢复请求传输
EP3799518A1 (en) * 2019-09-27 2021-03-31 Apple Inc. Secondary cell link recovery request transmission
US11564248B2 (en) * 2020-01-29 2023-01-24 Qualcomm Incorporated Techniques for activation and deactivation of resources configured across multiple component carriers
EP4111799A4 (en) * 2020-04-01 2023-08-09 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR SLEEP MODE OPERATION IN A WIRELESS COMMUNICATION SYSTEM
US11943037B2 (en) * 2020-10-05 2024-03-26 Samsung Electronics Co., Ltd. Method and apparatus for beam failure recovery in a wireless communication system
KR20240041323A (ko) * 2021-08-11 2024-03-29 퀄컴 인코포레이티드 빔 실패 복구 동안의 스케줄링 요청 송신
US20230089145A1 (en) * 2021-09-22 2023-03-23 Mediatek Inc. Method and apparatus for new beam identification
US20230102187A1 (en) * 2021-09-24 2023-03-30 Qualcomm Incorporated Techniques for autonomous beam failure indicator counting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032882A1 (en) * 2017-08-09 2019-02-14 Idac Holdings, Inc. METHODS AND SYSTEMS FOR RECOVERING AND BEAM MANAGEMENT
CN109982431A (zh) * 2017-12-28 2019-07-05 华硕电脑股份有限公司 选择用于随机接入程序的带宽部分的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment
US11368950B2 (en) * 2017-06-16 2022-06-21 Asustek Computer Inc. Method and apparatus for beam management in unlicensed spectrum in a wireless communication system
CN109842894B (zh) * 2017-11-27 2021-12-14 华硕电脑股份有限公司 无线通信系统中减少波束恢复程序中断的方法和设备
US11363516B2 (en) * 2019-03-27 2022-06-14 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032882A1 (en) * 2017-08-09 2019-02-14 Idac Holdings, Inc. METHODS AND SYSTEMS FOR RECOVERING AND BEAM MANAGEMENT
CN109982431A (zh) * 2017-12-28 2019-07-05 华硕电脑股份有限公司 选择用于随机接入程序的带宽部分的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTeK.R2-1806916 "Discussion on PUCCH beam failure recovery request in NR".3GPP tsg_ran\WG2_RL2.2018,(TSGR2_102),全文. *
Nokia.R2-2003903 "Offline discussion 104: Timer based BFR MAC CE Transmission - second round".3GPP tsg_ran\wg2_rl2.2020,(tsgr2_109bis-e),全文. *

Also Published As

Publication number Publication date
US11239897B2 (en) 2022-02-01
CN114556845A (zh) 2022-05-27
WO2021013150A1 (en) 2021-01-28
US20210028848A1 (en) 2021-01-28
EP4005141A4 (en) 2023-07-26
EP4005141A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
CN114556845B (zh) 用于波束失败恢复(bfr)的方法和设备
WO2021018010A1 (en) Methods and apparatuses for scheduling request resource prioritization for beam failure recovery
CN114097266B (zh) 执行波束故障恢复的方法和相关装置
US11863373B2 (en) Method and user equipment for beam failure recovery procedure
US11272561B2 (en) Methods and apparatuses for beam failure recovery
US11632794B2 (en) Methods and apparatuses for listen before talk failure detection and recovery
WO2021027885A1 (en) Methods and apparatuses for uplink transmission prioritization
EP4038986B1 (en) Method and apparatus for discontinuous reception operations for beam failure recovery procedure
US11265915B2 (en) Methods and devices for adaptive scheduling request procedure
KR102671061B1 (ko) 빔 장애 복구를 위한 방법들 및 장치들

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant