CN114555628A - 新颖抗虫基因和使用方法 - Google Patents

新颖抗虫基因和使用方法 Download PDF

Info

Publication number
CN114555628A
CN114555628A CN202080071897.0A CN202080071897A CN114555628A CN 114555628 A CN114555628 A CN 114555628A CN 202080071897 A CN202080071897 A CN 202080071897A CN 114555628 A CN114555628 A CN 114555628A
Authority
CN
China
Prior art keywords
amino acid
seq
plant
polypeptide
nucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080071897.0A
Other languages
English (en)
Inventor
A·M·加伯斯
N·朱古勒
J·扎伊采娃
D·莱赫蒂宁
A·贝尔林
T·埃贝勒
丁雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Agricultural Solutions Seed US LLC
Original Assignee
BASF Agricultural Solutions Seed US LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Agricultural Solutions Seed US LLC filed Critical BASF Agricultural Solutions Seed US LLC
Publication of CN114555628A publication Critical patent/CN114555628A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Insects & Arthropods (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

提供了用于赋予细菌、植物、植物细胞、组织和种子杀有害生物活性的组合物和方法。提供了包含毒素多肽的编码序列的组合物。该等编码序列可用于DNA构建体或表达盒中,以用于在植物和细菌中进行转化和表达。组合物还包含转化的细菌、植物、植物细胞、组织和种子。特别地,提供了分离的毒素核酸分子。另外,涵盖与多核苷酸对应的氨基酸序列,以及与那些氨基酸序列特异性结合的抗体。特别地,本发明提供了分离的核酸分子,该等分离的核酸分子包含编码SEQ ID NO:19至SEQ ID NO:36中任一者所示的氨基酸序列的核苷酸序列,或者SEQ ID NO:1至SEQ ID NO:18中任一者所示的核苷酸序列,以及其变体和片段。

Description

新颖抗虫基因和使用方法
技术领域
本发明涉及分子生物学领域。提供了编码杀有害生物蛋白的新颖基因。这些蛋白质和编码它们的核酸序列可用于制备杀有害生物制剂和产生转基因抗害虫植物。
背景技术
植物害虫是世界重要农作物损失的主要因素。由于包括昆虫在内的非哺乳动物害虫的侵扰,仅在美国每年就损失约80亿美元。昆虫害虫主要通过密集施用化学杀有害生物剂来防治,所述化学杀有害生物剂通过抑制昆虫生长、阻止昆虫取食或繁殖或致死而有活性。因此可以实现良好的昆虫控制,但这些化学物质有时也可影响其它有益昆虫。化学杀有害生物剂的广泛使用导致的另一个问题是抗性昆虫品种的出现。这已经通过各种抗性管理实践得到了部分缓解,但是对替代害虫防治剂的需求日益增加。生物害虫防治剂,例如表达杀有害生物毒素如δ-内毒素的苏云金芽孢杆菌(Bacillus thuringiensis)菌株,也已施加至农作物,具有令人满意的结果,从而为化学杀有害生物剂提供了替代或补充。特别地,杀昆虫毒素(例如苏云金芽孢杆菌δ-内毒素)在转基因植物中的表达提供了针对选定的昆虫害虫的有效保护,并且表达此类毒素的转基因植物已经被商业化,从而允许农民减少化学昆虫防治剂的施加,
苏云金芽孢杆菌是一种革兰氏阳性芽孢形成土壤细菌,其特征是其能够产生结晶内含物,所述结晶内含物对某些昆虫目和昆虫物种特别有毒,但对植物和其它非靶向生物无害。为此原因,包括苏云金芽孢杆菌菌株或其杀昆虫蛋白的组合物可用作环境可接受的杀昆虫剂以防治农业昆虫害虫或多种人类或动物疾病的昆虫媒介。
来自苏云金芽孢杆菌的晶体(Cry)蛋白(δ-内毒素)对主要是鳞翅目、半翅目、双翅目和鞘翅目幼虫具有有效的杀昆虫活性。这些蛋白质还显示出针对膜翅目、同翅目、虱毛目、食毛目和蜱螨目害虫目以及其它无脊椎动物目(例如线形动物门、扁虫动物门和肉鞭毛虫门)的活性(Feitelson(1993)The Bacillus Thuringiensis family tree.在AdvancedEngineered Pesticides,Marcel Dekker,Inc.,New York,N.Y.中)。这些蛋白质最初主要基于它们的杀昆虫活性被分类为CryI至CryV。主要类别是鳞翅目特异性(I)、鳞翅目和双翅目特异性(II)、鞘翅目特异性(III)、双翅目特异性(IV)、以及线虫特异性(V)和(VI)。蛋白质被进一步分为亚科;每个家族中更高度相关的蛋白质被分配了门字母,例如Cry1A、Cry1B、Cry1C等。每个门内更密切相关的蛋白质被赋予名称,例如Cry1C1、Cry1C2等。
基于氨基酸序列同源性而非昆虫靶标特异性描述了Cry基因的命名法(Crickmore等人,(1998)Microbiol.Mol.Biol.Rev.62:807-813)。在这种分类中,每种毒素都被分配了唯一的名称,包括一级等级(阿拉伯数字)、二级等级(大写字母)、三级等级(小写字母)和四级等级(另一个阿拉伯数字)。罗马数字已被替换为一级等级中的阿拉伯数字。序列同一性低于45%的蛋白质具有不同的一级等级,并且二级等级和三级等级的标准分别为78%和95%。
晶体蛋白在被摄入并溶解在昆虫中肠中之前不会表现出杀昆虫活性。摄入的原毒素在昆虫消化道中被蛋白酶水解成活性有毒分子。(
Figure BDA0003594082320000021
和Whiteley(1989)Microbiol.Rev.53:242-255)。这种毒素与靶标幼虫的中肠中的顶端刷状缘受体结合,并插入顶端膜中,从而创建离子通道或孔隙,导致幼虫死亡。
δ-内毒素通常具有五个保守序列结构域和三个保守结构域(参见例如de Maagd等人,(2001)Trends Genetics 17:193-199)。第一保守结构域由七个α螺旋组成,并参与膜插入和孔隙形成。结构域II由以希腊钥匙配置布置的三个β片层组成,并且结构域III由“胶冻卷”形式的两个反向平行β片层组成(de Maagd等人,2001,出处同上)。结构域II和III参与受体识别和结合,并且因此被认为是毒素特异性的决定因素。
除了δ-内毒素,还有其它几种已知的杀有害生物蛋白毒素类别。VIP1/VIP2毒素(参见例如,美国专利5,770,696)是二元杀有害生物毒素,其通过被认为涉及受体介导的内吞作用之后是细胞毒化的机制而对昆虫表现出强活性,该机制类似于其它二元(“A/B”)毒素的作用模式。A/B毒素(例如VIP、C2、CDT、CST)或炭疽杆菌水肿和致死毒素最初通过受体介导的对作为单体的“B”组分的特异性结合来与靶细胞相互作用。然后这些单体形成同七聚体。然后,“B”七聚体-受体复合物充当对接平台,该对接平台随后结合并允许将酶促“A”组分通过受体介导的内吞作用转运到胞质溶胶中。一旦在细胞的胞质溶胶内,“A”组分就会通过例如G-肌动蛋白的ADP-核糖基化或增加环状AMP(cAMP)的细胞内水平来抑制正常细胞功能。参见Barth等人,(2004)Microbiol Mol Biol Rev 68:373--402。
密集使用基于苏云金芽孢杆菌的杀昆虫剂已经在小菜蛾(Plutella xylostella)的田间种群中产生了抗药性(Ferre和Van Rie(2002)Annu.Rev.Entomol.47:501-533)。最常见的抗性机制是减少毒素与其特异性中肠受体的结合。这也可能向其它共享同一受体的毒素赋予交叉耐药性(Ferre和Van Rie(2002))。
另一个挑战是,事实上在一些情况下,对杀有害生物蛋白结构域的修饰可允许改善对一种害虫的防治,但与此同时会减弱或降低对先前由未修饰的蛋白质防治的另一种害虫的抗性。因此,至关重要的是不仅要考虑源自基因修饰的新杀有害生物活性,还要确保蛋白质维持对所述蛋白质在基因修饰之前对其有活性的其它害虫的抗性。
由于昆虫可造成的破坏,以及通过防治多种昆虫害虫导致的产量提高,因此不断需要探索新形式的杀有害生物毒素。
发明内容
提供了用于赋予细菌、植物、植物细胞、组织和种子杀有害生物活性的组合物和方法。组合物包含编码杀害虫和杀昆虫多肽的序列的核酸分子、包含这些核酸分子的载体,以及包含所述载体的宿主细胞。组合物还包含杀有害生物多肽序列和针对这些多肽的抗体。所述核苷酸序列可用于DNA构建体或表达盒中,以用于生物体,包括微生物和植物中的转化和表达。核苷酸或氨基酸序列可以是已设计用于在生物体中表达的合成序列,所述生物体包括但不限于微生物或植物。组合物还包含含有本发明的核苷酸序列的细菌、植物、植物细胞、组织和种子。
特别地,提供了分离的重组和嵌合的核酸分子,所述核酸分子编码作为Axmi486变体的杀有害生物蛋白,如美国专利申请公开US 2016 0311865(以引用方式整体并入本文)中所公开的。令人惊讶的是,这些变异增加了对铃夜蛾属(Helicoverpa)物种的抗性,与此同时维持了对小莱蛾(Plutella xylostella)、干煞夜蛾属(Anticarsia)、gematalis、西南玉米杆草螟(Diatraea grandiosella)、小蔗螟(Diatraea saccharalis)、烟芽夜蛾(Heliothis virescens)、南部灰翅夜蛾(Spodoptera eridania)、和大豆尺夜蛾(Pseudoplusiaiincludens)的抗性。此外,还涵盖与所述杀有害生物蛋白对应的氨基酸序列。特别地,本发明提供了一种分离的重组或嵌合核酸分子,所述核酸分子包含编码SEQ IDNO:19至SEQ ID NO:36中任一者所示的氨基酸序列的核苷酸序列或SEQ ID NO:1至SEQ IDNO:18所示的核苷酸序列,以及其生物活性变体和片段。还涵盖与本发明的核苷酸序列互补或与本发明的序列或其互补序列杂交的核苷酸序列。还提供了包含本发明的核苷酸序列或编码本发明的氨基酸序列的核苷酸序列,以及它们的生物活性变体和片段的载体、宿主细胞、植物和种子。
提供了用于产生本发明的多肽以及用于使用这些多肽来防治或杀死鳞翅目、半翅目、鞘翅目、线虫或双翅目害虫的方法。还包括用于在样本中检测本发明的核酸和多肽的方法和试剂盒。
本发明的组合物和方法可用于产生具有增强的害虫抗性或耐受性的生物体。这些生物体和包含所述生物体的组合物对于农业目的是合乎需要的。本发明的组合物还可用于产生具有杀有害生物活性的改变或改进的蛋白质,或用于检测产品或生物体中杀有害生物蛋白或核酸的存在。
具体实施方式
本发明涉及用于调节生物体,特别是植物或植物细胞中的害虫抗性或耐受性的组合物和方法。“抗性”意指害虫(例如,昆虫)在摄入本发明的多肽或与本发明的多肽以其它方式接触时被杀死。“耐受性”意指损害或减少害虫的运动、摄食、繁殖或其它功能。所述方法涉及用编码本发明的杀有害生物蛋白的核苷酸序列转化生物体。特别地,本发明的核苷酸序列可用于制备具有杀有害生物活性的植物和微生物。因此,提供了转化的细菌、植物、植物细胞、植物组织和种子。组合物是芽孢杆菌属(Bacillus)或其它物种的杀有害生物核酸和蛋白质。本文的序列可用于构建表达载体,用于随后转化到感兴趣的生物体中,用作分离其它同源(或部分同源)基因的探针,以及用于通过本领域已知的方法(例如结构域切换或DNA改组)产生改变的杀有害生物蛋白。所述蛋白质可用于控制或杀死鳞翅目、半翅目、鞘翅目、双翅目和线虫害虫种群,并用于生产具有杀有害生物活性的组合物。
“杀有害生物毒素”或“杀有害生物蛋白”是指对一种或多种害虫,包括但不限于鳞翅目、双翅目、半翅目和鞘翅目或线虫门的成员具有毒性活性的毒素,或一种与此类蛋白质具有同源性的蛋白质。杀有害生物蛋白包含从本文所公开的全长核苷酸序列推导出的氨基酸序列,以及由于使用替代的下游起始位点或由于产生具有杀有害生物活性的较短蛋白质的加工而比全长序列更短的氨基酸序列。加工可能发生在表达蛋白质的生物体中,或摄入蛋白质后的害虫中。
因此,本文提供了赋予杀有害生物活性的新颖的分离的、重组的或嵌合的核苷酸序列。还提供了杀有害生物蛋白的氨基酸序列。这种基因的翻译产生的蛋白质允许细胞防治或杀死摄取它的害虫。
分离的核酸分子及其变体和片段
本发明的一个方面涉及分离的重组或嵌合核酸分子,所述核酸分子包含编码杀有害生物蛋白和多肽或其生物活性部分的核苷酸序列,以及足以用作杂交探针来鉴定编码具有序列同源性区域的蛋白质的核酸分子的核酸分子。本文还涵盖能够在如本文别处所定义的严格条件下与本发明的核苷酸序列杂交的核苷酸序列。如本文所用,术语“核酸分子”旨在包括DNA分子(例如,重组DNA、cDNA或基因组DNA)和RNA分子(例如,mRNA),以及使用核苷酸类似物产生的DNA或RNA类似物。核酸分子可以是单链或双链的,但是优选是双链DNA。术语“重组”涵盖这样的多核苷酸或多肽,所述多核苷酸或多肽已被相对于天然多核苷酸或多肽进行操纵,使得所述多核苷酸或多肽(例如,在化学组成或结构上)不同于自然界中存在的多核苷酸或多肽。在另一个实施方式中,“重组”多核苷酸不含天然存在于多核苷酸所来源于的生物体的基因组DNA中的内部序列(即内含子)。这种多核苷酸的典型示例是所谓的互补DNA(cDNA)。
分离的重组或嵌合核酸(或DNA)在本文中用于指不再在其自然环境中,例如在体外或在重组细菌或植物宿主细胞中的核酸(或DNA)。在一些实施方式中,分离的重组或嵌合核酸不含在所述核酸所来源于的生物体的基因组DNA中天然侧接所述核酸的序列(优选蛋白质编码序列)(即,位于所述核酸的5'末端和3'末端的序列)。出于本发明的目的,“分离的”在使用时是指核酸分子不包括分离的染色体。例如,在各种实施方式中,分离的Axmi486变体核酸分子可含有少于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核苷酸序列在所述核酸所来源于的细胞的基因组DNA中天然侧接所述核酸分子。本文中,“Axmi486变体”是指如SEQ ID No:1至SEQ ID No:18所示的核酸变体或由此类核酸变体编码的蛋白质(例如,SEQID No:19至SEQ ID No:36)。在各种实施方式中,基本上不含细胞物质的Axmi486变体蛋白包括具有小于约30%、20%、10%或5%(以干重计)的非Axmi486变体蛋白(在本文中也称为“污染蛋白”)的蛋白质制备物。在一些实施方式中,本发明的重组核酸包含相对于SEQ IDNO:1至SEQ ID NO:15中的任一者的一个或多个核苷酸取代,或其变体或片段,其中所述Axmi486变体与不包含所示变异(例如核酸SEQ ID NO:37和/或变体蛋白,例如SEQ ID NO:38至SEQ ID NO:42(本文中,“Axmi486”)的Axmi486基因相比显示出改善的对铃夜蛾属物种的抗性。
编码本发明的蛋白质的核苷酸序列包含SEQ ID NO:1至SEQ ID NO:18中任一者所示的序列,及其变体、片段和互补序列,与不包含所示变异的Axmi486基因相比,所述变体、片段和互补序列显示出增加的对铃夜蛾属物种的抗性。“互补序列”意指这样的核苷酸序列,所述核苷酸序列与给定核苷酸序列充分互补,使得所述核苷酸序列可以与给定核苷酸序列杂交从而形成稳定的双链体。由这些核苷酸序列编码的杀有害生物蛋白的对应氨基酸序列如SEQ ID NO:19至SEQ ID NO:36中的任一者所示。
本发明还涵盖作为这些编码杀有害生物蛋白的核苷酸序列的片段的核酸分子。“片段”意指编码杀有害生物蛋白的核苷酸序列的一部分。核苷酸序列的片段可编码杀有害生物蛋白的生物活性部分,或者所述片段可以是可以使用下文公开的方法用作杂交探针或PCR引物的片段。作为编码杀有害生物蛋白的核苷酸序列的片段的核酸分子,包含至少约50个、100个、200个、300个、400个、500个、600个、700个、800个、900个连续核苷酸,或至多编码本文所公开的杀有害生物蛋白的全长核苷酸序列中存在的核苷酸数量,具体取决于预期用途。“连续”核苷酸是指彼此紧邻的核苷酸残基。本发明的核苷酸序列的片段将编码保留杀有害生物蛋白的生物活性并因此保留杀有害生物活性的蛋白质片段。因此,还涵盖本文所公开的多肽的生物活性片段。“保留活性”是指该片段将具有至少约30%、至少约50%、至少约70%、80%、90%、95%或更高的杀有害生物蛋白的杀有害生物活性。在一个实施方式中,杀有害生物活性是杀鞘翅目活性。在另一个实施方式中,杀有害生物活性是杀鳞翅目活性。在另一个实施方式中,杀有害生物活性是杀线虫活性。在另一个实施方式中,杀有害生物活性是杀双翅目活性。在另一个实施方式中,杀有害生物活性是杀半翅目灭活。测量杀有害生物活性的方法是本领域中众所周知的。参见例如,Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人(1988)Biochem.J.252:199-206;Marrone等人(1985)J.of Economic Entomology78:290-293;和美国专利号5,743,477,所有这些文献全文以引用方式并入本文。
编码杀有害生物蛋白的核苷酸序列的片段编码本发明的蛋白质的生物活性部分,所述片段将编码本发明的全长杀有害生物蛋白中存在的至少约15个、25个、30个、50个、75个、100个、125个、150个、175个、200个、250个、300个、350个、400个、450个连续氨基酸,或至多氨基酸总数。在一些实施方式中,该片段是蛋白水解切割片段。例如,蛋白水解切割片段可具有相对于SEQ ID NO:19至SEQ ID NO:36中的任一者至少约100个氨基酸、约120个、约130个、约140个、约150个或约160个氨基酸的N末端或C末端截短。在一些实施方式中,本文所涵盖的片段由C末端结晶结构域的去除产生,例如通过蛋白水解或通过在编码序列中插入终止密码子。
在各种实施方式中,本发明的核酸包含SEQ ID NO:1至SEQ ID NO:18中任一项所示的简并核酸,其中所述简并核苷酸序列编码与SEQ ID NO:19至SEQ ID NO:36中的任一者相同的氨基酸序列。
本发明优选的杀有害生物蛋白由与SEQ ID NO:1至SEQ ID NO:18中任一者所示的核苷酸序列充分同一的核苷酸序列编码,或所述杀有害生物蛋白与SEQ ID NO:19至SEQ IDNO:36中任一者所示的氨基酸序列充分同一。“充分同一”是指使用标准参数,使用本文所述的比对程序中的一种比对程序,与参考序列相比具有至少约60%或65%序列同一性、约70%或75%序列同一性、约80%或85%序列同一性、约90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性的氨基酸或核苷酸序列。本领域技术人员将认识到,通过考虑密码子简并性、氨基酸相似性、阅读框定位等,可以适当地调整这些值以确定由两种核苷酸序列编码的蛋白质的对应身份。
为了确定两个氨基酸序列或两个核酸的同一性百分比,比对所述序列以实现最佳比较目的。所述两个序列之间的同一性百分比是由序列共享的相同位置数的函数(即同一性百分比=相同位置数/位置总数(例如重叠位置)×100)。在一个实施方式中,两个序列的长度相同。在另一个实施方式中,针对整个参考序列(即,本文公开为SEQ ID NO:1至SEQ IDNO:36中的任一者的序列)计算同一性百分比。两个序列之间的百分比同一性可以在允许或不允许空位的情况下,使用类似于下文所述的技术的技术来确定。在计算同一性百分比时,通常会对完全匹配进行计数。空位,即在残基在一个序列中存在但在另一个序列中不存在的情况下的比对中的位置,被视为具有不同残基的位置。
可以使用数学算法来完成两个序列之间的同一性百分比的确定。用于比较两个序列的数学算法的非限制性示例是Karlin和Altschul(1990)Proc.Natl.Acad.Sci.USA 87:2264的算法,该算法如在Karlin和Altschul(1993)Proc.Natl.Acad.Sci.USA 90:5873-5877中进行改进。此类算法被合并到Altschul等人,(1990)J.Mol.Biol.215:403的BLASTN和BLASTX程序中。可以用得分=100、字长=12的BLAST程序来执行BLAST核苷酸搜索,以获得与本发明的杀有害生物样核酸分子同源的核苷酸序列。可以用得分=50、字长=3的BLASTX程序来执行BLAST蛋白质搜索,以获得与本发明的杀有害生物蛋白质分子同源的氨基酸序列。为了获得用于比较目的的空位比对,可以利用空位BLAST(在BLAST 2.0中),如在Altschul等人,(1997)Nucleic Acids Res.25:3389中所述。或者,可使用PSI-Blast来执行迭代搜索,该迭代搜索检测分子之间的远缘关系。参见Altschul等人,(1997),出处同上。当利用BLAST、空位BLAST和PSI-Blast程序时,可以使用相应程序(例如,BLASTX和BLASTN)的默认参数。比对也可以通过检查手动地执行。
用于序列比较的数学算法的另一个非限制性示例是ClustalW算法(Higgins等人(1994)Nucleic Acids Res.22:4673-4680)。ClustalW比较序列并比对整个氨基酸或DNA序列,并且由此可以提供有关整个氨基酸序列的序列保守性的数据。ClustalW算法用于几种市售的DNA/氨基酸分析软件包,例如Vector NTI程序套件(Invitrogen Corporation,Carlsbad,CA)的ALIGNX模块中。用ClustalW比对氨基酸序列后,可以评定氨基酸同一性百分比。可用于分析ClustalW比对的软件程序的非限制性示例是GENEDOCTM。GENEDOCTM(KarlNicholas)允许评定估多种蛋白质之间的氨基酸(或DNA)相似性和同一性。用于序列比较的数学算法的另一个非限制性示例是Myers和Miller(1988)CABIOS 4:11-17的算法。这种算法被合并到ALIGN程序(第2.0版)中,该ALIGN程序是GCG Wisconsin Genetics软件包第10版(可从Accelrys,Inc.,9685Scranton Rd.,San Diego,CA,USA获得)的一部分。当利用ALIGN程序来比较氨基酸序列时,可以使用PAM120权重残基表、为12的空位长度罚分和为4的空位罚分。
除非另有说明,否则使用Needleman和Wunsch(1970)J.Mol.Biol.48(3):443-453的算法的GAP第10版,将用于使用以下参数确定序列同一性或相似性:使用GAP权重50和长度权重3以及nwsgapdna.cmp评分矩阵的核苷酸序列的%同一性和%相似性;使用GAP权重8和长度权重2以及BLOSUM62评分程序的氨基酸序列的%同一性或%相似性。也可以使用等效程序。“等效程序”意指任何序列比较程序,针对所讨论的任何两个序列,所述序列比较程序当与由GAP第10版生成的对应比对进行比较时,产生具有相同核苷酸残基匹配和相同序列同一性百分比的比对。
本发明还涵盖变体核酸分子。编码杀有害生物蛋白的核苷酸序列的“变体”包括编码本文所公开的杀有害生物蛋白但由于遗传密码的简并性而保守地不同的那些序列,以及如上所述足够同一的那些序列。可以使用众所周知的分子生物学技术来鉴定天然存在的等位基因变体,所述众所周知的分子生物学技术为例如聚合酶链式反应(PCR)和如下文概述的杂交技术。变体核苷酸序列还包含合成地衍生的核苷酸序列,所述合成地衍生的核苷酸序列已经例如通过使用定点诱变产生,但其仍编码本发明中公开的杀有害生物蛋白,如下所述。本发明所涵盖的变体蛋白质具有生物活性,即它们继续具有天然蛋白的所需生物活性,即杀有害生物活性。“保留活性”是指变体将具有至少约30%、至少约50%、至少约70%或至少约80%的天然蛋白质的杀有害生物活性。本发明的一个优选实施方式是Axmi486变体,该Axmi486变体显示出增强的铃夜蛾属物种害虫(例如谷实夜蛾)的活性。测量杀有害生物活性的方法是本领域中众所周知的。参见例如,Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人,(1988)Biochem.J.252:199-206;Marrone等人(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,所有这些文献全文以引用方式并入本文。
本技术领域的技术人员将进一步理解可以通过本发明的核苷酸序列的突变而引入变化,以此导致编码的杀有害生物蛋白质的氨基酸序列的变化,而不改变蛋白质的生物活性。因此,分离的核酸分子的变体可以通过将一个或多个核苷酸取代、添加、缺失引入到本文披露的相应的核苷酸序列中来产生,以至于一个或多个氨基酸取代、添加或缺失被引入到编码的蛋白质。通过标准技术,例如定点诱变和PCR-介导的诱变,可以引入突变。这些核苷酸序列变体也包括在本发明中。此类变体核苷酸序列也被本发明涵盖。
例如,保守的氨基酸取代可以在一个或多个预测的不重要氨基酸残基上进行。“非必需的”氨基酸残基是可以从杀有害生物蛋白质的野生型序列改变,而没有改变生物活性,其中“必需的”氨基酸残基是生物活性必需的。“保守的氨基酸取代”是氨基酸残基被具有相似侧链的氨基酸残基替代。具有相似的侧链的氨基酸残基的家族已在本领域中定义。这些家族包括具有以下侧链的氨基酸:碱性侧链(例如,赖氨酸、精氨酸、组氨酸),酸性侧链(例如,天冬氨酸、谷氨酸),不带电的极性侧链(例如,甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸),非极性侧链(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸),β-分支侧链(例如,苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链(例如,酪氨酸、苯丙氨酸、色氨酸、组氨酸)。
氨基酸取代可以在保留功能的非保守区域进行。在一般情况下,不会对保守氨基酸残基,或驻留在保守基序的氨基酸残基进行这样的取代,其中这些残基对于蛋白质活性是重要的。保守的并且可能是蛋白质活性必不可少的残基的实例包括,例如,在对本发明的序列相似或相关的毒素的比对中包含的所有蛋白质之间相同的残基(例如,在同源蛋白质的比对中同一的残基)。保守的但可以允许保守的氨基酸取代并仍然保留活性的残基的实例包括,例如,与本发明的序列相似或相关的毒素的比对中包含的所有蛋白质之间仅具有保守性取代的残基(例如,在比对的同源性蛋白质中包含的所有蛋白质之间仅具有保守性取代的残基)。然而,本技术领域的技术人员能理解功能性变异在保守性氨基酸残基中可以有轻微的保守或非保守的改变。
或者,通过沿着全部或部分的编码序列随机引入突变,例如通过饱和诱变,可以产生变体核苷酸序列,并且在得到的突变体中,可以筛选能够赋予杀有害生物活性的突变体以鉴别保留活性的突变体。诱变之后,可以重组表达编码的蛋白质并且可以通过标准的试验技术测定该蛋白质的活性。
使用诸如PCR、杂交等的方法可以鉴定出相应的杀有害生物序列,此类序列与本发明的序列具有实质的同一性(例如,对跨整个参考序列至少约70%、至少约75%、80%、85%、90%、95%或更高的序列同一性),或具有或赋予杀有害生物活性。参见例如,Sambrook和Russell(2001)Molecular Cloning:A Laboratory Manual.(Cold SpringHarbor Laboratory Press,Cold Spring Harbor,NY)和Innis,等人(1990)PCRProtocols:A Guide to Methods and Applications(Academic Press,NY)。
在杂交方法中,可以使用杀有害生物的核苷酸序列的全部或部分来筛选cDNA或基因组文库。用于构建这些cDNA和基因组文库的方法是本领域普遍已知的,且公开于Sambrook和Russell,2001,出处同上中。所谓的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其它寡核苷酸,且可以标有可检测的基团(例如32P)或其它任何可检测的标记,例如其它的放射性同位素、荧光化合物、酶或酶辅因子。可以通过基于本文公开的已知杀有害生物蛋白质编码核苷酸序列,对合成寡核苷酸标记来制造用于杂交的探针。另外,可以使用基于在核苷酸序列或编码的氨基酸序列中保守的核苷酸或氨基酸残基设计的简并引物。探针通常包含核苷酸序列区域,该核苷酸序列区域在严格条件下与本发明编码杀有害生物蛋白质的核苷酸序列的至少大约12、至少大约25、至少大约50、75、100、125、150、175、或200个连续核苷酸或其片段或变体杂交。杂交探针的制备的方法是本技术领域普遍已知的,并且公开于Sambrook和Russell,2001,出处同上中,该文献以引用方式并入本文。
例如,本文所披露的完整杀有害生物序列,或其一个或多个部分,可以被用作能够特异地与相应杀有害生物蛋白质类似序列和信使RNA杂交的探针。为了实现在多种条件下的特异性杂交,这些探针包含唯一的、且优选至少约10个核苷酸长或至少约20个核苷酸长的序列。这些探针可以用于通过PCR扩增来自选定生物体或样品的对应杀有害生物序列。该技术可以用于从所需生物体分离附加的编码序列,或者作为确定生物体中是否存在编码序列的诊断性试验。杂交技术包括板化DNA文库的杂交筛选(空斑或菌落;参见例如,Sambrook等人(1989)Molecular Cloning:A Laboratory Manual(第2版,Cold Spring HarborLaboratory Press,Cold Spring Harbor,New York)。
因此,本发明涵盖用于杂交的探针,以及能够与本发明的核苷酸序列的所有或部分进行杂交的核苷酸序列(例如,至少大约10、25、50、100、150、200、250、300、350、400、450、500、或达到本文公开的核苷酸序列的全长)。可以在严格条件下进行这些序列的杂交。“严格条件”或“严格杂交条件”意指这样的条件,在该条件下探针将会与其靶序列杂交,其可检测程度高于与其它序列杂交的可检测程度(例如,至少是背景的2倍高)。严格条件是序列依赖的并且在不同情况下将是不同的。通过控制杂交和/或洗涤条件的严格性,可以鉴别出与探针100%互补的靶序列(同源探测)。或者,可调整严格条件以允许序列中的一些错配,从而检测出更低的相似度(异源探测)。通常,探针长度小于大约1000个核苷酸,优选长度小于500个核苷酸。
通常,严格条件将是以下条件,其中盐浓度在pH为7.0到8.3时为低于约1.5M Na离子,通常为大约0.01到1.0M钠离子浓度(或其它盐)并且短探针(例如,10到50个核苷酸)的温度为至少约30℃且长探针(例如,大于50个核苷酸)的温度为至少约60℃。也可以通过添加去稳定剂如甲酰胺实现严格性条件。示例性低严格条件包括用30%-35%甲酰胺的缓冲溶液、1M NaCl、1%SDS(十二烷基硫酸钠)于37℃杂交,以及在IX至2X SSC(20XSSC=3.0MNaCl/0.3M柠檬酸三钠)中于50℃至55℃冲洗。示例性中等严格条件包括在40%-45%甲酰胺、1.0M NaCl、1%SDS中于37℃杂交,以及在0.5X至1X SSC中于55至60℃冲洗。示例性高严格条件包括在50%甲酰胺、1M NaCl、1%SDS中于37℃杂交,以及在0.1X SSC中于60℃至65℃冲洗。任选地,冲洗缓冲液可以包含大约0.1%至大约1%SDS。通常杂交持续时间小于约24小时,通常约4至约12小时。
特异性典型地是指杂交后冲洗的功能,关键因素是最终冲洗溶液的离子强度和温度。对于DNA-DNA杂交,Tm可以从Meinkoth和Wahl(1984)Anal.Biochem.138:267-284的等式大致估算:Tm=81.5℃+16.6(log M)+0.41(%GC)-0.61(%甲酰胺)-500/L;式中,M是单价阳离子的摩尔浓度,%GC是DNA中的鸟苷和胞嘧啶核苷酸的百分率,%甲酰胺是甲酰胺在杂交溶液中的百分率,并且L是碱基对中的杂交的长度。Tm是温度(在确定的离子强度和pH下),在此温度下,50%的互补靶序列与完全相配的探针杂交。每错配1%,Tm降低约1℃;因而,可调整Tm、杂交和/或冲洗条件至与预期同一性的序列杂交。例如,如果获得同一性>90%的序列,Tm可以降低10℃。通常,严格条件被选择为比在确定的离子强度和pH下的特异序列及其互补序列的热力学熔点(Tm)低大约5℃。然而,高度严格条件可以在比热力学熔点(Tm)低1℃、2℃、3℃或4℃下采用杂交和/或洗涤;中等严格条件可以在比热力学熔点(Tm)低6、7、8、9或10℃下采用杂交和/或洗涤;低严格条件可以在比热力学熔点(Tm)低11℃、12℃、13℃、14℃、15℃或20℃下采用杂交和/或洗涤。使用等式、杂交、洗涤组合物以及预期的Tm,普通专业技术人员将会理解,杂交和/或洗涤液条件严格性的变化属本质性描述。如果预期的错配度导致Tm低于45℃(水溶液)或32℃(甲酰胺溶液),优选是增加SSC浓度以便可以使用更高温度。关于核酸杂交的详细指导可见于Tijssen(1993)Laboratory Techniques inBiochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes,第2章第I部分(Elsevier,New York);和Ausubel等人编著(1995)Current Protocols inMolecular Biology,Chapter 2(Greene Publishing and Wiley-Interscience,NewYork)中。参见Sambrook等人(1989)Molecular Cloning:A Laboratory Manual(第2版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York).
分离的蛋白质及其变体和片段
杀有害生物蛋白质也包括在本发明中。“杀有害生物蛋白质”是指具有SEQ ID NO:19至SEQ ID NO:36中任一者所示的氨基酸序列的蛋白质。还提供其片段、生物活性部分和变体,并且它们可以用于实践本发明的方法。“分离的蛋白”或“重组蛋白”是用于指这样的蛋白,该蛋白不再在它的自然环境中,例如在体外或在一个重组细菌或植物宿主细胞中。在一些实施方式中,重组蛋白是SEQ ID NO:19至SEQ ID NO:36中任一者的变体,其中该变体相对于SEQ ID NO:19至SEQ ID NO:36中任一者包含至少一个氨基酸取代、缺失或插入。
“片段”或“生物活性部分”包括多肽片段,这些多肽片段包含与SEQ ID NO:19至SEQ ID NO:36中任一者所示的氨基酸序列具有足够同一性的氨基酸序列,并且表现出杀有害生物活性。杀有害生物蛋白的生物活性部分可以是多肽,其长度为例如10、25、50、100、150、200、250或更多个氨基酸。这样的生物活性部分可以通过重组技术制备并用于杀有害生物活性的评估。用于测量杀有害生物活性的方法是本技术领域中所熟知的。参见例如,Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人(1988)Biochem.J.252:199-206;Marrone等人(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,所有这些文献全文以引用方式并入本文。如本文使用的,片段包括SEQ ID NO:19至SEQ ID NO:36中任一者的至少8个连续的氨基酸。然而,本发明包括其它的片段,例如蛋白质中大于约10、20、30、50、100、150、200、250或更多的氨基酸长度的任何片段。
“变体”是指具有与SEQ ID NO:19至SEQ ID NO:36中任一者的氨基酸序列有至少约60%、65%、约70%、75%、约80%、85%、约90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的氨基酸序列的蛋白质或多肽。变体也包括与SEQ ID NO:19至SEQID NO:36中任一项的核酸分子或其互补链在严格条件下杂交的核酸分子编码的多肽。变体包括由于诱变在氨基酸序列上不同的多肽。本发明所包括的变体蛋白质具有生物活性,即其继续拥有天然蛋白质预期的生物活性,即,保留杀有害生物活性。在一些实施方式中,变体相对于天然蛋白质具有改善的活性。测量杀有害生物活性的方法是本领域中众所周知的。参见例如,Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人(1988)Biochem.J.252:199-206;Marrone等人(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,所有这些文献全文以引用方式并入本文。
细菌基因,例如本发明的基因,通常在开放阅读框的起始点附近拥有多个蛋氨酸起始密码子。通常,在一个或多个这些起始密码子处的翻译起始将引起功能蛋白质的产生。这些起始密码子可以包括ATG密码子。然而,细菌例如芽孢杆菌属(Bacillus sp.)也识别GTG作为起始密码子,并且在GTG密码子处起始翻译的蛋白质在第一氨基酸包括蛋氨酸。在很少的情况下,在细菌系统中的翻译可以在TTG密码子起始,尽管在这个情况下TTG编码蛋氨酸。此外,通常不先验地确定这些密码子中的哪个在细菌中被天然地利用。因此可以理解使用一个替代的蛋氨酸密码子也可以导致杀有害生物蛋白质的产生。这些杀有害生物蛋白质被包括在本发明中,并且可能在本发明的方法中被利用。应该理解的是,当在植物中表达时,有必要改变备用起始密码子为ATG以正确翻译。
在本发明的多个实施方式中,杀有害生物蛋白质包括从本文披露的全长核苷酸序列推断的氨基酸序列,以及由于备选的下游起始位点的使用短于全长序列的氨基酸序列。因此,本发明的核苷酸序列和/或包含本发明的核苷酸序列的载体、宿主细胞和植物(以及制备和使用本发明的核苷酸序列的方法)可以包含编码对应于SEQ ID NO:19至SEQ ID NO:36中任一者的氨基酸序列的核苷酸序列。
本发明也包括本发明的多肽或其变体或片段的抗体。用于产生抗体的方法是本领域已熟知的(参见例如,Harlow和Lane(1988)Antibodies:A Laboratory Manual,ColdSpring Harbor Laboratory,Cold Spring Harbor,NY;美国专利号4,196,265)。
因此,本发明的一个方面涉及特异性地结合一个或多个本发明的蛋白质或肽分子及其同系物、融合物或片段的抗体、单链抗原结合分子、或其它的蛋白质。在一个特别优选的实施方式中,所述抗体特异性结合具有SEQ ID NO:19至SEQ ID NO:36中任一者所示的氨基酸序列的蛋白质或其片段。在另一个实施方式中,所述抗体特异性结合包含选自SEQ IDNO:19至SEQ ID NO:36中任一者所示氨基酸序列的氨基酸序列的融合蛋白或其片段。在各种实施方式中,特异性结合本发明的蛋白质或包含本发明蛋白质的融合蛋白的抗体是非天然存在的抗体。
本发明的抗体可以用于定量或定性地检测本发明的蛋白质或肽分子,或用于检测蛋白质的翻译后修饰。如本文所用,如果结合是不被非相关分子的存在竞争性地抑制,则认为抗体或肽“特异性地结合”本发明的蛋白质或肽分子。
本发明的抗体可以包含在试剂盒中,该试剂盒可用于检测本发明的蛋白质或肽分子。本发明还包含检测本发明的蛋白质或肽分子(特别是由SEQ ID NO:19至SEQ ID NO:36中任一者所示氨基酸序列编码的蛋白质,包括能够特异性结合本发明抗体的其变体或片段)的方法,包括使样品与本发明的抗体接触,并测定该样品是否含有本发明的蛋白质或肽分子。利用抗体来检测感兴趣的蛋白质或肽的方法是本领域已知的。
改变或改进的变体
应当认识到杀有害生物蛋白质的DNA序列可以通过各种方法来改变,并且这些改变可导致以下DNA序列编码蛋白,这些蛋白具有与由本发明的杀有害生物蛋白质编码的氨基酸序列不同的氨基酸序列。这种蛋白质可以以多种方式改变,包括SEQ ID NO:19至SEQID NO:36中任一项的一个或多个氨基酸的氨基酸取代、缺失、截短、和插入,包括多达约2、约3、约4、约5、约6、约7、约8、约9、约10、约15、约20、约25、约30、约35、约40、约45、约50、约55、约60、约65、约70、约75、约80、约85、约90、约100、约105、约110、约115、约120、约125、约130、约135、约140、约145、约150、约155、或更多的氨基酸取代、缺失或插入。此类操纵的方法是本技术领域中所公知的。例如,杀有害生物蛋白质的氨基酸序列变体可以通过DNA中的突变制备。这可能是通过几种突变形式中的一种和/或在直接的进化中完成。在一些方面,在氨基酸序列中编码的改变将不会本质上影响蛋白质的功能。此类变体将具有所需的杀有害生物活性。然而,应了解杀有害生物蛋白质授予杀有害生物活性的能力可以被在本发明的组合物上使用这样的技术所改善。例如,可以在DNA的复制过程中表现出高比例的碱基错误插入的宿主细胞中表达杀有害生物蛋白质,如XL-1Red(Stratagene,La Jolla,CA)。在这样的菌株中繁殖后,可以分离DNA(例如通过制备质粒DNA、或在载体中通过PCR和克隆扩增产生的PCR片段),在非突变菌株中培养杀有害生物蛋白质突变体,以及鉴别具有杀有害生物活性的突变基因,例如通过进行一个实验以测试杀有害生物活性。通常,该蛋白质被混合并用于饲喂试验或者该毒素直接暴露于昆虫。参见例如,Marrone等人(1985)J.ofEconomic Entomology 78:290-293和Cira等人(2017)J Pest Sci90:1257-1268。这样的试验可包括使一种或多种有害生物接触植物并确定该植物的存活和/或导致有害生物死亡的能力。导致毒性增加的突变的实例被描述在Schnepf等人(1998)Microbiol.Mol.Biol.Rev.62:775-806中。
或者,也可能对许多蛋白质的氨基或羧基端的蛋白质序列进行改变而本质上不影响活性。这可以包括通过现代分子生物学方法引入插入、缺失或改变,该现代生物学方法是例如PCR,包括PCR扩增,该PCR扩增凭借在PCR扩增中利用的寡核苷酸中包含氨基酸编码序列来改变或延伸蛋白质编码序列。或者,添加的蛋白质序列可以包括整个蛋白质的编码序列,例如在本技术领域中通常用来产生蛋白融合的那些。这样的融合蛋白质通常被用来(1)增加感兴趣的蛋白质的表达(2)引入结合结构域、酶活性、或抗原表位以促进蛋白质纯化、蛋白质检测或其它本技术领域已知的实验用途(3)靶标分泌或蛋白质翻译至亚细胞细胞器,例如革兰氏阴性菌的细胞周质间隙、或真核生物的内质网,后者通常导致蛋白质的糖基化。
本发明变体核苷酸和氨基酸序列也包括从突变和重组基因程序例如DNA改组衍生的序列。通过这样的程序,一个或多个不同的杀有害生物蛋白质编码区域可以被用来产生拥有预期特性的新的杀有害生物蛋白质。以这种方式,从包含具有基本的序列同一性并可以在体外或体内同源重组的序列区域的相关序列多核苷酸群产生重组多核苷酸文库。例如,使用该方法,编码感兴趣的结构域的序列基序可以在本发明的杀有害生物基因和其它已知的杀有害生物基因之间改组,以获得编码具有改善的感兴趣特性的蛋白质的新基因,例如增加杀昆虫活性。用于这样的DNA改组的策略是本技术领域已知的。参见例如,Stemmer(1994)Proc.Natl.Acad.Sci.USA 91:10747-10751;Stemmer(1994)Nature 370:389-391;Crameri等人(1997)Nature Biotech.15:436-438;Moore等人(1997)J.Mol.Biol.272:336-347;Zhang等人(1997)Proc.Natl.Acad.Sci.USA 94:4504-4509;Crameri等人(1998)Nature 391:288-291;和美国专利号5,605,793和5,837,458。
结构域切换或改组是产生改变的杀有害生物蛋白质的另一种机制。结构域可以在杀有害生物蛋白质之间进行切换,导致杂合或嵌合毒素具有改进的杀有害生物活性或目标光谱。用于产生重组蛋白并测试它们的杀有害生物活性的方法在本技术领域已熟知(参见例如,Naimov等人(2001)Appl.Environ.Microbiol.67:5328-5330;de Maagd等人(1996)Appl.Environ.Microbiol.62:1537-1543;Ge等人(1991)J.Biol.Chem.266:17954-17958;Schnepf等人(1990)J.Biol.Chem.265:20923-20930;Rang等人91999)Appl.Environ.Microbiol.65:2918-2925)。
在又一个实施方式中,可以使用以下一种或多种来获得变体核苷酸和/或氨基酸序列:易错PCR、寡核苷酸指导的诱变、装配PCR、有性PCR诱变、体内诱变、盒式诱变、递归整体诱变、指数整体诱变、位点特异性诱变、基因重新装配、基因位点饱和诱变、置换诱变、合成连接重新装配(SLR)、重组、递归序列重组、硫代磷酸酯修饰的DNA诱变、含尿嘧啶的模板诱变、缺口二重诱变、点错配修复诱变、修复缺陷宿主菌株诱变、化学诱变、放射引起的诱变、缺失诱变、限制选择诱变、限制纯化诱变、人工基因合成、整体诱变、嵌合核酸多聚体生成等。
载体
本发明的杀有害生物序列可以在表达盒中提供以在感兴趣的宿主细胞,例如植物细胞或微生物中表达。“植物表达盒”意指能够引起来自植物细胞中的开放阅读框的蛋白质表达的DNA构建体。通常,这些包括启动子和编码序列。通常,这些构建体还含有3'端非翻译区。这些构建体可以含有“信号序列”或“前导序列”,以促进肽向某些细胞内结构的共翻译或翻译后转运,这些结构为例如叶绿体(或其它质体)、内质网或高尔基体。
“信号序列”是指已知的或可能导致穿过细胞膜的共翻译或翻译后肽转运的序列。在真核细胞中,其典型地涉及向高尔基体中的分泌,有些会导致糖基化。细菌的杀昆虫毒素通常是合成的毒素,其实在目标有害生物的肠内水解蛋白激活(Chang(1987)MethodsEnzymol.153:507-516)。在本发明一些实施方式中,信号序列是位于天然的序列中,或可能是从本发明的序列衍生而来。“前导序列”是指在翻译时产生足以触发肽链向亚细胞细胞器共翻译转运的氨基酸序列的序列。因而,其包括通过进入内质网、液泡通道、包括叶绿体、线粒体等质体而靶向转运和/或糖基化的前导序列。如此,本文中进一步提供包含本发明的氨基酸序列的多肽,该氨基酸序列有效地连接于异源前导序列或信号序列。
“植物转化载体”是指对于有效转化植物细胞必需的DNA分子。此类分子可包括一个或多个植物表达盒,且可以组织成一个以上“载体”DNA分子。例如,二元载体是使用2个非连续DNA载体编码转化植物细胞的所有必需的顺式和反式作用功能的植物转化载体(Hellens和Mullineaux(2000)Trends in Plant Science 5:446-451)。“载体”是指设计成在不同的宿主细胞之间进行转移的核酸构建体。“表达载体”是指能在外来细胞中结合、整合和表达异源DNA序列或片段的载体。该盒将包括有效地连接至本发明的序列的5'和/或3'调控序列。“有效地连接”是指启动子和第二序列之间的功能连接,其中启动子序列启动并介导与第二序列相对应的DNA序列的转录。通常,有效地连接意味着连接的核酸序列是毗邻的,且在需要连接两个蛋白编码区时这些连接的核酸序列是毗邻的并处在同一阅读框中,但并非总是如此。在一些实施方式中,核苷酸序列有效地连接至能够指导所述核苷酸序列在宿主细胞(例如,微生物宿主细胞或植物宿主细胞)中表达的异源启动子。此外,盒可以含有至少一个额外的基因以被共转化入生物体。作为替代方案,可以在多个表达盒上提供所述额外的基因。
在多个实施方式中,本发明的核苷酸序列有效地连接至能够指导所述核苷酸序列在细胞(例如,植物细胞或微生物)中表达的异源启动子。“启动子”是指作用是引导下游编码序列转录的核酸序列。启动子,连同其它转录和翻译调控核酸序列(也称“控制序列”),都是表达感兴趣的DNA序列所必需的。
此类表达盒提供有多个限制位点,用于插入在调控区的转录调控作用下的杀有害生物序列。
该表达盒将包括在植物中以5'-3'方向转录的转录和翻译起始区(即,启动子)、本发明的DNA序列、以及翻译和转录终止区(即终止区)的功能。启动子可以是对于本发明的植物宿主和/或DNA序列天然的或类似的、或外来的或异源的。此外,启动子可以是天然的序列或者备选地合成的序列。当启动子是对于植物宿主“天然”或“同源”的,它是指启动子在被导入所述启动子的天然植物中发现。当启动子是对于本发明的DNA序列“外来的”或“异源的”,它是指启动子对于本发明的有效连接的DNA序列不是天然的或不是天然存在的启动子。该启动子可以是诱导型或组成型的。它可以是天然存在的,可以由多个天然存在的启动子的部分组成,或者可以是部分合成或完全合成的。用于设计启动子的指导是通过启动子结构的研究来提供的,诸如Harley和Reynolds(1987)Nucleic Acids Res.15:2343-2361。而且,可以优化启动子相对于转录起始的位置。参见,例如,Roberts等人(1979)Proc.Natl.Acad.Sci.USA,76:760-764。用于植物中的许多适合的启动子是本领域已熟知的。
例如,用于植物中的合适的组成型启动子包括:来自植物病毒的启动子,诸如花生褪绿条纹病花椰菜花叶病毒(peanut chlorotic streak caulimovirus)(PClSV)启动子(美国专利号5,850,019);来自花椰菜花叶病毒(cauliflower mosaic virus)(CaMV)的35S启动子(Odell等人(1985)Nature 313:810-812);35S启动子,描述于Kay等人(1987)Science 236:1299-1302;小球藻病毒甲基转移酶基因的启动子(美国专利号5,563,328)和来自玄参花叶病毒(FMV)的全长转录物启动子(美国专利号5,378,619);来自此类基因的启动子,如稻肌动蛋白(McElroy等人(1990)Plant Cell 2:163-171和美国专利5,641,876);泛素(Christensen等人(1989)Plant Mol.Biol.12:619-632和Christensen等人(1992)Plant Mol.Biol.18:675-689)以及Grefen等人(2010)Plant J,64:355-365;pEMU(Last等人(1991)Theor.Appl.Genet.);MAS(Velten等人(1984)EMBO J.3:2723-2730和美国专利5,510,474);玉蜀黍H3组蛋白(Lepetit等人(1992)Mol.Gen.Genet.231:276-285和Atanassova等人,(1992)Plant J.2(3):291-300);欧洲油菜(Brassica napus)ALS3(PCT申请WO 97/41228);植物核酮糖-双羧化酶/加氧酶(RuBisCO)小亚基基因;圆环病毒(AU 689311)或木薯叶脉花叶病毒(CsVMV,US 7,053,205);来自大豆的启动子(Pbdc6或Pbdc7,描述于WO/2014/150449,或泛素3启动子,描述于美国专利号7393948和美国专利号8395021);和多种农杆菌(Agrobacterium)基因启动子(参见美国专利号4,771,002;5,102,796;5,182,200;和5,428,147)。
用于植物中的合适的诱导型启动子包括:来自ACE1系统的响应铜的启动子(Mett等人(1993)PNAS 90:4567-4571);玉蜀黍In2基因的响应苯磺酰胺除草剂安全剂的启动子(Hershey等人(1991)Mol.Gen.Genetics 227:229-237和Gatz等人(1994)Mol.Gen.Genetics 243:32-38);以及来自Tn10的Tet抑制子的启动子(Gatz等人(1991)Mol.Gen.Genet.227:229-237)。用于植物中的另一种诱导型启动子是响应于植物通常并不响应的诱导剂的一种启动子。该类型的一种示例性的诱导型启动子是来自类固醇激素基因的诱导型启动子,其转录活性受到糖皮质类固醇激素的诱导(Schena等人(1991)Proc.Natl.Acad.Sci.USA 88:10421)或嵌合转录激活物XVE的最近应用(其用于由雌二醇激活的基于雌激素受体的可诱导植物表达系统(Zuo等人,(2000)Plant J.,24:265-273)。用于植物中的其它诱导型启动子描述于EP 332104、PCT WO93/21334和PCT WO 97/06269中,这些专利全文以引用方式并入本文。还可以使用由其它启动子和部分或总体合成的启动子的部分组成的启动子。参见,例如,描述用于植物中的此类启动子的Ni等人(1995)Plant J.7:661-676和PCT WO 95/14098。
在本发明的一个实施方式中,可将特异于植物的特定区域或组织的启动子序列,用于表达本发明的杀有害生物蛋白,如特异于种子的启动子(Datla,R.等人,1997,Biotechnology Ann.Rev.3,269-296),尤其是napin启动子(EP 255378A1)、菜豆素(phaseolin)启动子、麦谷蛋白启动子、helianthinin启动子(WO 92/17580)、白蛋白启动子(WO 98/45460)、油质蛋白(oleosin启动子)(WO 98/45461)、SAT1启动子或SAT3启动子(PCT/US 98/06978)。
还可以使用有利地选自以下各项的诱导型启动子:苯丙氨酸解氨酶(PAL)、HMG-CoA还原酶(HMG)、几丁质酶、葡聚糖酶、蛋白酶抑制剂(PI)、PR1家族基因、胭脂碱合酶(nos)和vspB启动子(US 5 670 349,表3)、HMG2启动子(US 5 670 349)、苹果β-半乳糖苷酶(ABG1)启动子以及苹果氨基环丙烷羧酸合酶(ACC合酶)启动子(WO 98/45445)。多个启动子可以用于本发明的构建体中,包括依次使用。
启动子可以包括或者被修饰来包括一个或多个增强子元件。在一些实施方式中,启动子可以包括多个增强子元件。含有增强子元件的启动子提供了与不包含它们的启动子相比更高水平的转录。用于植物中的合适的增强子元件包括PClSV增强子元件(美国专利号5,850,019)、CaMV 35S增强子元件(美国专利号5,106,739和5,164,316)和FMV增强子元件(Maiti等人(1997)Transgenic Res.6:143-156);申请WO 87/07644中描述的烟草花叶病毒(TMV)的或例如Carrington和Freed 1990,J.Virol.64:1590-1597描述的烟草蚀纹病毒(TEV)的翻译激活子,或内含子如玉蜀黍的adh1内含子或稻肌动蛋白的内含子1。还参见PCTWO 96/23898、WO2012/021794、WO 2012/021797、WO 2011/084370、以及WO 2011/028914。
通常,此类构建体可包含5'和3'非翻译区。此类构建体可以含有“信号序列”或“前导序列”,以促进感兴趣的肽向某些细胞内结构共翻译或翻译后转运,或促使其分泌,这些细胞内结构诸如叶绿体(或其它质体)、内质网或高尔基体。例如,构建体可以被工程化为含有促进肽向内质网的转移的信号肽。“信号序列”是指已知的或可能导致穿过细胞膜的共翻译或翻译后肽转运的序列。在真核细胞中,其典型地涉及向高尔基体中的分泌,有些会导致糖基化。“前导序列”是指在翻译时产生足以触发肽链向亚细胞细胞器共翻译转运的氨基酸序列的序列。因而,其包括通过进入内质网、液泡通道、包括叶绿体、线粒体等质体而靶向转运和/或糖基化的前导序列。还可以优选地加工植物表达盒,使之含有内含子,从而其表达需要内含子的mRNA加工。
“3'非翻译区”是指位于编码序列下游的多核苷酸。多腺苷酸化信号序列以及编码能够影响将多腺苷酸片段添加到mRNA前体3'端的调控信号的其它序列都是3'非翻译区。“5'非翻译区”是指位于编码序列上游的多核苷酸。
其它上游或下游的非翻译元件包括增强子。增强子是作用来增加启动子区的表达的多核苷酸。增强子是本领域中公知的,且包括但不限于SV40增强子区和35S增强子元件。
终止区域可以对转录起始区是天然的,可以对有效连接的目的DNA序列是天然的,可以对植物宿主是天然的,或者可能从另一来源衍生而来(即,对于启动子、目的DNA序列、植物宿主、或其任意组合是外来的或异源的)。合适的终止区可以从根癌农杆菌的Ti-质粒得到,例如章鱼碱合酶终止区和胭脂碱合酶终止区。也参见Guerineau等人(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell 64:671-674;Sanfacon等人(1991)Genes Dev.5:141-149;Mogen等人(1990)Plant Cell 2:1261-1272;Munroe等人(1990)Gene 91:151-158;Ballas等人(1989)Nucleic Acids Res.17:7891-7903;和Joshi等人(1987)Nucleic Acid Res.15:9627-9639。
根据需要,可优化一种或多种基因以增加在转化宿主细胞中的表达(合成的DNA序列)。也就是说,可以使用宿主细胞偏好的密码子合成基因以改进表达,或者可以根据宿主偏好的密码子使用频率用密码子合成基因。合成DNA序列的开放阅读框在细胞中的表达能够产生本发明的多肽。合成的DNA序列可以适用于简单地去除不需要的限制性内切核酸酶位点、辅助DNA克隆策略、改变或去除任何潜在的密码子偏爱、改变或提高GC含量、去除或改变交替的阅读框、并且/或者改变或去除可能存在于天然DNA序列中的内含子/外显子间接识别位点、聚腺苷酸化位点、核糖体结合序列、不需要的启动子元件等。通常,基因的GC含量将增加。参见例如,Campbell and Gowri(1990)Plant Physiol.92:1-11来讨论宿主偏好的密码子使用。用于合成植物优选基因的方法是本技术领域已知的。参见例如,美国专利号5,380,831与5,436,391,美国专利申请号20090137409,以及Murray等人(1989)NucleicAcids Res.17:477-498,这些文献以引用方式并入本文。
还可能的是合成的DNA序列可以用于将其它改进引入到DNA序列中,诸如引入内含子序列、创建表达为与细胞器靶向序列的蛋白质融合物的DNA序列,诸如叶绿体转运肽、质外体/空泡靶向肽、或在内质网中引起所得肽截留的肽序列。因此,在一个实施方式中,将杀有害生物蛋白质靶向定位在叶绿体中进行表达。以此方式,当杀有害生物蛋白质不是直接插入到叶绿体中时,表达盒将另外含有编码转运肽的核酸以引导杀有害生物蛋白质至叶绿体。这些转运肽是本领域已知的。参见例如,Von Heijne等人(1991)PlantMol.Biol.Rep.9:104-126;Clark等人(1989)J.Biol.Chem.264:17544-17550;Della-Cioppa等人(1987)Plant Physiol.84:965-968;Romer等人(1993)Biochem.Biophys.Res.Commun.196:1414-1421;和Shah等人(1986)Science 233:478-481。
可以优化靶向定位至叶绿体的杀有害生物基因,以在叶绿体中表达,以说明在植物核和该细胞器之间的密码子使用差异。以此方式,可以使用叶绿体偏好的密码子合成感兴趣的核酸。参见例如美国专利号5,380,831,该美国专利以引用方式并入本文。
植物转化
本发明的方法涉及将核苷酸构建体引入植物中。“引入”是指将核苷酸构建体提供给植物,其方式为使得构建体能够到达植物细胞的内部。本发明的方法不要求使用某个具体方法将核苷酸构建体引入植物,只要求核苷酸构建体能够到达植物的至少一个细胞的内部。本领域已知的用于将核苷酸构建体引入到植物中的方法包括但不限于稳定转化法、瞬时转化法以及病毒介导法。
“植物”指整个植物、植物器官(例如,叶、茎、根等)、种子、植物细胞、无性繁殖体、胚及其后代。植物细胞可以是分化的或未分化的(例如愈伤组织、悬浮培养细胞、原生质体、叶细胞、根细胞、韧皮部细胞、花粉)。
“转基因植物”或“转化植物”或“稳定转化的”植物或细胞或组织是指已经将外源核酸序列或DNA片段结合到或整合到植物细胞中的植物。这些核酸序列包括那些外源的或者未转化的植物细胞中不存在的序列,以及那些或许是内源的或者未转化的植物细胞中或许已经存在的序列。“异源”通常是指如下核酸序列,其对于所在细胞或天然基因组的一部分不是内源的,且已经通过感染、转染、显微注射、电穿孔、显微投射(microprojection)等添加到细胞中。
本发明中的转基因植物表达了本文所披露的一个或多个新型毒素序列。在一些实施方式中,本发明的蛋白质或核苷酸序列有利地在植物中与编码赋予此类植物有用的农艺学特性的蛋白质或RNA的其它基因组合。在编码对转化植物赋予有用的农艺学特性的蛋白质或RNA的基因中,可以提及的是编码赋予对一种或多种除草剂的耐受性的蛋白质、以及赋予对某些昆虫的耐受性的其它蛋白质、赋予对某些疾病的耐受性的那些蛋白质的DNA序列,编码提供线虫或昆虫控制的RNA的DNA等。此类基因特别描述于公开的PCT专利申请WO 91/02071和WO 95/06128以及美国专利7,923,602和美国专利公开号20100166723中,这些专利各自全文以引用方式并入本文。
在编码赋予转化植物细胞和植物对某些除草剂的耐受性的蛋白质的DNA序列中,可以提及的是WO 2009/152359中描述的赋予对草丁膦(glufosinate)除草剂的耐受性的bar或PAT基因或天蓝色链霉菌基因、编码赋予对以EPSPS为靶标的除草剂(诸如草甘膦及其盐)的耐受性的适合EPSPS的基因(US 4,535,060、US 4,769,061、US 5,094,945、US 4,940,835、US 5,188,642、US 4,971,908、US 5,145,783、US 5,310,667、US 5,312,910、US 5,627,061、US 5,633,435)、编码草甘膦-n-乙酰转移酶的基因(例如,US 8,222,489、US 8,088,972、US 8,044,261、US 8,021,857、US 8,008,547、US 7,999,152、US 7,998,703、US7,863,503、US 7,714,188、US 7,709,702、US 7,666,644、US 7,666,643、US 7,531,339、US7,527,955、以及US 7,405,074)、编码草甘膦氧化还原酶的基因(例如,US 5,463,175)、或编码HPPD抑制剂耐受蛋白的基因(例如,WO 2004/055191,WO 199638567,US 6791014,WO2011/068567,WO 2011/076345,WO 2011/085221,WO 2011/094205,WO 2011/068567,WO2011/094199,WO 2011/094205,WO 2011/145015,WO 2012/056401,和WO 2014/043435中描述的HPPD抑制剂耐受基因)。
在编码赋予对以EPSPS为靶标的除草剂的耐受性的适合EPSPS的DNA序列中,将更具体地提及的是编码植物EPSPS、具体地是玉蜀黍EPSPS、具体地是包含两个突变(具体地是在氨基酸位置102处的突变和在氨基酸位置106处的突变)并且描述于专利申请US 6566587(在下文中称为双突变体玉蜀黍EPSPS或2mEPSPS)的玉蜀黍EPSPS(WO 2004/074443)的基因、或者编码从农杆菌属中分离的EPSPS并且通过美国专利5,633,435的序列ID No.2和序列ID No.3描述的基因(也称为CP4)。
在编码赋予对以EPSPS为靶标的除草剂的耐受性的适合EPSPS的DNA序列中,将更具体地提及的是编码来自球形节杆菌的EPSPS GRG23而且编码突变体GRG23 ACE1、GRG23ACE2或GRG23 ACE3,具体地是如WO2008/100353中所述的GRG23突变体或变体,诸如WO2008/100353中的SEQ ID No.29的GRG23(ace3)R173K的基因。
在编码EPSPS并且更具体地说编码以上基因的DNA序列的情况下,编码这些酶的序列有利地前置有编码转运肽、特别地前置有美国专利5,510,471或5,633,448中的“优化的转运肽”的序列。
可以与本发明的核酸序列组合的示例性除草剂耐受性性状进一步包括至少一种ALS(乙酰乳酸合酶)抑制剂(WO 2007/024782);突变的拟南芥ALS/AHAS基因(美国专利6,855,533);编码通过代谢赋予对2,4-D(2,4-二氯苯氧基乙酸)的耐受性的2,4-D-单加氧酶的基因(美国专利6,153,401);以及编码通过代谢赋予对麦草畏(3,6-二氯-2-甲氧基苯甲酸)的耐受性的麦草畏单加氧酶的基因(US 2008/0119361和US 2008/0120739)。
在多个实施方式中,本发明的核酸与一种或多种除草剂耐受性基因叠加,这些耐受性基因包括一种或多种HPPD抑制剂除草剂耐受性基因、和/或对草甘膦和/或草丁膦耐受的一种或多种基因。
在编码涉及耐昆虫特性的蛋白质的DNA序列中,将更具体地提及的是文献中广泛描述的并且本领域技术人员已熟知的Bt蛋白质。还将提及的是从细菌诸如光杆状菌属中提取的蛋白质(WO 97/17432&WO 98/08932)。
在编码赋予新颖的耐昆虫特性的感兴趣蛋白质的此类DNA序列中,将更具体地提及的是文献中广泛描述的并且本领域技术人员已熟知的Bt Cry或VIP蛋白质。这些蛋白质包括Cry1F蛋白或源自Cry1F蛋白的杂合体(例如,US 6,326,169;US 6,281,016;US 6,218,188中所述的杂合Cry1A-Cry1F蛋白或其毒性片段)、Cry1A型蛋白或其毒性片段、优选地Cry1Ac蛋白或源自Cry1Ac蛋白的杂合体(例如,US 5,880,275中所述的杂合Cry1Ab-Cry1Ac蛋白)或如EP 451878中所述的Cry1Ab或Bt2蛋白或其杀昆虫片段、如WO 2002/057664中所述的Cry2Ae、Cry2Af或Cry2Ag蛋白或其毒性片段、WO 2007/140256中所述的Cry1A.105蛋白(SEQID No.7)或其毒性片段、NCBI登录号ABG20428的VIP3Aa19蛋白、NCBI登录号ABG20429的VIP3Aa20蛋白(在WO 2007/142840中的SEQ ID No.2)、在COT202或COT203棉花事件中产生的VIP3A(分别见WO 2005/054479和WO 2005/054480)、如WO 2001/47952中所述的Cry蛋白、如Estruch等人(1996),Proc Natl Acad Sci U S A.28;93(11):5389-94和US 6,291,156中所述的VIP3Aa蛋白或其毒性片段;来自致病杆菌属(如WO 98/50427中所述的)、沙雷氏菌属(具体地是来自嗜虫沙雷氏菌(S.entomophila))或光杆状菌属物种菌株的杀昆虫蛋白,诸如来自光杆状菌属的如WO 98/08932中所述的Tc-蛋白(例如,Waterfield等人,2001,Appl Environ Microbiol.67(11):5017-24;French-Constant and Bowen,2000,Cell MolLife Sci.;57(5):828-33)。在此还包括一些(1-10,优选地1-5个)氨基酸不同于任一以上序列的这些蛋白质中任一种的任何变体或突变体,这些序列具体地是其毒性片段的序列、或融合至转运肽诸如质体转运肽、或另一种蛋白质或肽的序列。
在又一个实施方式中,本文涵盖的序列是MTX样序列。术语“MTX”在本领域中用于描述由球形芽孢杆菌(Bacillus sphaericus)产生的一组杀有害生物蛋白。这些中的第一个,在本领域中通常称为MTX1,被合成为对蚊子有毒的副孢子晶体。该晶体的主要组分是51kDa和42kDa的两种蛋白质,因为这两种蛋白质的存在都是毒性所必需的,因此MTX1被认为是一种“二元”毒素(Baumann等人,(1991)Microbiol.Rev.55:425-436)。
通过分析具有不同毒性的不同球形芽孢杆菌菌株,已鉴定出两类新的MTX毒素。MTX2和MTX3代表不同的、相关类别的表现出杀有害生物活性的杀有害生物毒素。例如,参见Baumann等人(1991)Microbiol.Rev.55:425-436,该文献全文以引用方式并入本文。MTX2是一种100kDa的毒素。最近MTX3已被鉴定为一种单独的毒素,尽管来自球形芽孢杆菌的MTX3的氨基酸序列与球形芽孢杆菌SSII-1的MTX2毒素是38%同一的(Liu等人(1996)Appl.Environ.Microbiol.62:2174-2176)。Mtx毒素可用于增加球形芽孢杆菌菌株的杀昆虫活性和控制蚊子种群中对Bin毒素的抗性进化(Wirth等人(2007)Appl EnvironMicrobiol 73(19):6066-6071)。
在各种实施方式中,MTX样序列包括SEQ ID No:1至SEQ ID No:15所示的核苷酸序列、SEQ ID No:16至SEQ ID No:30所示的氨基酸序列,以及它们的生物活性变体和片段。
在多个实施方式中,本发明的核酸可以在植物中与赋予所希望的性状的一种或多种基因组合,这些性状诸如除草剂耐受性、昆虫耐受性、耐旱性、线虫控制、水利用效率、氮利用效率、提高的营养价值、抗病性、提高的光合作用、提高的纤维品质、胁迫耐受性、提高的再生、以及类似性状。
可与本发明的基因在同一物种的植物中组合的特别有用的转基因事件(例如通过杂交或通过将含有另一转基因事件的植物用本发明的嵌合基因再转化),包括事件531/PV-GHBK04(棉花,昆虫控制,描述于WO 2002/040677),事件1143-14A(棉花,昆虫控制,未保藏,描述于WO 2006/128569);事件1143-51B(棉花,昆虫控制,未保藏,描述于WO 2006/128570);事件1445(棉花,除草剂耐受,未保藏,描述于US-A 2002-120964或WO 2002/034946;事件17053(稻,除草剂耐受,保藏为PTA-9843,描述于WO 2010/117737);事件17314(稻,除草剂耐受,保藏为PTA-9844,描述于WO2010/117735);事件281-24-236(棉花,昆虫控制-除草剂耐受,保藏为PTA-6233,描述于WO 2005/103266或US-A 2005-216969);事件3006-210-23(棉花,昆虫控制-除草剂耐受,保藏为PTA-6233,描述于US-A2 007-143876或WO 2005/103266);事件3272(玉米,质量性状,保藏为PTA-9972,描述于WO 2006/098952或US-A 2006-230473);事件33391(小麦,除草剂耐受,保藏为PTA-2347,描述于WO 2002/027004),事件40416(玉米,昆虫控制-除草剂耐受,保藏为ATCC PTA-11508,描述于WO 11/075593);事件43A47(玉米,昆虫控制-除草剂耐受,保藏为ATCC PTA-11509,描述于WO2011/075595);事件5307(玉米,昆虫控制,保藏为ATCC PTA-9561,描述于WO 2010/077816);事件ASR-368(剪股颖(bent grass),除草剂耐受,保藏为ATCC PTA-4816,描述于US-A 2006-162007或WO 2004/053062);事件B16(玉米,除草剂耐受,未保藏,描述于US-A2003-126634);事件BPS-CV127-9(大豆,除草剂耐受,保藏为NCIMB号41603,描述于WO2010/080829);事件BLR1(油籽油菜,雄性不育恢复,保藏为NCIMB 41193,描述于WO 2005/074671),事件CE43-67B(棉花,昆虫控制,保藏为DSM ACC2724,描述于US-A 2009-217423或WO 2006/128573);事件CE44-69D(棉花,昆虫控制,未保藏,描述于US-A 2010-0024077);事件CE44-69D(棉花,昆虫控制,未保藏,描述于WO 2006/128571);事件CE46-02A(棉花,昆虫控制,未保藏,描述于WO 2006/128572);事件COT102(棉花,昆虫控制,未保藏,描述于US-A2006-130175或WO 2004/039986);事件COT202(棉花,昆虫控制,未保藏,描述于US-A2007-067868或WO 2005/054479);事件COT203(棉花,昆虫控制,未保藏,描述于WO 2005/054480););事件DAS21606-3/1606(大豆,除草剂耐受,保藏为PTA-11028,描述于WO 2012/033794),事件DAS40278(玉米,除草剂耐受,保藏为ATCC PTA-10244,描述于WO2011/022469);事件DAS-44406-6/pDAB8264.44.06.1(大豆,除草剂耐受,保藏为PTA-11336,描述于WO 2012/075426),事件DAS-14536-7/pDAB8291.45.36.2(大豆,除草剂耐受,保藏为PTA-11335,描述于WO 2012/075429),事件DAS-59122-7(玉米,昆虫控制-除草剂耐受,保藏为ATCC PTA 11384,描述于US-A2006-070139);事件DAS-59132(玉米,昆虫控制-除草剂耐受,未保藏,描述于WO 2009/100188);事件DAS68416(大豆,除草剂耐受,保藏为ATCC PTA-10442,描述于WO 2011/066384或WO 2011/066360);事件DP-098140-6(玉米,除草剂耐受,保藏为ATCC PTA-8296,描述于US-A 2009-137395或WO 08/112019);事件DP-305423-1(大豆,质量性状,未保藏,描述于US-A2008-312082或WO 2008/054747);事件DP-32138-1(玉米,杂交系统,保藏为ATCC PTA-9158,描述于US-A2009-0210970或WO 2009/103049);事件DP-356043-5(大豆,除草剂耐受,保藏为ATCC PTA-8287,描述于US-A2010-0184079或WO2008/002872);事件EE-1(茄子(brinjal),昆虫控制,未保藏,描述于WO 07/091277);事件FI117(玉米,除草剂耐受,保藏为ATCC 209031,描述于US-A 2006-059581或WO 98/044140);事件FG72(大豆,除草剂耐受,保藏为PTA-11041,描述于WO 2011/063413),事件GA21(玉米,除草剂耐受,保藏为ATCC 209033,描述于US-A 2005-086719或WO 98/044140);事件GG25(玉米,除草剂耐受,保藏为ATCC 209032,描述于US-A 2005-188434或WO 98/044140);事件GHB119(棉花,昆虫控制-除草剂耐受,保藏为ATCC PTA-8398,描述于WO2008/151780);事件GHB614(棉花,除草剂耐受,保藏为ATCC PTA-6878,描述于US-A 2010-050282或WO 2007/017186);事件GJ11(玉米,除草剂耐受,保藏为ATCC 209030,描述于US-A2005-188434或WO 98/044140);事件GM RZ13(糖用甜菜,病毒抗性,保藏为NCIMB-41601,描述于WO 2010/076212);事件H7-1(糖用甜菜,除草剂耐受,保藏为NCIMB 41158或NCIMB41159,描述于US-A 2004-172669或WO 2004/074492);事件JOPLIN1(小麦,疾病耐受,未保藏,描述于US-A 2008-064032);事件LL27(大豆,除草剂耐受,保藏为NCIMB41658,描述于WO2006/108674或US-A 2008-320616);事件LL55(大豆,除草剂耐受,保藏为NCIMB 41660,描述于WO2006/108675或US-A 2008-196127);事件LLcotton25(棉花,除草剂耐受,保藏为ATCC PTA-3343,描述于WO 2003/013224或US-A 2003-097687);事件LLRICE06(稻,除草剂耐受,保藏为ATCC 203353,描述于US 6,468,747或WO 2000/026345);事件LLRice62(稻,除草剂耐受,保藏为ATCC 203352,描述于WO 2000/026345),事件LLRICE601(稻,除草剂耐受,保藏为ATCC PTA-2600,描述于US-A 2008-2289060或WO 2000/026356);事件LY038(玉米,质量性状,保藏为ATCC PTA-5623,描述于US-A 2007-028322或WO 2005/061720);事件MIR162(玉米,昆虫控制,保藏为PTA-8166,描述于US-A 2009-300784或WO 2007/142840);事件MIR604(玉米,昆虫控制,未保藏,描述于US-A2008-167456或WO 2005/103301);事件MON15985(棉花,昆虫控制,保藏为ATCC PTA-2516,描述于US-A 2004-250317或WO 2002/100163);事件MON810(玉米,昆虫控制,未保藏,描述于US-A2002-102582);事件MON863(玉米,昆虫控制,保藏为ATCC PTA-2605,描述于WO 2004/011601或US-A 2006-095986);事件MON87427(玉米,授粉控制,保藏为ATCC PTA-7899,描述于WO 2011/062904);事件MON87460(玉米,应激耐受,保藏为ATCC PTA-8910,描述于WO 2009/111263或US-A 2011-0138504);事件MON87701(大豆,昆虫控制,保藏为ATCC PTA-8194,描述于US-A 2009-130071或WO2009/064652);事件MON87705(大豆,质量性状-除草剂耐受,保藏为ATCC PTA-9241,描述于US-A2010-0080887或WO 2010/037016);事件MON87708(大豆,除草剂耐受,保藏为ATCCPTA-9670,描述于WO 2011/034704);事件MON87712(大豆,田野,保藏为PTA-10296,描述于WO2012/051199),事件MON87754(大豆,质量性状,保藏为ATCC PTA-9385,描述于WO 2010/024976);事件MON87769(大豆,质量性状,保藏为ATCC PTA-8911,描述于US-A 2011-0067141或WO 2009/102873);事件MON88017(玉米,昆虫控制-除草剂耐受,保藏为ATCCPTA-5582,描述于US-A 2008-028482或WO 2005/059103);事件MON88913(棉花,除草剂耐受,保藏为ATCC PTA-4854,描述于WO 2004/072235或US-A 2006-059590);事件MON88302(油籽油菜,除草剂耐受,保藏为PTA-10955,描述于WO 2011/153186),事件MON88701(棉花,除草剂耐受,保藏为PTA-11754,描述于WO 2012/134808),事件MON89034(玉米,昆虫控制,保藏为ATCC PTA-7455,描述于WO 07/140256或US-A 2008-260932);事件MON89788(大豆,除草剂耐受,保藏为ATCC PTA-6708,描述于US-A 2006-282915或WO 2006/130436);事件MS11(油籽油菜,授粉控制-除草剂耐受,保藏为ATCC PTA-850或PTA-2485,描述于WO 2001/031042);事件MS8(油籽油菜,授粉控制-除草剂耐受,保藏为ATCC PTA-730,描述于WO2001/041558或US-A 2003-188347);事件NK603(玉米,除草剂耐受,保藏为ATCC PTA-2478,描述于US-A 2007-292854);事件PE-7(稻,昆虫控制,未保藏,描述于WO 2008/114282);事件RF3(油籽油菜,授粉控制-除草剂耐受,保藏为ATCC PTA-730,描述于WO 2001/041558或US-A2003-188347);事件RT73(油籽油菜,除草剂耐受,未保藏,描述于WO 2002/036831或US-A2008-070260);事件SYHT0H2/SYN-000H2-5(大豆,除草剂耐受,保藏为PTA-11226,描述于WO 2012/082548),事件T227-1(糖用甜菜,除草剂耐受,未保藏,描述于WO 2002/44407或US-A 2009-265817);事件T25(玉米,除草剂耐受,未保藏,描述于US-A 2001-029014或WO2001/051654);事件T304-40(棉花,昆虫控制-除草剂耐受,保藏为ATCC PTA-8171,描述于US-A 2010-077501或WO 2008/122406);事件T342-142(棉花,昆虫控制,未保藏,描述于WO2006/128568);事件TC1507(玉米,昆虫控制-除草剂耐受,未保藏,描述于US-A 2005-039226或WO 2004/099447);事件VIP1034(玉米,昆虫控制-除草剂耐受,保藏为ATCC PTA-3925.,描述于WO 2003/052073),事件32316(玉米,昆虫控制-除草剂耐受,保藏为PTA-11507,描述于WO 2011/084632),事件4114(玉米,昆虫控制-除草剂耐受,保藏为PTA-11506,描述于WO 2011/084621),事件EE-GM3/FG72(大豆,除草剂耐受,ATCC登录号PTA-11041)任选地叠加于事件EE-GM1/LL27或事件EE-GM2/LL55(WO 2011/063413A2),事件DAS-68416-4(大豆,除草剂耐受,ATCC登录号PTA-10442,WO 2011/066360A1),事件DAS-68416-4(大豆,除草剂耐受,ATCC登录号PTA-10442,WO 2011/066384A1),事件DP-040416-8(玉米,昆虫控制,ATCC登录号PTA-11508,WO 2011/075593 A1),事件DP-043A47-3(玉米,昆虫控制,ATCC登录号PTA-11509,WO 2011/075595 A1),事件DP-004114-3(玉米,昆虫控制,ATCC登录号PTA-11506,WO 2011/084621 A1),事件DP-032316-8(玉米,昆虫控制,ATCC登录号PTA-11507,WO 2011/084632 A1),事件MON-88302-9(油籽油菜,除草剂耐受,ATCC登录号PTA-10955,WO 2011/153186 A1),事件DAS-21606-3(大豆,除草剂耐受,ATCC登录号PTA-11028,WO 2012/033794 A2),事件MON-87712-4(大豆,质量性状,ATCC登录号PTA-10296,WO2012/051199A2),事件DAS-44406-6(大豆,叠加的除草剂耐受,ATCC登录号PTA-11336,WO2012/075426A1),事件DAS-14536-7(大豆,叠加的除草剂耐受,ATCC登录号PTA-11335,WO2012/075429A1),事件SYN-000H2-5(大豆,除草剂耐受,ATCC登录号PTA-11226,WO 2012/082548 A2),事件DP-061061-7(油籽油菜,除草剂耐受,保藏号未获得,WO 2012071039A1),事件DP-073496-4(油籽油菜,除草剂耐受,保藏号未获得,US 2012131692),事件8264.44.06.1(大豆,叠加的除草剂耐受,登录号PTA-11336,WO 2012075426 A2),事件8291.45.36.2(大豆,叠加的除草剂耐受,登录号PTA-11335,WO 2012075429 A2),事件SYHT0H2(大豆,ATCC登录号PTA-11226,WO 2012/082548 A2),事件MON88701(棉花,ATCC登录号PTA-11754,WO 2012/134808 A1),事件KK179-2(苜蓿,ATCC登录号PTA-11833,WO2013/003558A1),事件pDAB8264.42.32.1(大豆,叠加的除草剂耐受,ATCC登录号PTA-11993,WO2013/010094 A1),事件MZDT09Y(玉米,ATCC登录号PTA-13025,WO 2013/012775A1)。
植物细胞的转化可以通过本领域内已知的几种技术之一实现。本发明的杀有害生物基因可以被修饰,以获得或增强在植物细胞中的表达。通常,表达这样的蛋白的构建体会含有启动子以驱动基因转录,并含有3’非翻译区以使转录终止和多腺苷酸化。这些构建体的组织是本领域中公知的。在一些情况下,设计基因可以是有用的,使得分泌由此产生的肽,或以其它方式将其靶向定位在植物细胞内。例如,基因可利用工程方法加工使其含有信号肽,以促进肽向内质网的转移。还可以优选地加工植物表达盒,使之含有内含子,从而其表达需要内含子的mRNA加工。
通常,植物表达盒”典型地将被插入到“植物转化载体”。此植物转化载体可以包括实现植物转化所需要的一种或多种DNA载体。例如,本领域的通常作法是使用包括一个以上的连续DNA片段的植物转化载体。这些载体在本领域通常称为“二元载体”。二元载体以及带有辅助质粒的载体最常用于农杆菌介导的转化,其中实现高效转化所需的DNA片段的大小和复杂度都是非常大的,且将功能分离到分离的DNA分子上是有利的。二元载体典型地含有质粒载体、可选择标记和“感兴趣的基因”;其中质粒载体含有T-DNA转移(例如左边界和右边界)所需的顺式作用序列;可选择标记设计成能在植物细胞中表达;“感兴趣的基因”指该基因设计成能在植物细胞中表达,以期产生转基因植物。此质粒载体上还存在细菌复制所需要的序列。顺式作用序列以适宜方式排列,使其能向植物细胞内有效转移并在细胞中表达。例如,可选择的标记基因和杀有害生物基因位于左右边界之间。通常,第二质粒载体含有反式作用因子,这些反式作用因子介导从农杆菌到植物细胞的T-DNA转移。此质粒通常含有毒力作用(Vir基因),使植物细胞被农杆菌属感染,并且通过在边界序列切割来转移DNA以及Vir介导的DNA转移,这一点是在本领域了解的(Hellens和Mullineaux(2000)Trendsin Plant Science 5:446-451)。几种类型的农杆菌菌株(例如LBA4404、GV3101、EHA101、EHA105等等)可以用于植物转化。第二质粒载体并非必要通过其它方法转化植物,例如显微投射、显微注射、电穿孔、聚乙二醇等等。
一般来说,植物转化方法涉及将异源DNA转移进入靶植物细胞(例如不成熟的或成熟的胚、悬浮培养物、未分化的愈伤组织、原生质体,等等),接着是应用适当的选择(取决于可选择的标记基因)的最大阈值水平以从一组未转化的细胞团块回收转化的植物细胞。通常,将外植体转移到新鲜供应的相同培养基中,并常规培养。随后,在放置于补充有最大阈值水平的选择剂的再生培养基上之后,使转化细胞分化成嫩苗。然后将嫩苗转移到选择性生根培养基中,用于回收生根的嫩苗或小植株。转基因植株然后成长为成熟的植物并产生可育种子(例如Hiei等人(1994)The Plant Journal 6:271-282;Ishida等人(1996)NatureBiotechnology 14:745-750)。通常,将外植体转移到新鲜供应的相同培养基中,并常规培养。用于产生转基因植物的技术与方法的一般说明可参见Ayres和Park(1994)CriticalReviews in Plant Science 13:219-239和Bommineni和Jauhar(1997)Maydica 42:107-120。由于被转化材料含有许多细胞;在任何一块目的愈伤组织或组织或细胞群中同时存在转化细胞和未转化细胞。杀死未转化细胞并允许转化细胞增殖的能力产生转化植物培养物。通常,去除未转化细胞的能力是转化植物细胞的快速回收和转基因植物成功生成的一个限制。
转化方法和将核苷酸序列引入植物的方法可以不同,这取决于靶向转化的植物或植物细胞的类型,即随单子叶植物或双子叶植物而变化。可通过几种方法中的一种方法来生成转基因植物,这些方法包括但不限于显微注射、电穿孔、直接基因转移、通过农杆菌将异源DNA引入植物细胞(农杆菌介导的转化)、用粘附于颗粒的异源外源DNA轰击植物细胞、弹道的颗粒加速、气溶胶束转化(美国公布申请号20010026941、美国专利号4,945,050、国际公布号WO 91/00915、美国公布申请号2002015066)、Lec1转化以及转化DNA的多种其它非颗粒直接介导的方法。
转化叶绿体的方法是本领域已知的。参见,例如,Svab等人(1990)Proc.Natl.Acad.Sci.USA 87:8526-8530;Svab和Maliga(1993)Proc.Natl.Acad.Sci.USA90:913-917;Svab和Maliga(1993)EMBO J.12:601-606。该方法依赖于基因枪递送含有选择标记的DNA,且通过同源重组将DNA靶向定位到质体基因组中。另外,通过对核编码的和质体定位RNA聚合酶的组织偏爱型表达,实现沉默的质体携带的转基因的反式激活,可以完成质体转化。这样的系统已经被报道于McBride等人(1994)Proc.Natl.Acad.Sci.USA 91:7301-7305。
异源的外来DNA整合到植物细胞中后,然后在培养基中选择时应用最大阈值水平,以杀死未转化细胞,并通过定期地转移到新鲜培养基中,分离和繁殖能在该选择处理中存活的推定已转化的细胞。通过连续传代和用合适选择挑战,可以鉴别和繁殖经质粒载体转化的细胞。然后,可以用分子和生物化学方法来确认异源的感兴趣的基因是否整合到转基因植物的基因组中。
可根据常规方法将已经转化的细胞培养成植物。参见例如,McCormick等人(1986)Plant Cell Reports 5:81-84。之后这些植物可以生长,并且用相同的转化品系或不同的品系对它授粉,并且所得的杂种具有鉴定的所需表型特征组成型表达。可以培养两代或多代,以确保理想表型特征的表达得到稳定维持和遗传,然后收获种子,以确保已经实现了理想表型特征的表达。以此方式,本发明提供了具有稳定地结合到在其基因组中的本发明核苷酸构建体(例如本发明的表达盒)的转化种子(也称作“转基因种子”)。
植物转化的评估
将异源的外来DNA引入植物细胞后,通过不同的方法,例如分析核酸或蛋白质以及与整合的基因有关的代谢物,可以确认异源基因在植物基因组中的转化或整合。
PCR分析是在移植到土壤中之前的早期阶段,筛选转化的细胞、组织或芽是否存在所掺入的基因的快速方法(Sambrook和Russell(2001)Molecular Cloning:A LaboratoryManual.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)。使用对感兴趣的基因或农杆菌载体背景等具有特异性的寡核苷酸引物进行PCR。
可以通过基因组DNA的Southern印迹分析确认植物转化(Sambrook和Russell,2001,出处同上)。一般而言,从转化体中提取总DNA,用合适的限制酶消化,在琼脂糖凝胶上分级分离,并转移到硝酸纤维素或尼龙膜上。然后根据标准技术(Sambrook和Russell,2001,出处同上),用例如放射标记的32P靶DNA片段探测膜或“印迹”,以确认所引入的基因在植物基因组中的整合。
做Northern印迹分析时,按照本领域常规使用的标准程序(Sambrook和Russell,2001,出处同上),将RNA从转化体的特定组织中分离,在甲醛琼脂糖凝胶中分级分离,印迹到尼龙滤膜上。然后使用本技术领域已知的方法(Sambrook和Russell,2001,出处同上),通过使所述滤膜与源自于杀有害生物基因的放射性探针杂交,检测杀有害生物基因编码的RNA的表达。
可对转基因植物进行蛋白质印迹、生物化学检验等,使用结合到存在于杀有害生物蛋白质的一个或多个表位上的抗体通过标准程序(Sambrook和Russell,2001,出处同上)以确认杀有害生物基因编码的蛋白质的存在。
植物中的杀有害生物活性
在本发明的另一方面中,可以产生表达具有杀有害生物活性的杀有害生物蛋白质的转基因植物。上述通过举例方式描述的方法可以被用来产生转基因植物,但该产生转基因植物细胞的方式对本发明不是决定性的。本技术领域已知的或描述的方法例如农杆菌介导的转化、基因枪转化、和非颗粒介导的方法可以根据实验者的判断力来使用。表达杀有害生物蛋白质的植物可以通过本技术领域中描述的通用方法来分离,例如通过愈伤组织转化、转化愈伤组织的选择、以及从这样的转基因愈伤组织再生可育的植物。在这样的过程中,可以使用任何基因作为可选择的标记,只要它在植物中的表达赋予鉴别和选择转化细胞的能力。
已经开发了很多标记用于植物细胞,例如抵抗氯霉素、氨基糖苷G418、潮霉素等等。编码涉及叶绿体代谢物的产物的其它基因也可以被用作可选择的标记。例如,对植物除草剂例如草甘膦、溴苯腈或咪唑啉酮提供抗性的基因可以发现特定用途。已经报道了此类基因(Stalker等人(1985)J.Biol.Chem.263:6310-6314)(溴苯腈抗性腈水解酶基因);和Sathasivan等人(1990)Nucl.Acids Res.18:2188(AHAS咪唑啉酮抗性基因)。此外,本文公开的基因可用作评定细菌或植物细胞转化的标志物。用于在植物、植物器官(例如,叶、茎、根等)、种子、植物细胞、繁殖体、胚或其子代中检测转基因的存在的方法在本技术领域中是熟知的。在一个实施方式中,转基因的存在是通过测试杀有害生物活性来检测。
表达杀有害生物蛋白质的可育植物可以用于杀有害生物活性测试,并且选择显示出最佳活性的植物用于进一步育种。方法是本技术领域可获得的以测定有害生物活性。通常,该蛋白质被混合并用于饲喂试验。参见,例如Marrone等人,(1985)J.of EconomicEntomology78:290-293。
本发明可以用于任何植物物种的转化,包括但不限于单子叶植物和双子叶植物。感兴趣的植物的实例包括但不限于玉米(玉蜀黍)、高粱、小麦、向日葵、番茄、十字花科植物、胡椒、马铃薯、棉花、稻、大豆、甜菜、甘蔗、烟草、大麦和油籽油菜、芸苔属、苜蓿、黑麦、粟类、红花、花生、甘薯、木薯、咖啡、椰子、菠萝、柑桔树、可可、茶叶、香蕉、油桃、无花果、番石榴、芒果、橄榄、木瓜、腰果、澳洲坚果、杏、燕麦、蔬菜、观赏植物以及针叶树。
蔬菜包括但不限于番茄、莴苣、青豆、利马豆、豌豆以及甜瓜属的成员(诸如黄瓜、哈密瓜以及香瓜)。观赏植物包括但不限于杜鹃花、锈球花、芙蓉、玫瑰、郁金香、黄水仙、矮牵牛、康乃馨、一品红以及菊花。优选地,本发明的植物是作物植物(例如,玉蜀黍、高粱、小麦、向日葵、番茄、十字花科的植物、胡椒、土豆、棉花、稻谷、大豆、甜菜、甘蔗、烟草、大麦、油籽油菜等等)。
用于杀有害生物防治
用于采用包含本发明核苷酸序列或其变体的菌株在害虫防治中或在工程化其它生物体中作为杀有害生物剂的一般方法是本领域已知的。参见例如美国专利号5,039,523和EP0480762A2。
含有本发明的核酸序列或其变体的芽孢杆菌菌株、或遗传学上被改变成包含本发明的杀有害生物基因和蛋白质的微生物可用于保护农作物和产品防御有害生物。在本发明的一个方面中,当细胞应用于一种或多种目标有害生物的环境时,生产毒素(杀有害生物剂)的生物体的完整的即未裂解的细胞使用延长细胞中产生的毒素的活性的试剂处理。
或者,通过将杀有害生物基因引入细胞宿主来生产杀有害生物剂。杀有害生物基因的表达直接或间接导致杀有害生物剂的细胞内生产和维持。在本发明的一个方面中,当细胞应用于一种或多种靶标有害生物的环境时,然后在延长在细胞中生产的毒素的活性的条件下处理这些细胞。产生的产物保留了毒素的毒性。这些天然封装的杀有害生物剂然后可依照常规技术配制用于具有目标有害生物的环境,例如,土壤、水和植物的叶子。参见例如EPA0192319和其中引用的参考文献。或者,可配制表达本发明的基因的细胞以至于允许应用生成的物质作为杀有害生物剂。
本发明的活性成分通常是以组合物的形式应用,并且可以同时或相继地与其它化合物应用于要处理的作物区或植物。这些化合物可以是肥料、除草剂、冷冻保护剂、表面活性剂、洗涤剂、杀有害生物皂、休眠油、聚合物、和/或定时释放或生物可降解的载体配制品,其允许单一应用该配制品后一个靶标区域的长期投配。它们还可以是选择性除草剂、化学杀昆虫剂、杀病毒剂、杀微生物剂、杀变形虫剂、杀有害生物剂、杀真菌剂、杀菌剂、杀线虫剂、杀软体动物剂、或几种这些制剂的混合物,如果需要的话,进一步与农业上可接受的载体、表面活性剂或应用促进佐剂习惯一起应用于本制剂技术领域中。合适的载体和佐剂可以是固体或液体,并对应在配制技术中通常所用的物质,例如天然的或再生的矿物质、溶剂、分散剂、润湿剂、增粘剂、粘合剂或肥料。同样地,这些配制品可以制备成可食用的“诱饵”或塑造成有害生物“陷阱”,以允许该杀有害生物配制品被靶标有害生物摄食或消化。
应用本发明的活性成分或包含本发明的细菌菌株产生的至少一种杀有害生物蛋白质的本发明的农艺化学组合物的方法包括叶应用、种子包衣和土壤应用。应用的数量和应用比例取决于被对应有害生物侵染的强度。
该组合物可以配制成粉剂、尘剂、丸剂、颗粒剂、喷雾剂、乳剂、胶体、溶液、或诸如此类,并且可以通过常规方法如脱水、冷冻干燥、均质化、提取、过滤、离心、沉降、或浓缩包含该多肽的细胞培养物来制备。在包含至少一种这样的杀有害生物多肽的所有这些组合物中,多肽可以以约1重量%的至约99重量%浓度存在。
鳞翅目、半翅目、双翅目或鞘翅目有害生物可以通过本发明的方法在给定的区域杀死或减少其数量,或者可以预防性地应用于环境区域以防止易感有害生物的侵染。优选是有害生物摄取或接触杀有害生物有效量的多肽。“杀有害生物有效量”是指能够对至少一种有害生物致死,或显著地减少有害生物生长、摄食、或正常的生理发育的杀有害生物剂的量。例如,杀有害生物剂可导致卵孵化减少、在昆虫发育的任何阶段的死亡率降低、蜕皮减少和/或有害生物对靶生物的摄食减少(例如,植物或植物细胞的摄食部位数目减少和/或对植物或植物细胞的损害减少)。此量将根据这些因子改变,例如,待控制的特定的目标有害生物、特定的环境、位置、植物、作物、或待处理的农业现场、环境条件、以及杀有害生物有效的多肽组合物的方法、比率、浓度、稳定性、和应用的数量。这些制剂还可以相对于气候条件、环境考虑和/或应用的频率和/或有害生物侵染的严重性而变化。
所述的杀有害生物剂组合物可通过配制细菌细胞、晶体和/或孢子悬液,或具有预期的农业上可接收的载体的分离蛋白质组分而制成。这些组合物可以在施用前以适当方法如冻干、冷冻干燥、脱水、或在水性载体、介质或适合的稀释剂如生理盐水或其它缓冲液中配制。配制的组合物可以是以粉尘或颗粒材料的形式,或在油(植物或矿物)中的悬浮液的形式,或水或油/水乳剂的形式,或作为可湿性粉剂的形式,或与合适农业应用的任何其它载体材料组合的形式。合适的农业载体可以是固体或液体,并且在本技术领域中是熟知的。术语“农业上可接受的载体”涵盖了那些通常在杀有害生物剂配制技术中所用的所有的佐剂、惰性组分、分散剂、表面活性剂、增粘剂、粘合剂等;这些是在杀有害生物剂制剂领域的技术人员熟知的。所述制剂可与一种或多种固体或液体佐剂混合并通过各种方法,例如使用常规制剂技术和合适的佐剂通过均匀混合、搅拌和/或研磨杀有害生物组合物以制备。合适的配制品和应用方法被描述在美国专利号6,468,523中,该美国专利以引用方式并入本文。
“害虫”包括但不限于昆虫、真菌、细菌、线虫、螨虫、蜱虫等。昆虫害虫包括选自以下目的昆虫:鞘翅目、双翅目、膜翅目、鳞翅目、食毛目、同翅目、半翅目、直翅目、缨翅目、革翅目、等翅目、虱目、蚤目、毛翅目等,特别是鞘翅目、鳞翅目和双翅目。
鞘翅目包括肉食亚目(Adephaga)和多食亚目(Polyphaga)。肉食亚目包括步甲总科(Caraboidea)和豉甲总科(Gylinoidea),而多食亚目包括水龟虫总科(Hydrophiloidea)、隐翅虫总科(Staphylinoidea)、花萤总科(Cantharoidea)、郭公虫总科(Cleroidea)、叩头虫总科(Elateroidea)、花甲总科(Dascilloidea)、泥甲总科(Dryopoidea)、丸甲总科(Byrrhoidea)、扁甲总科(Cucujoidea)、芫菁总科(Meloidea)、花蚤总科(Mordelloidea)、拟步行虫总科(Tenebrionoidea)、长蠹总科(Bostrichoidea)、金龟总科(Scarabaeoidea)、天牛总科(Cerambycoidea)、叶甲总科(Chrysomeloidea)和象虫总科(Curculionoidea)。步甲总科包括虎甲科(Cicindelidae)、步甲科(Carabidae)和龙虱科(Dytiscidae)。豉甲总科包括豉甲科(Gyrinidae)。水龟虫总科包括水龟虫科(Hydrophilidae)。隐翅虫总科包括葬甲科(Silphidae)和隐翅虫科(Staphylinidae)。花萤总科包括花萤科(Cantharidae)和萤科(Lampyridae)。郭公虫总科包括郭公虫科(Cleridae)和皮蠹科(Dermestidae)。叩头虫总科包括叩甲科(Elateridae)和吉丁虫科(Buprestidae)。扁甲总科包括瓢虫科(Coccinellidae)。芫菁总科包括芫菁科(Meloidae)。拟步行虫总科包括拟步甲科(Tenebrionidae)。金龟总科包括黑蜣科(Passalidae)和金龟子科(Scarabaeidae)。天牛总科包括天牛科(Cerambycidae)。叶甲总科包括叶甲科(Chrysomelidae)。象虫总科包括象甲科(Curculionidae)和小蠹科(Scolytidae)。
双翅目包括长角亚目(Nematocera)、短角亚目(Brachycera)和环裂亚目(Cyclorrhapha)。长角亚目包括大蚊科(Tipulidae)、毛蠓科(Psychodidae)、蚊科(Culicidae)、蠓科(Ceratopogonidae)、摇蚊科(Chironomidae)、蚋科(Simuliidae)、毛蚊科(Bibionidae)和瘿蚊科(Cecidomyiidae)。短角亚目包括水虻科(Stratiomyidae)、虻科(Tabanidae)、剑虻科(Therevidae)、食虫虻科(Asilidae)、泽龟科(Mydidae)、蜂虻科(Bombyliidae)和长足虻科(Dolichopodidae)。环裂亚目包括门无额缝组(Aschiza)和无额缝组(Aschiza)。门无额缝组包括蚤蝇科(Phoridae)、食蚜蝇科(Syrphidae)和眼蝇科(Conopidae)。门无额缝组包括组无瓣类(Acalyptratae)和有瓣类(Calyptratae)。组无瓣类包括斑蝇科(Otitidae)、实蝇科(Tephritidae)、潜蝇科(Agromyzidae)和果蝇科(Drosophilidae)。组有瓣类包括虱蝇科(Hippoboscidae)、狂蝇科(Oestridae)、寄蝇科(Tachinidae)、花蝇科(Anthomyiidae)、家蝇科(Muscidae)、丽蝇科(Calliphoridae)和麻蝇科(Sarcophagidae)。
鳞翅目包括凤蝶科(Papilionidae)、粉蝶科(Pieridae)、灰蝶科(Lycaenidae)、蛱蝶科(Nymphalidae)、斑蝶科(Danaidae)、眼蝶科(Satyridae)、弄蝶科(Hesperiidae)、天蛾科(Sphingidae)、天蚕蛾科(Saturniidae)、尺蛾科(Geometridae)、裳蛾科(Arctiidae)、夜蛾科(Noctuidae)、毒蛾科(Lymantriidae)、透翅蛾科(Sesiidae)和谷蛾科(Tineidae)。
线虫包括寄生线虫,例如根结线虫、胞囊线虫和腐败线虫(lesion nematode),包括异皮线虫属(Heterodera)属种、根结线虫属(Meloidogyne)属种和球形胞囊线虫属(Globodera)属种;尤其是胞囊线虫的成员,包括但不限于大豆异皮线虫(Heteroderaglycines)(大豆胞囊线虫);甜菜异皮线虫(Heterodera schachtii)(甜菜胞囊线虫);燕麦异皮线虫(Heterodera avenae)(禾谷胞囊线虫);以及马铃薯金线虫(Globoderarostochiensis)和马铃薯白线虫(Globodera pailida)(马铃薯胞囊线虫)。腐败线虫包括短体线虫属(Pratylenchus)属种。
半翅目害虫(其包括被指定为半翅目、同翅目或异翅目的物种)包括但不限于草盲蝽属(Lygus)属种,例如西部牧草盲蝽(豆荚草盲蝽(Lygus hesperus))、牧草盲蝽(美洲牧草盲蝽(Lygus lineolaris))和绿盲蝽(灰豆草盲蝽(Lygus elisus));蚜虫,例如桃蚜(Myzus persicae)、棉蚜(Aphis gossypii)、樱桃蚜虫或黑樱桃蚜虫(樱桃瘤额蚜(Myzuscerasi))、大豆蚜(Aphis glycines Matsumura);褐飞虱(Nilaparvata lugens)和稻黑尾叶蝉(黑尾叶蝉属(Nephotettix)属种);以及椿象,例如绿蝽(拟绿蝽(Acrosternumhilare))、棕翅蝽(茶翅蝽(Halyomorpha halys))、南方绿蝽(稻绿蝽(Nezara viridula))、稻褐蝽(美洲稻蝽(Oebalus pugnax))、森林红蝽(红足真蝽(Pentatoma rufipes))、欧洲蝽(沙枣润蝽(Rhaphigaster nebulosa))和角盾蝽(耳蝽(Troilus luridus))。
本发明的主要作物昆虫害虫包括:玉米:玉米螟(Ostrinia nubilalis)、欧洲玉米螟;小地老虎(Agrotis ipsilon)、小地老虎(black cutworm);谷实夜蛾(Helicoverpazea)、玉米穗虫(corn earworm);草地夜蛾(Spodoptera frugiperda)、秋行军虫(fallarmyworm);西南玉米杆草螟(Diatraea grandiosella)、西南玉米螟;南美玉米苗斑螟(Elasmopalpus lignosellus)、小玉米茎蛀虫;小蔗螟、蔗螟;玉米根叶甲(Diabroticavirgifera)、西方玉米根虫;长角叶甲巴氏亚种(Diabrotica longicornis barberi)、北方玉米根虫;十一星叶甲食根亚种(Diabrotica undecimpunctata howardi)、南方玉米根虫;梳爪叩头虫属(Melanotus)属种、金针虫;北方圆头犀金龟(Cyclocephala borealis)、北方独角仙(蛴螬);南方圆头犀金龟(Cyclocephala immaculata)、南方独角仙(蛴螬);日本丽金龟(Popillia japonica)、日本金龟子;玉米铜色跳甲(Chaetocnema pulicaria)、玉米跳甲;玉米长喙象(Sphenophorus maidis)、玉米谷象;玉米缢管蚜(Rhopalosiphum maidis)、玉米叶蚜;玉米根蚜(Anuraphis maidiradicis)、玉米根蚜虫;美洲谷长蝽(Blissusleucopterus leucopterus)、麦长蝽(chinch bug);红足黑蝗(Melanoplus femurrubrum)、红腿蚱蜢;迁飞黑蝗(Melanoplus sanguinipes)、迁徙蝗;玉米种蝇(Hylemya platura)、玉米种蛆;美洲黍潜叶蝇(Agromyza parvicornis)、玉米斑点潜叶虫;玉米黄蓟马(Anaphothrips obscrurus)、草蓟马;窃蚁(Solenopsis milesta)、窃叶蚁;二斑叶螨(Tetranychus urticae)、双斑叶螨;高粱:斑禾草螟(Chilo partellus)、高粱螟;草地夜蛾(Spodoptera frugiperda)、秋行军虫;考斯夜蛾(Spodoptera cosmioides);南部灰翅夜蛾;谷实夜蛾、玉米穗虫;南美玉米苗斑螟、小玉米茎蛀虫;颗粒地老虎(Feltiasubterranea)、粒状切根虫;长毛食叶然金龟(Phyllophaga crinita)、蛴螬;伪金针虫属(Eleodes)、叩头虫属(Conoderus)和Aeolus属种属的线虫;橙足负泥虫(Oulemamelanopus)、谷类叶甲;玉米铜色跳甲、玉米跳甲;玉米长喙象、玉米谷象;玉米缢管蚜;玉米叶蚜;美甘蔗伪毛蚜(Sipha flava)、黄甘蔗蚜;美洲谷长蝽、麦长蝽;高梁瘿蚊(Contariniasorghicola)、高粱瘿蚊(sorghum midge);朱砂叶螨(Tetranychus cinnabarinus)、朱砂叶螨(carmine spider mite);二斑叶螨、双斑叶螨;小麦:一星粘虫(Pseudaletiaunipunctata)、粘虫;草地夜蛾、秋行军虫;南美玉米苗斑螟、小玉米茎蛀虫;西方灰地老虎(Agrotis orthogonia)、西方地老虎;南美玉米苗斑螟、小玉米茎蛀虫;橙足负泥虫、谷类叶甲;三叶草叶象(Hypera punctata)、车轴草叶象;十一星叶甲食根亚种、南方玉米根虫;俄罗斯小麦蚜虫;麦二叉蚜(Schizaphis graminum)、麦二叉蚜(greenbug);麦长管蚜(Macrosiphum avenae)、麦长管蚜(English grain aphid);红足黑蝗、红腿蚱蜢;殊种蝗(Melanoplus differentialis)、长额负蝗(differential grasshopper);迁飞黑蝗、迁徙蝗;黑森瘿蚊(Mayetiola destructor)、黑森瘿蚊(Hessian fly);麦红吸浆虫(Sitodiplosis mosellana)、小麦吸浆虫;美洲麦秆蝇(Meromyza americana)、麦秆蝇;麦地种蝇(Hylemya coarctata)、麦种蝇;烟草蓟马(Frankliniella fusca)、烟草蓟马(tobacco thrip);麦茎蜂(Cephus cinctus)、小麦茎蜂;曲叶螨(Aceria tulipae)、小麦曲叶螨;向日葵:向日葵芽卷叶蛾(Suleima helianthana)、向日葵芽蛾;向日葵同斑螟(Homoeosoma electellum)、向日葵蛾;向曰葵叶甲(zygogramma exclamationis)、向日葵甲虫;胡萝卜利犀金龟(Bothyrus gibbosus)、胡萝卜甲虫;向日葵籽瘿蚊(Neolasiopteramurtfeldtiana)、向日葵籽瘿蚊(sunflower seed midge);棉花:烟芽夜蛾、棉花芽虫;谷实夜蛾、棉铃虫;甜菜夜蛾(Spodoptera exigua)、甜菜夜蛾(beet armyworm);棉红铃虫(Pectinophora gossypiella)、棉红铃虫(pink bollworm);墨西哥棉铃象(Anthonomusgrandis)、棉铃象甲;棉蚜(Aphis gossypii)、棉蚜(cotton aphid);棉序盲蝽(Pseudatomoscelis seriatus)、棉花跳盲蝽;茼麻粉虱(Trialeurodes abutilonea)、带状翅白粉虱(bandedwinged whitefly);美洲牧草盲蝽、牧草盲蝽;红足黑蝗、红腿蚱蜢;殊种蝗、特异黑蝗;烟蓟马(Thrips tabaci)、洋葱蓟马;烟褐花蓟马(Franklinkiella fusca)、烟草褐蓟马;朱砂叶螨、朱砂叶螨;二斑叶螨、双斑叶螨;稻米:小蔗螟、甘蔗螟;草地夜蛾,秋行军虫;考斯夜蛾;南部灰翅夜蛾;谷实夜蛾、玉米穗虫;葡萄鞘叶甲(Colaspis brunnea)、葡萄鞘叶甲(grape colaspis);稻水象甲(Lissorhoptrus oryzophilus)、稻水象甲(ricewater weevil);米象(Sitophilus oryzae)、米象(rice weevil);二条黑尾叶蝉(Nephotettix nigropictus)、米叶蝉;美洲谷长蝽、麦长蝽;拟绿蝽、绿蝽;二化螟(Chilusuppressalis),亚洲稻螟;大豆:大豆尺夜蛾(Pseudoplusia includens)、大豆尺夜蛾(soybean looper);梨豆夜蛾(Anticarsia gemmatalis)、梨豆夜蛾(velvetbeancaterpillar);苜蓿绿夜蛾(Plathypena scabra)、苜蓿绿夜蛾(green cloverworm);玉米螟、欧洲玉米螟;小地老虎、小地老虎;甜菜夜蛾、甜菜夜蛾;考斯夜蛾;南部灰翅夜蛾;烟芽夜蛾、棉蚜(cotton budworm);谷实夜蛾、棉铃虫;墨西哥大豆瓢虫(Epilachnavarivestis)、墨西哥大豆瓢虫(Mexican bean beetle);桃蚜、桃蚜;马铃薯叶蝉(Empoascafabae)、马铃薯微叶蝉(potato leafhopper);拟绿蝽、绿蝽;红足黑蝗、红腿蚱蜢;殊种蝗、特异黑蝗;玉米种蝇、玉米种蛆;大豆蓟马(Sericothrips variabilis)、大豆蓟马(soybeanthrip);烟蓟马、洋葱蓟马;土耳其斯坦叶螨(Tetranychus turkestani)、草莓叶螨(strawberry spider mite);二斑叶螨、双斑叶螨;大麦:玉米螟、欧洲玉米螟;小地老虎、小地老虎;麦二叉蚜、麦二叉蚜;美洲谷长蝽、麦长蝽;拟绿蝽、绿蝽;烟草蝽(Euschistusservus),褐臭蝽;新热带褐臭蝽(Euschistus heros)、新热带褐臭蝽(neotropical brownstink bug);灰地种蝇(Delia platura)、玉米种蛆(seedcorn maggot);黑森瘿蚊、黑森瘿蚊;麦岩螨(Petrobia latens)、麦长腿蜘蛛;油菜:甘蓝蚜(Brevicoryne brassicae)、卷心菜蚜;黄条跳甲(Phyllotreta cruciferae)、跳甲(Flea beetle);蓓带夜蛾(Mamestraconfigurata)、贝莎夜蛾(Bertha armyworm);小菜蛾(Plutella xylostella)、小菜蛾;地种蝇属(Delia)种属、根蛆。
提高植物产量的方法
提供了用于增加植物产量的方法。所述方法包括提供表达编码本文公开的杀有害生物多肽序列的多核苷酸的植物或植物细胞,以及使植物或其种子在被所述多肽对其具有杀有害生物活性的害虫侵染(或易受其侵染)的田地中生长。在一些实施方式中,所述多肽具有针对鳞翅目、鞘翅目、双翅目、半翅目或线虫害虫的杀有害生物活性,并且所述田地被鳞翅目、半翅目、鞘翅目、双翅目或线虫害虫侵染。如本文所定义,植物的“产量”是指植物产生的生物质的质量和/或数量。“生物质”是指任何测量的植物产品。生物质产量的增加是所测量的植物产品的产量的任何改进。增加植物产量有几个商业应用。例如,增加植物叶生物质可增加人类或动物食用的叶类蔬菜的产量。此外,增加叶生物质可用于增加植物来源的药物或工业产品的产量。产量增加可包括与不表达杀有害生物序列的植物相比的任何统计学上显著的增加,包括但不限于至少1%增加、至少3%增加、至少5%增加、至少10%增加、至少20%增加、至少30%、至少50%、至少70%、至少100%或更大的产量增加。在具体的方法中,由于表达本文所公开的杀有害生物蛋白的植物的害虫抗性提高,所以植物产量增加。杀有害生物蛋白的表达导致害虫侵染或取食的能力降低。
植物也可用一种或多种化学组合物处理,所述化学组合物包括一种或多种除草剂、杀昆虫剂或杀真菌剂。示例性的化学组合物包括:水果/蔬菜除草剂:莠去津、除草定、敌草隆、草甘膦、利谷隆、嗪草酮、西玛津、氟乐灵、吡氟禾草灵、草铵磷、氯吡延命菊、百草枯、戊炔草胺、稀禾定、氟丙嘧草酯、氯吡、茚嗪氟草胺;水果/蔬菜杀昆虫剂剂:涕灭威、苏云金杆菌、西维因、呋喃丹、毒死蜱、氯氰菊酯、溴氰菊酯、阿维菌素、氟氯氰菊酯/高效氟氯氰菊酯、高氰戊菊酯、高效氯氟氰菊酯、灭螨醌、联苯肼酯、甲氧虫酰肼、氟酰脲、环虫酰肼、噻虫啉、呋虫胺、嘧螨酯、螺螨酯、γ-氯氟氰菊酯、螺甲螨酯、多杀菌素、溴氰虫酰肼、杀铃脲、螺虫乙酯、吡虫啉、氟虫酰胺、硫双威、氰氟虫腙、氟啶虫胺腈、丁氟螨酯、腈吡螨酯(cyenopyrafen)、噻虫胺、噻虫嗪、斯诺托姆(spinotoram)、硫双威、氟啶虫酰胺、灭虫威、甲氨基阿维菌素苯甲酸盐、茚虫威、苯线磷、吡丙醚、苯丁氧化物;水果/蔬菜类杀真菌剂:唑嘧菌胺、嘧菌酯、苯噻菌胺酯、啶酰菌胺、克菌丹、多菌灵、百菌清、铜、氰霜唑、环氟菌胺、霜脲氰、环唑醇、嘧菌环胺、苯醚甲环唑、烯酸吗啉、二氰蒽醌、咪唑菌酮、环酰菌胺、氟啶胺、咯菌腈、氟吡菌胺、氟吡菌酰胺、氟嘧菌酯、氟唑菌酰胺、灭菌丹、三乙膦酸、异菌脲、异丙菌胺、异皮姆、醚菌酯、代森锰锌、双块酉先菌胺、甲霜灵/精甲霜灵、代森联、苯菌酮、腈菌唑、戊菌唑、吡噻菌胺、啶氧菌酯、霜霉威、丙环唑、丙森锌、碘喹唑酮、丙硫菌唑、唑菌胺酯、嘧霉胺、喹氧、螺环菌胺、硫、戊唑醇、甲基硫菌灵、肟菌酯;谷物除草剂:2,4-D、酰啼磺隆、溴苯腈、氟酮唑草-E、绿麦隆、氯磺隆、块草酸-P、二氯吡啶酸、麦草畏、禾草灵-M、吡氟草胺、精恶唑禾草灵、双氟横草胺、氟卡巴腙-NA、氟噻草胺、氟啶嘧磺隆-M、氟草烟、弗勒泰蒙、草甘膦、碘甲磺隆、碘苯腈、异丙隆、MCPA、甲磺胺磺隆、甲磺隆、二甲戊乐灵、唑啉草酯、丙氧基卡巴腙、苄草丹、甲氧磺草胺、磺酰磺隆、噻吩磺隆、肟草酮、醚苯磺隆、苯磺隆、氟乐灵、三氟甲磺隆; 物杀真菌剂:嘧菌酯、联苯吡菌胺、啶酰菌胺、多菌灵、百菌清、环氟菌胺、环唑醇、嘧菌环胺、醚菌胺、氟环唑、苯锈、丁苯吗啉、氟吡菌酰胺、氟嘧菌酯、氟喹唑、氟唑菌酰胺、异皮姆、醚菌酯、叶菌唑、苯菌酮、吡噻菌胺、啶氧菌酯、咪鲜胺、丙环唑、碘喹唑酮、丙硫菌唑、唑菌胺酯、喹氧、螺环菌胺、戊唑醇、甲基硫菌灵、肟菌酯;谷类杀昆虫剂:乐果、λ-三氟氯氰菊酯、溴氰菊酯、顺式氯氰菊酯、β-氟氯氰菊酯、联苯菊酯、吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、毒死蜱、抗蚜威、灭虫威、氟啶虫胺腈;玉米除草剂:莠去津、甲草胺、溴苯腈、乙草胺、麦草畏、二氯吡啶酸、(S-)噻吩草胺、草铵膦、草甘膦、异氟草、(S-)异丙甲草胺、甲基磺草酮、烟嘧磺隆、氟嘧磺隆、砜嘧磺隆、磺草酮、甲酰氨磺隆、苯唑草酮、特波三酮、嘧啶肟草醚、噻酮磺隆、氟噻草胺、比莎留锋(Pyroxasulfon);玉米杀昆虫剂:克百威、毒死蜱、联苯菊酯、氟虫腈、吡虫啉、高效氯氟氰菊酯、七氟菊酯、特丁硫磷、噻虫嗪、噻虫胺、甲螨酯、氟虫酰胺、杀铃脲、氯虫酰胺、溴氰菊酯、硫双威、β-氟氯氰菊酯、氯氰菊酯、联苯菊酯、虱螨脲、丁基嘧啶磷、乙虫腈、溴氰虫酰胺、噻虫啉、啶虫脒、呋虫胺、阿维菌素;玉米杀真菌剂:嘧菌酯、联苯吡菌胺、啶酰菌胺、环唑醇、醚菌胺、氟环唑、种衣酯、氟吡菌酰胺、氟嘧菌酯、氟唑菌酰胺、异皮姆、叶菌唑、吡噻菌胺、啶氧菌酯、丙环唑、丙硫菌唑、唑菌胺酯、戊唑醇、肟菌酯;水稻除草 剂:丁草胺、敌稗、四唑喃磺隆、苄嘧磺隆、氰氟草、杀草隆、四唑酸草胺、咪唑横隆、苯噻草胺、恶嗪草酮、吡嘧磺隆、稗草畏、二氯喹啉酸、杀草丹、茚草酮、氟噻草胺、四唑酸草胺、氯吡嘧磺隆、噁嗪草酮、双环磺草酮、环酯草醚、五氟磺草胺、双草醚,丙炔恶草酮、乙氧嘧磺隆、丙草胺、甲基磺草酮、特糠酯酮、恶草灵、精恶唑禾草灵、比密苏凡(Pyrimisulfan);水稻杀 昆虫剂:二嗪磷、仲丁威、丙硫克百威、噻嗪酮、呋虫胺、氟虫腈、吡虫啉、异丙威、噻虫啉、环虫酰肼、噻虫胺、乙虫腈、氟虫酰胺、氯虫酰胺、溴氰菊酯、啶虫脒、噻虫嗪、溴氰虫酰胺、多杀菌素、斯诺托姆(spinotoram)、甲氨基阿维菌素苯甲酸盐、高效氯氰菊酯、毒死蜱、醚菊酯、克百威、丙硫克百威、氟啶虫胺腈;水稻杀真菌剂:嘧菌酯、多菌灵、环丙酰菌胺、双氯氰菌胺、苯醚甲环唑、克瘟散、嘧菌腙、庆大霉素、己唑醇、恶霉灵、异稻瘟净(IBP)、稻瘟灵、异噻菌胺、春雷霉素、代森锰锌、苯氧菌胺、肟醚菌胺、戊菌隆、噻菌灵、丙环唑、丙森锌、咯喹酮、戊唑醇、甲基托布津甲基、參酰菌胺、三环唑、肟菌酯、井冈霉素;棉花除草剂:敌草隆、伏草隆、MSMA、乙氧氟草醚、扑草净、氟乐灵、唑草酮、烯草酮、吡氟禾草灵、草甘膦、达草灭、二甲戊乐灵、嘧草硫醚、三氟啶磺隆、吡喃草酮、草铵膦、丙炔氟草胺、噻苯隆;棉花杀昆虫剂:乙酰甲胺磷、涕灭威、毒死稗、氯氰菊酯、溴氰菊酯、阿维菌素、啶虫脒、甲维盐、吡虫啉、茚虫威、λ-氯氟氰菊酯、多杀菌素、硫双威、γ-氯氟氰菊酯、螺甲螨酯、啶虫丙醚、氟啶虫酰胺、
氟虫酰胺、杀铃脲、氯虫酰胺、β-氟氯氰菊酯、螺虫乙酯、噻虫胺、噻虫嗪、噻虫啉、呋虫胺、氟虫酰胺、氰虫酰胺、多杀菌素、斯诺托姆(spinotoram)、γ-氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、硫双威、阿维菌素、氟啶虫酰胺、啶虫丙醚、螺甲螨酯、砜虫啶;棉花杀真菌剂:嘧菌酯、联苯吡菌胺、啶酰菌胺、多菌灵、百菌清、铜、环唑醇、苯醚甲环唑、醚菌胺、氟环唑、咪唑菌酮、氟啶胺、氟吡菌酰胺、氟嘧菌酯、氟唑菌酰胺、异菌脲、吡唑萘菌胺、异噻菌胺、代森锰锌、代森锰、苯氧菌胺、吡噻菌胺、啶氧菌酯、甲基代森锌、丙硫菌唑、唑菌胺酯、五氯硝基苯、戊唑醇、氟醚唑、甲基硫菌灵、肟菌酯; 豆除草剂:甲草胺、苯达松、氟乐灵、氯嘧磺隆、氯酯磺草胺、精恶唑禾草灵、氟磺胺草醚、吡氟禾草灵、草甘膦、甲氧咪草烟、灭草喹、咪草烟、(S-)异丙甲草胺、嗪草酮、二甲戊乐灵、吡喃草酮、草铵膦;大豆杀昆虫剂:λ-氯氟氰菊酯、灭多威、吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、氟虫酰胺、氯虫酰胺、溴氰虫酰胺、多杀菌素、斯诺托姆(spinotoram)、甲氨基阿维菌素苯甲酸盐、氟虫腈、乙虫腈、溴氰菊酯、β-氟氯氰菊酯、γ和λ-氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、螺虫乙酯、螺螨酯、杀铃脲、氟啶虫酰胺、硫双威、β-氟氯氰菊酯;大豆杀真菌剂:嘧菌酯、联苯吡菌胺、啶酰菌胺、多菌灵、百菌清、铜、环唑醇、苯醚甲环、醚菌胺、氟环唑、氟啶胺、氟吡菌酰胺、氟嘧菌酯、粉唑醇、氟唑菌酰胺、异皮姆、扑海因、异噻菌胺、代森锰锌、代森锰、叶菌唑、苯氧菌胺、腈菌唑、吡噻菌胺、啶氧菌酯、丙环唑、丙森锌、丙硫菌唑、唑菌胺酯、戊唑醇、氟醚唑、甲基硫菌灵、肟菌酯;甜菜除草剂:氯草敏、甜菜安、甜菜呋、甜菜宁、野麦畏、二氯吡啶酸、吡氟禾草灵、环草定、苯嗪草酮、喹草酸、噻草酮、氟胺磺隆、吡喃草酮、精喹禾灵;甜菜杀昆虫剂:吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、溴氰菊酯、β-氟氯氰菊酯、γ-/λ-氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、七氟菊酯、氯虫酰胺、塞斯比(Cyaxypyr)、氟虫腈、克百威;卡诺拉除草剂:二氯吡啶酸、禾草灵、吡氟禾草灵、草铵膦、草甘膦、吡草胺、氟乐胺苯磺隆、喹草酸、精喹禾灵、烯草酮、吡喃草酮;卡诺拉杀真菌剂:嘧菌酯、联苯吡菌胺、啶酰菌胺、多菌灵、环唑醇、苯醚甲环、醚菌胺、氟环唑、氟啶胺、氟吡菌酰胺、氟嘧菌酯、氟硅唑、氟唑菌酰胺、扑海因、异皮姆、甲哌鎓、叶菌唑、苯氧菌胺、多效唑、吡噻菌胺、啶氧菌酯、咪鲜胺、丙硫菌唑、唑菌胺酯、戊唑醇、甲基硫菌灵、肟菌酯、乙烯菌核利;卡诺拉杀昆虫剂:克百威、噻虫啉、溴氰菊酯、吡虫啉、噻虫胺、噻虫嗪、啶虫脒、呋虫胺、β-氟氯氰菊酯、γ和λ-氯氟氰菊酯、τ-弗沃勒瑞特(tau-Fluvaleriate)、乙虫腈、多杀菌素、斯诺托姆(spinotoram)、氟虫酰胺、氯虫酰胺、溴氰虫酰胺、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮。
将本发明的基因引入另一种植物的方法
本文还提供了将本发明的核酸引入另一种植物的方法。本发明的核酸或其片段可以通过轮回选择、回交、谱系育种、品系选择、大规模选择、突变育种和/或遗传标记增强选择引入到第二植物中。
因此,在一个实施方式中,本发明的方法包括将包含本发明核酸的第一植物与第二植物杂交以产生F1子代植物,以及选择包含本发明核酸的F1子代植物。该方法可进一步包括将所选择的子代植物与包含本发明核酸的第一植物杂交以产生回交子代植物,以及选择包含本发明核酸的回交子代植物。本文别处提供了用于评估杀有害生物活性的方法。该方法可进一步包括连续重复这些步骤一次或多次以产生包含本发明核酸的选定的第二次或更高次回交的子代植物。
任何涉及选择具有所需表型的植物的育种方法都可以在本发明的方法中使用。在一些实施方式中,F1植物可以自花授粉以产生分离的F2代。然后可以选择在每一代(F3、F4、F5等)中代表所需表型(例如,杀有害生物活性)的个体植物,直到性状是纯合的或固定在育种群体中。
第二植物可以是具有所希望的性状的植物,这些性状诸如除草剂耐受性、昆虫耐受性、耐旱性、线虫防治、水利用效率、氮利用效率、提高的营养价值、抗病性、提高的光合作用、提高的纤维品质、胁迫耐受性、提高的再生、以及类似性状。第二植物可以是如在本文其它位置所述的原种事件。
在各种实施方式中,可以从所得杂交物收获植物部分(全株植物、植物器官(例如,叶、茎、根等)、种子、植物细胞、繁殖体、胚等)并且可以增殖或收集以用于下游用途(例如,食物、饲料、生物燃料、油、面粉、粗粉(meal)等)。
获得植物产品的方法
本发明还涉及一种用于获得商业产品的方法,该方法包括从包含本发明的核酸的作物中收获并且/或者研磨谷物,以获得该商业产品。农艺学上和商业上重要的产品和/或物质组合物包括但不限于动物饲料、商品、以及旨在用作人消耗的食物或用于旨在用于人消耗的组合物和商品中的植物产品和副产品,具体地是失活的种子/谷物产品,包括由此类谷物/种子产生的(半加工)加工产品,其中所述产品是或包括完整或加工的种子或谷物、动物饲料、玉米或大豆豆粕、玉米或大豆面粉、玉米、玉米淀粉、豆粕、大豆面粉、麦片、大豆浓缩蛋白、大豆分离蛋白、组织化大豆浓缩蛋白、护发产品、大豆坚果黄油、纳豆、天贝、水解大豆蛋白、人造稠黄油、起酥油、卵磷脂、可食用性完整大豆(生的、烘烤过的、或作为日本青豆)、大豆奶酪、豆腐乳、豆腐、腐竹、以及煮熟、研磨、蒸熟、烘焙或煮半熟的谷物等,如果这些产品和物质组合物含有可检测量的在此所述的核苷酸和/或核酸序列作为含有此类核苷酸序列的任何植物的诊断,则它们旨在处于本发明的范围内。
以下实施例是作为说明而非限制的方式提供的。
实验实施例
实施例1.新颖杀有害生物基因的发现
Axmi486是使用如在美国专利公开US 20180371032(全文以引用方式并入)中描述的步骤从苏云金芽孢杆菌ATX65002菌株中鉴定出来,被进行进一步修饰选择。如前所述,Axmi486显示出对小菜蛾、梨豆夜蛾、西南玉米杆草螟、小蔗螟、烟芽夜蛾、谷实夜蛾、南部灰翅夜蛾和大豆尺夜蛾的活性(在此,“靶标昆虫”;参见US 20180371032的表7)。进一步希望产生对属于铃夜蛾属物种的昆虫(例如谷实夜蛾(本文中,“Hz”))表现出增加的抗性、死亡率和/或耐受性的Axmi486变体。
实施例2.对毒素基因Axmi486进行蛋白质工程化以实现提高的对害虫Hz的生物活
基于Axmi486蛋白结构、内部功能信息以及来自丙氨酸扫描诱变研究的实验数据选择所靶向的诱变位置。通过查看序列和结构信息、文献和实验数据,以通过合理的方法鉴定丙氨酸突变体,并测试其对Hz的活性及其对Hz肠液的稳定性。进一步对不破坏活性且保留野生型活性的突变体进行提高的Hz活性筛选。这些实验的结局允许优先考虑和选择用于靶位点饱和诱变的氨基酸。靶向了30个相关位置。这些位置具有在Hz肠液中稳定的丙氨酸突变体,并表明所述位置是对于活性在功能上重要的位置。该实验的一个关键目标是创建与Axmi486相比对Hz的抗性增加的Axmi变体,与此同时确保与Axmi486相比,Axmi变体不显示出降低的对靶标昆虫的抗性。创建了约3600个突变体来进行针对Hz的筛选。
突变文库创建
使用诱变来创建单位置突变饱和文库。使用含有简并密码子(NDT/VHG/TGG)的引物组合来减少密码子水平的冗余。使用Axmi486_1Pb质粒DNA模板和Agilent TechnologiesQuick-Change Lightning定点诱变试剂盒来创建文库。在T7 Express感受态细胞中转化突变文库,并对随机菌落进行DNA测序以确认突变。
实施例3a.Hz活性的生物测定筛选
为了在大肠杆菌中表达,将T7 Express感受态细胞用具有30个相关位置的单独质粒转化,并接种到LB琼脂羧苄青霉素平板上。将来自每个文库的单独菌落接种到补充有羧苄青霉素和甘油的Instant TB中,并于37℃以250rpm振荡生长24小时,直至达到细胞饱和。
使用从新鲜转化的单个细菌菌落文库和野生型Axmi486接种的在实施例2中鉴定的表达变体的新鲜全培养物进行Hz抗性筛选。在SAW生物测定中筛选出了30个单点饱和文库。选择表现优于野生型Axmi486的变体作为初步命中,以确认整个培养物的活性改善。将初步命中的甘油储备液划线到LB琼脂羧苄青霉素平板上。将这些选定的样本接种在补充有羧苄青霉素和甘油的新鲜Instant TB培养基中,并于37℃以250rpm振荡生长24小时。一旦达到饱和,就从每个变体培养物中等分出全培养物样本,并与适当的LDS样本缓冲液混合,并于95℃煮沸10分钟。使用4-12%bis-tris SDS-PAGE执行光密度测定,以定量79kDa处的感兴趣的Axmi486蛋白条带。使用具有多次重复的一系列蛋白质浓度(1mg/ml、0.5mg/ml、0.1mg/ml、0.04mg/ml)来测定Hz活性改善(参见图1a至图1d)。在18个变体的至少三个独立生物学重复中证实了Hz活性的改善。针对南部灰翅夜蛾(SAW)(参见图2a)、梨豆夜蛾(VBC)(参见图3a至图3d)、草地夜蛾(FAW)(参见图4a至图4b)、烟芽夜蛾(Hv)(参见图5a至图5c)进行对Hz改进突变的全培养物生物测定,以确定突变对活性的影响。
表1a.Axmi486变体被鉴定为具有提高的对Hz的抗性,与此同时保持了对靶标昆虫的抗性:
Figure BDA0003594082320000421
表1b.内部名称与序列ID号之间的引用
Figure BDA0003594082320000431
表2.生物测定结果
突变 SEQ ID NO Hz萎缩得分
野生型(WT) 2.0
V162A 19 3.0
V162A R60A 20 3.0
D96P 21 4.0
H97D 22 4.0
H97L 23 4.0
T100N 24 3.5
T100P 25 3.5
T100N D96P 26 4.0
D96P H97D 27 4.0
D96P H97L 28 4.0
H97L T100N D96P 29 4.0
T100P D96P 30 4.0
T100P H97D 31 4.0
T100N H97D 32 4.0
T100N H97L 33 4.0
H97D T100P D96P 34 4.0
H97L T100P D96P 35 4.0
H97D T100N D96P 36 4.0
实施例3b.测定描述
昆虫生物测定的评分是通过检查测定并将用WT或变体蛋白处理的幼虫的相对大小与未处理的幼虫的大小(阴性对照)进行比较来执行的。得分是由专家科学家目视给出的。得分0=与阴性对照相比没有萎缩,得分1=比阴性对照小1-25%,得分2=比阴性对照小26-50%,得分3=比阴性对照小51-75%,并且得分4=比阴性对照小大于75%。
实施例4.用于植物表达的基因的运载
Hz改进版本
Axmi486的天然和改进的杀昆虫活性变体被提名用于植物测试。由本领域技术人员使用与典型实践一致的技术产生植物转化载体和转基因事件。
编码杀昆虫性状的基本区域的合成序列被设计和创建为所述发明的重要组成部分。与使用天然细菌序列相比,创建合成序列的目的是在选定的靶标植物物种中实现令人满意的蛋白质表达。合成版本由改变的核苷酸序列组成,所述改变的核苷酸序列保留天然蛋白质序列或引入靶向突变,从而改变与改进的害虫控制相关联的特定氨基酸。生成了以下版本:
·编码来自苏云金芽孢杆菌的天然axmi486基因的315个氨基酸序列的版本
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含96位处的单点突变(天冬氨酸至脯氨酸)
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含97位处的单点突变(组氨酸至天冬氨酸)
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含97位处的单点突变(组氨酸至亮氨酸)
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含96位处(天冬氨酸至脯氨酸)和100位处(苏氨酸至天冬酰胺)的双点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含96位处(天冬氨酸至脯氨酸)和97位处(组氨酸到天冬氨酸)的双点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含96位处(天冬氨酸至脯氨酸)和97位处(组氨酸到亮氨酸)的双点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含96位处(天冬氨酸至脯氨酸)、97位处(组氨酸至亮氨酸)和100位处(苏氨酸至天冬酰胺)的三点突变
所描述的编码区配置有所需转基因的植物表达所需的适当启动子和终止子序列。用于在双子叶植物中表达的一个示例可包括将拟南芥(A.thaliana)的泛素蛋白10(UBQ10)的启动子区(Grefen等人,2010),和根癌农杆菌(A.tumefaciens)的胭脂碱合酶基因的3'非翻译区(3'nos)(Depicker A.等人,1982)在功能上与所描述的杀昆虫合成序列之一组合。成功的配置将不限于用于在双子叶植物或单子叶植物中表达的所述示例。将调控序列与编码区组合的方法和技术是本领域中众所周知的。
为了产生所需的转基因植物,需要将所描述的或类似的害虫防治盒与合适的植物转化载体中的合适选择标记盒组合。所得的完整载体可由本领域技术人员与多种转化技术一起使用,所述转化技术包括但不限于农杆菌介导的或基因枪法。
SAW改进版本
Axmi486的天然和改进的杀昆虫活性变体被提名用于植物测试。由本领域技术人员使用与典型实践一致的技术产生植物转化载体和转基因事件。
编码杀昆虫性状的基本区域的合成序列被设计和创建为所述发明的重要组成部分。与使用天然细菌序列相比,创建合成序列的目的是在选定的靶标植物物种中实现令人满意的蛋白质表达。合成版本由改变的核苷酸序列组成,所述改变的核苷酸序列保留天然蛋白质序列或引入靶向突变,从而改变与改进的害虫控制相关联的特定氨基酸。生成了以下版本:
·编码来自苏云金芽孢杆菌的天然axmi486基因的315个氨基酸序列的版本
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含60位处的单点突变(精氨酸至丝氨酸)
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含60位处的单点突变(精氨酸至苏氨酸)
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含275位处的单点突变(谷氨酸至天冬氨酸)
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包括60位处(精氨酸至丝氨酸)和275位处(谷氨酸至天冬氨酸)的双点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包括60位处(精氨酸至苏氨酸)和275位处(谷氨酸至天冬氨酸)的双点突变
所描述的编码区配置有所需转基因的植物表达所需的适当启动子和终止子序列。用于在双子叶植物中表达的一个示例可包括将拟南芥(A.thaliana)的泛素蛋白10(UBQ10)的启动子区(Grefen等人,2010),和根癌农杆菌(A.tumefaciens)的胭脂碱合酶基因的3'非翻译区(3'nos)(Depicker A.等人,1982)在功能上与所描述的杀昆虫合成序列之一组合。成功的配置将不限于用于在双子叶植物或单子叶植物中表达的所述示例。将调控序列与编码区组合的方法和技术是本领域中众所周知的。
为了产生所需的转基因植物,需要将所描述的或类似的害虫防治盒与合适的植物转化载体中的合适选择标记盒组合。所得的完整载体可由本领域技术人员与多种转化技术一起使用,所述转化技术包括但不限于农杆菌介导的或基因枪法。
Hz+SAW改进版本
Axmi486的天然和改进的杀昆虫活性变体被提名用于植物测试。由本领域技术人员使用与典型实践一致的技术产生植物转化载体和转基因事件。
编码杀昆虫性状的基本区域的合成序列被设计和创建为所述发明的重要组成部分。与使用天然细菌序列相比,创建合成序列的目的是在选定的靶标植物物种中实现令人满意的蛋白质表达。合成版本由改变的核苷酸序列组成,所述改变的核苷酸序列保留天然蛋白质序列或引入靶向突变,从而改变与改进的害虫控制相关联的特定氨基酸。生成了以下版本:
·编码来自苏云金芽孢杆菌的天然axmi486基因的315个氨基酸序列的版本
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含60位处(精氨酸至丝氨酸)、96位处(天冬氨酸至脯氨酸)、97位处(组氨酸至亮氨酸)和100位处(苏氨酸至天冬酰胺)的四点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包含96位处(天冬氨酸至脯氨酸)、97位处(组氨酸至亮氨酸)、100位处(苏氨酸至天冬酰胺)和275位处(谷氨酸至天冬氨酸)的四点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包括在60位处(精氨酸到丝氨酸)、96位处(天冬氨酸到脯氨酸)、97位处(组氨酸到亮氨酸)、100位处(苏氨酸到天冬酰胺))和275位处(谷氨酸到天冬氨酸)的五点突变
·编码来自苏云金芽孢杆菌的axmi486基因的315个氨基酸序列的版本,包括60位处(精氨酸到苏氨酸)、96位处(天冬氨酸到脯氨酸)、97位处(组氨酸到亮氨酸)、100位处(苏氨酸到天冬酰胺))和275位处(谷氨酸到天冬氨酸)的五点突变
图8示出了针对Axmi486 WT的Hz改进变体的蛋白质比对。
所描述的编码区配置有所需转基因的植物表达所需的适当启动子和终止子序列。用于在双子叶植物中表达的一个示例可包括将拟南芥(A.thaliana)的泛素蛋白10(UBQ10)的启动子区(Grefen等人,2010),和根癌农杆菌(A.tumefaciens)的胭脂碱合酶基因的3'非翻译区(3'nos)(Depicker A.等人,1982)在功能上与所描述的杀昆虫合成序列之一组合。成功的配置将不限于用于在双子叶植物或单子叶植物中表达的所述示例。将调控序列与编码区组合的方法和技术是本领域中众所周知的。
为了产生所需的转基因植物,需要将所描述的或类似的害虫防治盒与合适的植物转化载体中的合适选择标记盒组合。所得的完整载体可由本领域技术人员与多种转化技术一起使用,所述转化技术包括但不限于农杆菌介导的或基因枪法。
杀有害生物盒的一般部件:
UBQ10:
·拟南芥的泛素10(UBQ10)的启动子区域(Grefen等人,2010)
Axmi486 WT:
·苏云金芽孢杆菌的axmi486基因的编码序列
·axmi486-1Pb的变体,引入了沉默突变以消除过敏原命中。axmi486编码一种新颖杀有害生物蛋白,其约49%与MTX3相似。axmi486-1Pb是针对大豆表达优化的axmi486变体(JCeasar 46%)。
3'nos:
·根癌农杆菌的胭脂碱合酶基因的3'非翻译区(Depicker A.等人,1982)
实施例5.大豆转化
使用本领域熟知的方法实现大豆转化,所述方法为例如基本上使用Paz等人,(2006),Plant cell Rep.25:206描述的方法,使用根癌农杆菌介导的转化大豆半种子外植体所描述的方法。使用环磺酮作为选择标记鉴定转化体。观察到绿芽的出现,并记录为对除草剂异噁唑草酮或环磺酮的耐受性的指征。,耐受的转基因芽将显示出与与未用异噁唑草酮或环磺酮处理的野生型大豆芽可比的正常绿化,而用相同量的异噁唑草酮或环磺酮处理的野生型大豆芽将被完全漂白。这表明HPPD蛋白的存在使得能够耐受HPPD抑制剂除草剂,如异噁唑草酮或环磺酮。
将耐受的绿芽转移到生根培养基中或嫁接。在适应期后将生根的小苗转移到温室中。然后用HPPD抑制剂除草剂喷洒含有转基因的植物,例如以100g AI/ha的比率喷洒环磺酮,或以300g AI/ha的比率喷洒硝磺草酮,并辅以硫酸铵甲酯菜籽油。在施加后十天,评估由于施加除草剂引起的症状,并与在相同条件下在野生型植物上观察到的症状进行比较。
实施例6.用本文所述的杀有害生物蛋白基因转化玉米细胞
玉米穗最好在授粉后8-12天收集。将胚从穗中分离出来,并将那些大小为0.8-1.5mm的胚芽优选用于转化。将胚铺板于适当的孵育培养基(小盾片面朝上)(例如DN62A5S培养基(3.98g/L N6盐;1mL/L(的1000x储备液)N6维生素;800mg/L的L-天冬酰胺;100mg/L的肌醇;1.4g/L的L-脯氨酸;100mg/L的酪蛋白氨基酸;50g/L的蔗糖;1mL/L(的1mg/mL储备液)2,4-D)。然而,除DN62A5S之外的培养基和盐是合适的并且是本领域已知的。将胚于25℃在黑暗中孵育过夜。然而,胚本身不需要孵育过夜。
将得到的外植体转移到网眼方型平板(每个平板30-40个孔)中,转移到渗透培养基上约30-45分钟,然后转移到束射板(beaming plate)上(参见例如,PCT公开号WO/0138514和美国专利号5,240,842)。
使用气溶胶束射加速器,使用基本上如PCT公开号WO/0138514中所述的条件,将设计用于植物细胞中本发明基因的DNA构建体加速到植物组织中。束射后,将胚在渗透培养基上孵育约30分钟,并在25℃下在黑暗中置于孵育培养基上过夜。为了避免过度损坏的经束射的外植体,将它们在转移至恢复培养基之前孵育至少24小时。然后将胚扩散到恢复培养基上在黑暗中在25℃下持续约5天,然后转移到选择性培养基中。根据所利用的具体选择的性质和特征,将外植体在选择性培养基中孵育多达八周。在选择期间之后,将所得愈伤组织转移到胚成熟培养基中,直到观察到成熟体细胞胚形成为止。然后将所得成熟体细胞胚置于弱光下,并且通过本领域已知的方法开始再生过程。允许所得苗在生根培养基中生根,并且将所得植物转移到育苗盆中并增殖为转基因植物。
表3:材料、DN62A5S培养基
Figure BDA0003594082320000491
用1N KOH/1N KCl将溶液的pH调节至pH 5.8,以高达3g/L的浓度添加Gelrite(Sigma),并将培养基高压灭菌。冷却至50℃后,添加2ml/L的5mg/ml硝酸银储备液(Phytotechnology Labs)。
实施例7.通过农杆菌介导的转化在植物细胞中转化本发明的基因
最好在授粉后8-12天收集穗。将胚从穗中分离出来,并将那些大小为0.8-1.5mm的胚芽优选用于转化。将胚以小盾片侧朝上的方向置于适合的孵育培养基上,并且在25℃在黑暗中孵育过夜。然而,胚本身不需要孵育过夜。将胚与含有适当载体的农杆菌菌株接触,以进行Ti质粒介导的转移约5-10min,并且然后将其接种到共培养培养基上约3天(在黑暗中在22℃)。在共培养之后,将外植体转移到恢复期培养基5-10天(在黑暗中在25℃)。根据所利用的具体选择的性质和特征,将外植体在选择性培养基中孵育多达八周。在选择期间之后,将所得愈伤组织转移到胚成熟培养基中,直到观察到成熟体细胞胚形成为止。然后将所得成熟体细胞胚置于弱光下,并且如本领域已知地开始再生过程。
说明书中提到的所有出版物和专利申请表明了本发明所属领域的技术人员的水平。所有的出版物和专利申请都以相同的程度以引用方式并入本文,就如同每个单独的出版物或专利申请被明确地并单独地指明为以引用方式并入一样。
尽管为了清楚理解的目的已经通过说明和举例方式对前述发明进行了一些详细的描述,但是显然可以在所附权利要求的范围内实施某些改变和修改。
Figure IDA0003594082370000011
Figure IDA0003594082370000021
Figure IDA0003594082370000031
Figure IDA0003594082370000041
Figure IDA0003594082370000051
Figure IDA0003594082370000061
Figure IDA0003594082370000071
Figure IDA0003594082370000081
Figure IDA0003594082370000091
Figure IDA0003594082370000101
Figure IDA0003594082370000111
Figure IDA0003594082370000121
Figure IDA0003594082370000131
Figure IDA0003594082370000141
Figure IDA0003594082370000151
Figure IDA0003594082370000161
Figure IDA0003594082370000171
Figure IDA0003594082370000181
Figure IDA0003594082370000191
Figure IDA0003594082370000201
Figure IDA0003594082370000211
Figure IDA0003594082370000221
Figure IDA0003594082370000231

Claims (28)

1.一种重组核酸分子,所述重组核酸分子包含编码具有杀有害生物活性的氨基酸序列的核苷酸序列,其中所述核苷酸序列选自由以下组成的组:
a)SEQ ID NO:1至SEQ ID NO:18所示的核苷酸序列;
b)编码包含SEQ ID NO:19至SEQ ID NO:36所示的氨基酸序列的多肽的核苷酸序列;
c)编码包含与SEQ ID NO:19至SEQ ID NO:36所示的所述氨基酸序列具有至少95%序列同一性的氨基酸序列的多肽的核苷酸序列。
2.一种重组核酸,所述重组核酸编码在60位、96位、97位、100位和162位中的任一者处具有经修饰的氨基酸的Axmi486多肽,其中所述多肽表现出对Hz的抗性。
3.根据权利要求2所述的Axmi486多肽,其中60位处的所述经修饰的氨基酸是丙氨酸,96位处的所述经修饰的氨基酸是脯氨酸,97位处的所述经修饰的氨基酸是天冬氨酸或亮氨酸,100位处的所述经修饰的氨基酸是天冬酰胺或脯氨酸,并且162位处的所述经修饰的氨基酸是丙氨酸。
4.根据权利要求1至3所述的重组核酸分子,其中所述核苷酸序列是已设计用于在植物中表达的合成序列。
5.根据权利要求1至3所述的重组核酸分子,其中所述核苷酸序列可操作地连接至能够指导所述核苷酸序列在植物细胞中表达的启动子。
6.一种载体,所述载体包含根据权利要求1至3所述的重组核酸分子。
7.根据权利要求6所述的载体,所述载体还包含编码异源多肽的核酸分子。
8.一种宿主细胞,所述宿主细胞含有根据权利要求1至3所述的重组核酸。
9.根据权利要求8所述的宿主细胞,所述宿主细胞是细菌宿主细胞。
10.根据权利要求8所述的宿主细胞,所述宿主细胞是植物细胞。
11.一种转基因植物,所述转基因植物包含根据权利要求10所述的宿主细胞。
12.根据权利要求11所述的转基因植物,其中所述植物选自由以下组成的组:玉米、高粱、小麦、卷心菜、向日葵、番茄、十字花科植物、辣椒、马铃薯、棉花、水稻、大豆、甜菜、甘蔗、烟草、大麦、和油菜。
13.一种转基因种子,所述转基因种子包含根据权利要求1所述的核酸分子。
14.一种具有杀有害生物活性的重组多肽,所述重组多肽选自由以下组成的组:
a)包含SEQ ID NO:19至SEQ ID NO:36所示的氨基酸序列的多肽;和
b)包含与SEQ ID NO:19或SEQ ID NO:36所示的所述氨基酸序列具有至少95%序列同一性的氨基酸序列的多肽。
15.根据权利要求14所述的多肽,所述多肽进一步包含异源氨基酸序列。
16.一种组合物,所述组合物包含根据权利要求14所述的多肽。
17.根据权利要求16所述的组合物,其中所述组合物选自由以下组成的组:粉剂、粉末、丸剂、颗粒剂、喷雾剂、乳液、胶体和溶液。
18.根据权利要求16所述的组合物,其中所述组合物通过细菌细胞培养物的脱水、冻干、均质化、提取、过滤、离心、沉降或浓缩来制备。
19.根据权利要求16所述的组合物,所述组合物包含约1重量%至约99重量%的所述多肽。
20.一种用于控制谷实夜蛾、鳞翅目、半翅目、鞘翅目、线虫或双翅目害虫种群的方法,所述方法包括使所述种群与杀有害生物有效量的根据权利要求14所述的多肽接触。
21.一种用于杀死谷实夜蛾、鳞翅目、半翅目、鞘翅目、线虫或双翅目害虫的方法,所述方法包括使所述害虫与杀有害生物有效量的根据权利要求14的多肽接触或饲喂给所述害虫杀有害生物有效量的根据权利要求14的多肽。
22.一种用于生产具有杀有害生物活性的多肽的方法,所述方法包括在编码所述多肽的所述核酸分子表达的条件下培养根据权利要求6所述的宿主细胞。
23.一种植物或植物细胞,所述植物或植物细胞已经在其基因组中稳定地掺入了包含编码具有杀有害生物活性的蛋白质的核苷酸序列的DNA构建体,其中所述核苷酸序列选自由以下组成的组:
a)SEQ ID NO:1至SEQ ID NO:18所示的核苷酸序列;
b)编码包含SEQ ID NO:19或SEQ ID NO:36所述的氨基酸序列的多肽的核苷酸序列;和
c)编码包含与SEQ ID NO:19或SEQ ID NO:36所示的所述氨基酸序列具有至少95%序列同一性的氨基酸序列的多肽的核苷酸序列。
24.一种保护植物免受害虫侵害的方法,所述方法包括在植物或其细胞中表达编码杀有害生物多肽的核苷酸序列,其中所述核苷酸序列选自由以下组成的组:
a)SEQ ID NO:1至SEQ ID NO:18所示的核苷酸序列;
b)编码包含SEQ ID NO:19至SEQ ID NO:36所述的氨基酸序列的多肽的核苷酸序列;和
c)编码包含与SEQ ID NO:19至SEQ ID NO:36所示的所述氨基酸序列具有至少95%序列同一性的氨基酸序列的多肽的核苷酸序列。
25.根据权利要求24所述的方法,其中所述植物产生对谷实夜蛾、鳞翅目、半翅目、鞘翅目、线虫或双翅目害虫具有杀有害生物活性的杀有害生物多肽。
26.一种增加植物产量的方法,所述方法包括使已经在其基因组中稳定地掺入了包含编码具有杀有害生物活性的蛋白质的核苷酸序列的DNA构建体的植物或其种子在田地中生长,其中所述核苷酸序列选自由以下组成的组:
a)SEQ ID NO:1至SEQ ID NO:18所示的核苷酸序列;
b)编码包含SEQ ID NO:19或SEQ ID NO:36所述的氨基酸序列的多肽的核苷酸序列;和
c)编码包含与SEQ ID NO:18至SEQ ID NO:36所示的所述氨基酸序列具有至少95%序列同一性的氨基酸序列的多肽的核苷酸序列;
其中所述田地被害虫侵染,所述多肽对所述害虫具有杀有害生物活性。
27.根据权利要求1至3所述的核酸用于保护植物免受害虫侵害的用途,由所述核酸编码的氨基酸具有针对所述害虫的杀有害生物活性。
28.一种商业产品,所述商业产品包含根据权利要求1至3所述的核酸分子或由所述核酸分子编码的蛋白质,其中所述产品选自由以下组成的组:完整或经加工的种子或谷物、动物饲料、玉米或大豆豆粕、玉米或大豆粉,玉米淀粉、豆粕、大豆粉、薄片、大豆浓缩蛋白、大豆分离蛋白、组织化大豆浓缩蛋白、化妆品、护发产品、大豆坚果黄油、纳豆、天贝、水解大豆蛋白、人造稠黄油、起酥油、卵磷脂、食用整粒大豆、大豆酸奶、大豆奶酪、豆腐、腐竹、以及煮熟、抛光、蒸熟、烘烤或半熟的谷物。
CN202080071897.0A 2019-10-14 2020-10-12 新颖抗虫基因和使用方法 Pending CN114555628A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962914738P 2019-10-14 2019-10-14
US62/914,738 2019-10-14
PCT/US2020/055275 WO2021076455A1 (en) 2019-10-14 2020-10-12 Novel insect resistant genes and methods of use

Publications (1)

Publication Number Publication Date
CN114555628A true CN114555628A (zh) 2022-05-27

Family

ID=75538846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080071897.0A Pending CN114555628A (zh) 2019-10-14 2020-10-12 新颖抗虫基因和使用方法

Country Status (9)

Country Link
US (1) US20230242935A1 (zh)
EP (1) EP4045519A4 (zh)
CN (1) CN114555628A (zh)
AR (1) AR120209A1 (zh)
AU (1) AU2020367153A1 (zh)
BR (1) BR112022007119A2 (zh)
CA (1) CA3157808A1 (zh)
MX (1) MX2022004465A (zh)
WO (1) WO2021076455A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213681A1 (en) * 2002-03-22 2010-08-04 Bayer BioScience N.V. Novel Bacillus thuringiensis insecticidal proteins
EP2455394B1 (en) * 2006-06-15 2017-04-12 Athenix Corporation A family of pesticidal proteins and methods for their use
CA3062192C (en) * 2009-07-31 2022-05-17 Athenix Corp. Axmi204 protein with pesticidal activity and methods of use thereof
NZ629649A (en) * 2012-03-09 2017-03-31 Vestaron Corp Toxic peptide production, peptide expression in plants and combinations of cysteine rich peptides
UA120843C2 (uk) * 2013-12-09 2020-02-25 Атенікс Корп. Конструкція, яка містить гетерологічиий промотор, функціонально зв'язаний із нуклеотидною послідовністю, яка кодує амінокислотну послідовність, що має пестицидну активність до лускокрилих

Also Published As

Publication number Publication date
MX2022004465A (es) 2022-07-21
CA3157808A1 (en) 2021-04-22
BR112022007119A2 (pt) 2022-07-05
US20230242935A1 (en) 2023-08-03
AU2020367153A1 (en) 2022-04-28
EP4045519A4 (en) 2024-02-28
AR120209A1 (es) 2022-02-02
EP4045519A1 (en) 2022-08-24
WO2021076455A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6957583B2 (ja) 毒素遺伝子及びその使用方法
CN108137649B (zh) AXMI554δ-内毒素基因及其使用方法
US20220389444A1 (en) Bp005 toxin gene and methods for its use
CN110267975B (zh) Axmi669和axmi991毒素基因及其使用方法
US20230242935A1 (en) Novel insect resistant genes and methods of use
US20230183735A1 (en) Novel insect resistant genes and methods of use
US20230115343A1 (en) Toxin gene and methods for its use

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination