CN114555467B - 具有降低的声音特征的无人飞行器 - Google Patents

具有降低的声音特征的无人飞行器 Download PDF

Info

Publication number
CN114555467B
CN114555467B CN202080057747.4A CN202080057747A CN114555467B CN 114555467 B CN114555467 B CN 114555467B CN 202080057747 A CN202080057747 A CN 202080057747A CN 114555467 B CN114555467 B CN 114555467B
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
propulsion
propeller
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080057747.4A
Other languages
English (en)
Other versions
CN114555467A (zh
Inventor
拉斐尔·费利佩·加马里贝罗
塔勒克·哈杜拉·奥拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Embraer SA
Original Assignee
Embraer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Embraer SA filed Critical Embraer SA
Publication of CN114555467A publication Critical patent/CN114555467A/zh
Application granted granted Critical
Publication of CN114555467B publication Critical patent/CN114555467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/026Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/20Constructional aspects of UAVs for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2220/00Active noise reduction systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/04Aircraft not otherwise provided for having multiple fuselages or tail booms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/10Constructional aspects of UAVs for stealth, e.g. reduction of cross-section detectable by radars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/40Empennages, e.g. V-tails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

无人飞行器具有对准的前推进系统和后推进系统,前推进系统和后推进系统具备不同性能和/或噪声特性。根据一些实施例,无人飞行器具有前发动机和前牵引式螺旋桨以及后发动机和后推进式螺旋桨。因此,前推进系统和后推进系统中的选定的一个与另一个相比被设置成分别具有较高和较低的运行飞行性能特性以及较高和较低的噪声特征特性。例如,与后推进系统相比,前推进系统可设有较高的运行飞行性能和/或噪声特征特性,而相反,与前推进系统相比,后推进系统可设有较低的飞行性能和/或噪声特征特性。

Description

具有降低的声音特征的无人飞行器
相关申请的交叉引用
本申请涉及与本文同时提交的标题为“Design For:Unmanned Aircraft(外观:无人飞行器)”的美国外观专利申请第xx/xxx,xxx号(代理人案卷号:BHD-4439-0324),其全部内容通过引用明确并入本文。
技术领域
本文公开的实施例总体上涉及无人飞行器系统(UAS)。在特定实施例中,本发明针对具有降低的声音特征的UAS。
背景技术
由于若干理想特性,俗称为“无人机”的无人飞行器系统(UAS)在许多国家的武装部队中已经变得越来越重要,这些理想特征包括例如(i)高度自主性、航程和在站时间能力,(ii)先进的情报、监视和侦察系统,(iii)足够的飞行包线、降低的声学和雷达的可观测性,以及(iv)系统可靠性(即,与UAS为了飞行任务完成而依赖的远程控制器/飞行员的数据链接的可靠性)。
绝大多数常规UAS平台是单发动机、推进器推进布局。尽管这种传统的解决方案有若干优点,但最值得注意的是只需要一个推进系统,这与多发动机设计相比具有较少优化变量和降低的可靠性。例如,必须优化单发动机UAS的螺旋桨,以便同时最大限度地提高性能以及降低声音特征。这样的设计要求可能非常具有挑战性,这是因为在优化螺旋桨设计时可能会出现相互冲突的要求,特别是例如叶尖速度、弦分布、活动系数、直径和叶片数量。
传统UAS的单发动机设计也减少了混合电力推进的设计空间,这是因为对于多发动机UAS设计布局会考虑更大数量的混合推进架构。
因此,本文描述实施例解决的一个重要技术问题是将上述设计限制与飞行器设计分离,从而使得能够实现一种具有更高性能和降低的噪声特征的用于UAS的多发动机推进构思,同时还实现了更安静的混合电力推进(HEP)架构的概念化。因此,旨在提出解决方案,以便本文描述的实施例针对的这样的问题。
发明内容
通常,本文公开的实施例针对这样的无人飞行器,该无人飞行器具有多个对准的推进系统,这多个对准的推进系统具有不同的性能和/或噪声特性。更具体地,根据一些实施例,提供了无人飞行器,该无人飞行器具有:前推进系统,其包括前发动机和前牵引式螺旋桨;和后推进系统,其包括后发动机和后推进式螺旋桨。因此,前推进系统和后推进系统中的选定的一个推进系统与另一个相比将分别具有较高和较低的运行飞行性能特性和/或较高和较低的噪声特征特性。举例来说,前推进系统与后推进系统相比可以具有较高的运行飞行性能和/或未优化的噪声特征特性,而相反,后推进系统与前推进系统相比可以具有较低的飞行性能和/或降低的噪声特征特性。
优选提供模式控制器,以便允许以可控方式操纵前发动机和/或后发动机以及前牵引式螺旋桨和/或后推进式螺旋桨,从而至少实现具有较高和较低噪声特性的第一和第二飞行性能模式。例如,第一飞行性能模式可以包括无人飞行器的起飞和/或爬升飞行阶段,在该起飞和/或爬升飞行阶段中,前牵引式螺旋桨和后推进式螺旋桨均处于推进状态,以向无人飞行器提供推力,而第二飞行性能模式可以包括无人飞行器的安静徘徊飞行阶段,在该安静徘徊飞行阶段中,前牵引式螺旋桨处于顺桨状态,不向无人飞行器提供推力,并且后推进式螺旋桨处于推进状态,以向无人飞行器提供推力。
因此,无人飞行器可以提供推进系统和螺旋桨类型的多种组合,以便实现前推进系统和后推进系统之间的不同性能特性/噪声特性,从而获得其中可选择提高的飞行性能或降低的飞行噪声的各种飞行模式。
在一个实施例中,无人飞行器将包括左舷机身悬臂和右舷机身悬臂以及接合所述机身悬臂的中央中翼翼型。设置左舷翼和右舷翼以便分别从左舷机身悬臂和右舷机身悬臂向外延伸。由中央中翼翼型支撑的推进控制吊舱与无人飞行器的中心轴线对准,并且该推进控制吊舱包括前端和后端,该前端和该后端分别容纳前推进系统和后推进系统。倒V形尾翼被定位在左舷机身悬臂和右舷机身悬臂的后部之间,从而为飞行器提供偏航和俯仰控制。
在仔细考虑下面对本发明的优选示例性实施例的详细描述之后,本发明的这些和其它方面和优点将变得更加清楚。
附图说明
通过参考以下示例性非限制性说明性实施例的详细描述并结合附图,将更好和更完整地理解本发明公开的实施例,其中:
图1是根据本发明的实施例的UAS的左前透视图;
图2是图1中所示的UAS的示意性局部俯视图;以及
图3是根据本发明的实施例的另一UAS的示意性局部俯视图。
具体实施方式
附图1描绘了根据本发明的实施例的UAS 10。在这方面,将观察到,UAS 10是双发动机推拉式推进布局,其具有相对于UAS 10的中心纵向轴线Ac彼此同轴对准的前牵引式螺旋桨推进系统12a和后推进式螺旋桨推进系统12b。UAS 10被构造为具有由中央中翼翼型10c接合的双机身悬臂10a、10b。左舷翼10p和右舷翼10s从它们相应的机身悬臂10a、10b横向地(相对于纵向轴线Ac而言)延伸。牵引式螺旋桨推进系统12a和推进式螺旋桨推进系统12b分别被容纳在由中翼10c支撑的推进控制吊舱12的前端和后端中。UAS 10的尾翼14包括左舷方向舵14p和右舷方向舵14s,它们从相应的机身悬臂10a、10b朝向彼此向上和向内延伸,以便在顶点接合处会聚,从而形成倒V形的俯仰和偏航控制表面。
UAS 10包括在操作上连接到机载系统的机载控制器20,该机载控制器20包括推进系统12a、12b、燃料管理系统、飞行控制伺服系统等。机载模式控制器20通过数据链路22(例如,基于卫星或基于地球的通信集线器)与远程基地控制站24(例如,基于地面、空中或海军的控制站,其对UAS 10提供人力和/或计算机控制输入以允许完成飞行任务)通信,以便以下述方式实现推进模式控制。众所周知,机载飞行控制器(未示出)也可以通过数据链路22连接到控制站24,以允许操作员控制UAS 10的飞行特性和翼面(profile)。模式控制器20和/或飞行控制器也可以被预编程,以允许UAS 10自主飞行以执行特定的机载任务。
推进系统12a、12b可以是多种发动机类型,并且可以包括热力发动机,例如内燃直列发动机、旋转或往复活塞发动机、燃气涡轮发动机等。如在图2示意性描绘的实施例中所见,推进系统12a、12b中的每一个将分别包括各自配对的发动机和螺旋桨12a-1、12b-1和12a-2、12b-2。
在图2的实施例中,发动机12a-1、12b-1是燃烧式发动机(例如,内燃活塞发动机、涡轮发动机及其组合),燃烧式发动机由机载燃料箱30a、30b和30c供应合适燃料以供运行。因此,推进系统12a、12b可以设有特定的发动机/螺旋桨组合,以便针对特定的目标函数进行优化。举例来说,可以优化前发动机12a-1/牵引式螺旋桨12a-2以获得最大性能,同时可以优化后发动机12b-1/推进式螺旋桨12b-2以获得最小噪声。当然也可以提供反函数,即可以为前发动机12a-1/牵引式螺旋桨12a-2提供最佳的最小噪声特性,同时可以为后发动机12b-1/推进式螺旋桨12b-2提供最佳的最大性能特性。
本领域技术人员将理解,来自螺旋桨12a-2、12b-2的噪声将高于相应发动机12a-1、12b-1的噪声。因此,螺旋桨12a-2、12b-2代表其中存在更大降噪优化机会的机载设备。本领域技术人员还将理解,针对最小噪声特性优化的螺旋桨可以与针对最大飞行性能特性优化的螺旋桨完全不同。为了使噪声最小化,螺旋桨必须通过例如增加叶片和叶片弦的数量或通过活动因子同时还具有降低的转速,而展现出降低的翼型载荷。
通过提供两个独立地优化的推进系统12a、12b,根据本文实施例的UAS 10因此可以在必要时通过由模式控制器20发出的适当操作命令而在“最大性能”和“安静功率”模式下操作。在“最大性能模式”中,因此可命令两个推进系统12a、12b运行,对于给定的功率输入量提供可能的最大推力。然而,在“安静功率”模式下,发动机/螺旋桨组合12a-1/12a-2或12b-1/12b-2中的一个(视情况而定)可以是设计为停用“最大性能”发动机/螺旋桨组合(例如,通过完全发动机关闭和/或通过使螺旋桨顺桨)的那个。当处于“安静模式”时,UAS 10然后可以由推进系统12a或12b中的一个推进系统(具有被称为“最小噪声”推进系统的发动机/螺旋桨组合)提供动力,从而充分利用最小噪声优化标准。在下表中总结了在UAS 10的几个飞行阶段中可以由模式控制器20命令控制的一种可能的运行网格,其中前推进系统12a被配备“最大性能”发动机/螺旋桨组合12a-1/12a-2,而后推进系统12b被配备“最小噪声”发动机/螺旋桨组合12b-1/12b-2。
表1:飞行阶段和系统运行(图2)
航空领域的技术人员将认识到,当螺旋桨处于推进状态时,该螺旋桨将产生推力,以抵消与飞行器相关的阻力。相反,当螺旋桨处于顺桨状态时,该螺旋桨不提供推力来抵消与飞行器相关的阻力。因此,可以选择性地调整本文实施例中采用的各种可控螺旋桨的螺距,以提供适当的螺旋桨攻角,以便在各个飞行阶段期间产生所需的推力,或者被顺桨以不提供推力。在螺旋桨顺桨条件下,相关发动机可能会或可能不会关闭,这是因为发动机的运行不会影响螺旋桨是否产生推力。然而,考虑到燃料效率(且因此航程)的增加,通常希望在与发动机相关联的螺旋桨处于顺桨状态时关闭发动机。
附加的可选特征是围绕最小噪声螺旋桨来安装导管,从而进一步降低飞行器的声音特征。因此,根据上述图2的实施例,导管40围绕后螺旋桨12b-2安装,这是因为与前发动机/螺旋桨组合12a-1/12a-2相比,具有发动机/螺旋桨组合12b-1/12b-2的后推进系统12b被设计为最小噪声推进系统。导管40可以设有合适的已知声学衬里(例如,被动衰减系统),该已知声学衬里可以非常有效地降低与螺旋桨12b-2相关的特定噪声频率。逻辑上,本领域技术人员当然会意识到,导管40的采用与否必须是针对UAS 10的任何特定形式得出的结论,该结论是考虑到预期任务要求从综合设计研究中得出,这是因为导管40必然会不利地增加成本、阻力、重量和复杂性,同时有利地有助于降低外部噪声。
在附图3中示出了混合动力推进系统,其中后燃烧推进系统12b被电动推进系统50代替,该电动推进系统50具有由电池组50b中存储的电能供电的机载电动机50a。发电机50c在操作上与前燃烧式发动机12a-1相关联并且被电互连到电池组50b,以便在前发动机12a-1运行时维持和/或补充由电池组50b存储的电力。由于与发动机12a-1相关联的发电机50c可以在飞行中对电池组50b进行再充电,因此电池组50b的实际尺寸可以相对较小,这是因为电池组50b可以在特定任务期间由发电机50c进行多次放电和再充电。燃料箱30a-30c的尺寸也可以设计成提供最佳航程,因为它们只需要向推进系统12a的前燃烧式发动机12a-1提供燃料。
如已知的,电动机50a比同等动力的燃烧式发动机安静得多。因此,对于图3提供的实施例,由电动机50a驱动的噪声优化的螺旋桨12b-2可以是极其安静的推进系统,以用于安静动力运行模式。在下表中总结了图3中描述的UAS 10的实施例在几个飞行阶段中的可能运行模式。
表2:飞行阶段和系统运行(图3)
类似于图2的全燃烧发动机实施例并且出于类似的功能目的,图3的混合推进实施例可以可选地设有包围后螺旋桨12b-2的导管60。
如上文所讨论的,任何UAS的低声音特征对为其设计的运行任务都非常重要。因此,以上讨论的提出的实施例旨在降低UAS 10的噪声特征,从而提供有价值的声学隐身特性。
因此,虽然参考了本发明的特定实施例,但是可以设想在本领域技术人员的技术范围内的各种修改。因此,应当理解,本发明不限于所公开的实施例,相反,本发明旨在涵盖包括在其精神和范围内的各种修改和等效布置。

Claims (6)

1.一种无人飞行器,包括:
左舷机身悬臂和右舷机身悬臂,所述左舷机身悬臂和右舷机身悬臂相对于所述无人飞行器的中心轴线对准,并且所述左舷机身悬臂和右舷机身悬臂每个都具有相应的前端部和后端部;
中央中翼翼型,所述中央中翼翼型接合所述左舷机身悬臂和右舷机身悬臂中的每一个机身悬臂的中间部分,使得所述左舷机身悬臂和右舷机身悬臂各自从所述中央中翼翼型平行于所述无人飞行器的中心轴线向前和向后延伸;
左舷翼和右舷翼,所述左舷翼和所述右舷翼与所述中央中翼翼型对准,并且分别从所述左舷机身悬臂和右舷机身悬臂向外延伸;
倒V形尾翼,所述倒V形尾翼被定位在所述左舷机身悬臂和右舷机身悬臂的后端部之间并且使得所述左舷机身悬臂和右舷机身悬臂的后端部互相连接;
推进控制吊舱,所述推进控制吊舱由所述中央中翼翼型支撑,所述推进控制吊舱与所述无人飞行器的中心轴线对准,并且包括前端和后端,所述推进控制吊舱的所述前端和所述后端终止于所述左舷机身悬臂和右舷机身悬臂之间,使得所述左舷机身悬臂和右舷机身悬臂的前端部和后端部分别在前后方向上延伸超过所述推进控制吊舱的所述前端和所述后端;
燃料箱,所述燃料箱位于所述中央中翼翼型和所述推进控制吊舱中的至少一个中;以及
同轴对准的前推进系统和后推进系统,所述前推进系统和后推进系统被分别容纳在所述推进控制吊舱的所述前端和所述后端内,所述前推进系统和后推进系统当接到命令后提供沿着所述无人飞行器的中心轴线的推力,其中
所述前推进系统包括前发动机和前牵引式螺旋桨,并且所述后推进系统包括后发动机和后推进式螺旋桨,并且其中
所述前发动机和所述后发动机中的至少一个包括利用来自所述燃料箱的燃料提供运行的内燃机,并且其中
所述前牵引式螺旋桨和后推进式螺旋桨中的一个螺旋桨具有较高的运行飞行性能特性和较高的噪声特征特性,而所述前牵引式螺旋桨和后推进式螺旋桨中的另一个螺旋桨具有较低的运行飞行性能特性和较低的噪声特征特性;以及
模式控制器,所述模式控制器用于以可控方式操纵所述前发动机和/或后发动机以及所述前牵引式螺旋桨和/或后推进式螺旋桨,以便至少实现具有较高和较低噪声特性的第一飞行性能模式和第二飞行性能模式,其中
(i)所述第一飞行性能模式包括所述无人飞行器的起飞和/或爬升飞行阶段,在所述起飞和/或爬升飞行阶段中,所述前牵引式螺旋桨和后推进式螺旋桨均处于推进状态,以便向所述无人飞行器提供推力,并且其中
(ii)所述第二飞行性能模式包括所述无人飞行器的安静徘徊飞行阶段,在所述安静徘徊飞行阶段中,所述前牵引式螺旋桨处于顺桨状态,以便不向所述无人飞行器提供推力,而所述后推进式螺旋桨处于推进状态,以便向所述无人飞行器提供推力。
2.根据权利要求1所述的无人飞行器,其中,所述前牵引式螺旋桨具有较高的运行飞行性能特性和较高的噪声特征特性,并且所述后推进式螺旋桨具有较低的飞行性能特性和较低的噪声特征特性。
3.根据权利要求1所述的无人飞行器,还包括包围所述后推进式螺旋桨的导管。
4.根据权利要求1所述的无人飞行器,其中,所述前发动机和后发动机中的一个是所述内燃机,并且所述前发动机和后发动机中的另一个是电动机。
5.根据权利要求4所述的无人飞行器,还包括机载电池组,以便给所述电动机供电。
6.根据权利要求5所述的无人飞行器,还包括与所述内燃机相关联的发电机,所述发电机被电连接到所述机载电池组,以在所述内燃机运行时对所述机载电池组再充电。
CN202080057747.4A 2019-08-16 2020-08-06 具有降低的声音特征的无人飞行器 Active CN114555467B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/542,524 2019-08-16
US16/542,524 US11597514B2 (en) 2019-08-16 2019-08-16 Unmanned aircraft having reduced acoustic signatures
PCT/BR2020/050304 WO2021030888A1 (en) 2019-08-16 2020-08-06 Unmanned aircraft having reduced acoustic signatures

Publications (2)

Publication Number Publication Date
CN114555467A CN114555467A (zh) 2022-05-27
CN114555467B true CN114555467B (zh) 2024-05-03

Family

ID=74567084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080057747.4A Active CN114555467B (zh) 2019-08-16 2020-08-06 具有降低的声音特征的无人飞行器

Country Status (5)

Country Link
US (1) US11597514B2 (zh)
EP (1) EP4013681A4 (zh)
CN (1) CN114555467B (zh)
BR (1) BR112022001728A2 (zh)
WO (1) WO2021030888A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1009695S1 (en) * 2019-08-16 2024-01-02 Embraer S.A. Unmanned aircraft
USD1009696S1 (en) * 2020-02-18 2024-01-02 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Aircraft
FR3134079A1 (fr) 2022-03-29 2023-10-06 Airbus Helicopters Avion à hélices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020199A1 (en) * 2008-08-20 2010-02-25 Jiri Vycital Aircraft hybrid propulsion
WO2015115913A1 (en) * 2014-01-30 2015-08-06 Global Aerial Platforms Limited Multipurpose aircraft
CN204568065U (zh) * 2015-02-02 2015-08-19 上海交通大学 长航时混合动力无人机
US9527597B1 (en) * 2013-01-11 2016-12-27 Jaime Sada Unmanned aerial vehicle with twin-engine fore/AFT configuration and associated systems and methods
CN107089328A (zh) * 2017-03-15 2017-08-25 西北工业大学 混合动力尾坐式垂直起降长航时无人机及其飞行控制方法
CN109398705A (zh) * 2018-03-15 2019-03-01 吴大卫 一种货运飞机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140783A (en) * 1937-08-03 1938-12-20 Miller Bellanca Airplanes Ltd Airplane construction
US6367738B1 (en) * 2000-01-31 2002-04-09 John Wadleigh Aerobatic aircraft
US20120209456A1 (en) * 2011-02-15 2012-08-16 Government Of The United States, As Represented By The Secretary Of The Air Force Parallel Hybrid-Electric Propulsion Systems for Unmanned Aircraft
EP2964530B1 (en) * 2013-03-09 2019-10-30 Rolls-Royce Corporation Aircraft power plant
FR3004699B1 (fr) * 2013-04-19 2016-12-09 Airbus Operations Sas Aeronef comprenant une motorisation hybride
US9714575B2 (en) * 2013-11-27 2017-07-25 Hamilton Sundstrand Corporation Differential blade design for propeller noise reduction
US10377488B1 (en) * 2016-05-02 2019-08-13 Draganfly Innovations Inc. Tandem-wing aircraft system with shrouded propeller
GB2555439A (en) * 2016-10-27 2018-05-02 Mono Aerospace Ip Ltd Vertical take-off and landing aircraft and control method
CN206857002U (zh) * 2017-03-15 2018-01-09 西北工业大学 混合动力尾坐式垂直起降长航时无人机
CN108382590A (zh) * 2018-02-24 2018-08-10 浙江天遁航空科技有限公司 复合翼无人机
US20200017228A1 (en) * 2018-07-16 2020-01-16 Ampaire, Inc. Parallel Hybrid Aircraft
US20200223537A1 (en) * 2019-01-16 2020-07-16 Bell Textron Inc. Tandem tiltrotor aircraft
US11091258B2 (en) * 2019-06-14 2021-08-17 Bell Textron Inc. VTOL aircraft with tilting rotors and tilting ducted fans

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020199A1 (en) * 2008-08-20 2010-02-25 Jiri Vycital Aircraft hybrid propulsion
US9527597B1 (en) * 2013-01-11 2016-12-27 Jaime Sada Unmanned aerial vehicle with twin-engine fore/AFT configuration and associated systems and methods
WO2015115913A1 (en) * 2014-01-30 2015-08-06 Global Aerial Platforms Limited Multipurpose aircraft
CN204568065U (zh) * 2015-02-02 2015-08-19 上海交通大学 长航时混合动力无人机
CN107089328A (zh) * 2017-03-15 2017-08-25 西北工业大学 混合动力尾坐式垂直起降长航时无人机及其飞行控制方法
CN109398705A (zh) * 2018-03-15 2019-03-01 吴大卫 一种货运飞机

Also Published As

Publication number Publication date
US11597514B2 (en) 2023-03-07
US20210047047A1 (en) 2021-02-18
WO2021030888A1 (en) 2021-02-25
EP4013681A4 (en) 2023-08-30
CN114555467A (zh) 2022-05-27
EP4013681A1 (en) 2022-06-22
BR112022001728A2 (pt) 2022-03-22

Similar Documents

Publication Publication Date Title
CN114555467B (zh) 具有降低的声音特征的无人飞行器
US11724801B2 (en) VTOL aircraft having fixed-wing and rotorcraft configurations
US11066161B2 (en) Electrically or hybrid powered multirotor aircraft with optimized energy consumption
CN108367803B (zh) 混合动力推进式垂直起降航空器
EP3216698B1 (en) Propulsion system for an aircraft
EP3853124A1 (en) Aircraft and modular propulsion unit
US9193451B2 (en) Aircraft using turbo-electric hybrid propulsion system for multi-mode operation
US9194285B2 (en) Hybrid drive and energy system for aircraft
US20130099065A1 (en) Tilt-wing aircraft
US20180362169A1 (en) Aircraft with electric and fuel engines
EP3892537B1 (en) Aircraft having hybrid propulsion
EP2412628B1 (en) Aerospace vehicle yaw generating tail section
CN103192981A (zh) 电动低噪短距起降连翼飞机
EP4143085A1 (en) Hybrid fixed vtol aircraft powered by heavy fuel engine
IL280432A (en) Air vehicle configuration
EP3746364A1 (en) Vtol aircraft
RU2529568C1 (ru) Криогенный электрический вертолет-самолет
EP4105124A1 (en) Series of convertible aircrafts capable of hovering and method for configuring a convertible aircraft capable of hovering
EP4105125B1 (en) Series of convertible aircrafts capable of hovering and method for configuring a convertible aircraft capable of hovering
CN115447786A (zh) 一种垂直起降多用途攻击运输一体化飞行器
CN118163943A (zh) 分布式混合动力垂直起降飞行器及其垂直起降控制方法
CN115723492A (zh) 一种陆空两用飞行汽车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant