CN114544744A - Rapid mercury measurement method - Google Patents
Rapid mercury measurement method Download PDFInfo
- Publication number
- CN114544744A CN114544744A CN202210138511.4A CN202210138511A CN114544744A CN 114544744 A CN114544744 A CN 114544744A CN 202210138511 A CN202210138511 A CN 202210138511A CN 114544744 A CN114544744 A CN 114544744A
- Authority
- CN
- China
- Prior art keywords
- mercury
- gas
- flue gas
- detection unit
- ion mobility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 229910052753 mercury Inorganic materials 0.000 title claims abstract description 70
- 238000000691 measurement method Methods 0.000 title abstract description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000003546 flue gas Substances 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 229910052737 gold Inorganic materials 0.000 claims abstract description 14
- 239000010931 gold Substances 0.000 claims abstract description 14
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000497 Amalgam Inorganic materials 0.000 claims abstract description 11
- 238000001871 ion mobility spectroscopy Methods 0.000 claims abstract description 11
- 239000002019 doping agent Substances 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 10
- 239000012159 carrier gas Substances 0.000 claims description 9
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 abstract description 2
- 150000001299 aldehydes Chemical class 0.000 abstract description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 abstract description 2
- 150000001412 amines Chemical class 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 150000002576 ketones Chemical class 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 239000012855 volatile organic compound Substances 0.000 abstract description 2
- 238000005070 sampling Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 238000004164 analytical calibration Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000002482 cold vapour atomic absorption spectrometry Methods 0.000 description 2
- 238000002530 cold vapour atomic fluorescence spectroscopy Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000004094 preconcentration Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Ion mobility spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
技术领域technical field
本发明属于环境领域,具体涉及一种汞的快速测量方法。The invention belongs to the field of environment, and in particular relates to a quick measurement method of mercury.
背景技术Background technique
原子吸收光谱(AAS)和冷蒸气原子吸收光谱(CV-AAS)是用于检测和测量环境样品中汞的主要技术。冷蒸气原子荧光光谱(CV-AFS)也广泛用于分析不同样品的汞含量,例如水、食品、鱼和海鲜、土壤和灰。然而,这些技术需要多步预浓缩和样品制备方法来实现复杂样品中痕量汞的测定。电感耦合等离子体质谱法(ICP-MS)作为一种快速方法,已越来越多地用于汞的检测和测量。但是ICP-MS对Hg的定量分析存在一定的正负偏差,并显示出记忆效应。Atomic absorption spectroscopy (AAS) and cold vapor atomic absorption spectroscopy (CV-AAS) are the main techniques used to detect and measure mercury in environmental samples. Cold Vapor Atomic Fluorescence Spectroscopy (CV-AFS) is also widely used to analyze mercury content in different samples such as water, food, fish and seafood, soil and ash. However, these techniques require multi-step preconcentration and sample preparation methods to achieve trace mercury determination in complex samples. Inductively coupled plasma mass spectrometry (ICP-MS) has been increasingly used as a fast method for the detection and measurement of mercury. However, there are certain positive and negative deviations in the quantitative analysis of Hg by ICP-MS, and it shows a memory effect.
离线测汞方法只能得到一段时间的平均值,不能及时观测到汞的污染情况,而且取样和分析的耗时很长,实现烟气汞的快速测量是非常有必要的。The offline mercury measurement method can only obtain the average value of a period of time, cannot observe the mercury pollution in time, and takes a long time for sampling and analysis. It is very necessary to realize the rapid measurement of flue gas mercury.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述不足,提供一种汞的快速测量方法,能够解决汞取样及测试的延时问题,最大限度地缩短取样及测试时间。The purpose of the present invention is to overcome the above deficiencies, and to provide a quick measurement method for mercury, which can solve the problem of delay in mercury sampling and testing, and minimize the sampling and testing time.
为了达到上述目的,一种汞的快速测量方法,包括以下步骤:In order to achieve the above-mentioned purpose, a kind of quick measurement method of mercury, comprises the following steps:
S1,利用金捕集烟气中的汞,汞与金形成金汞齐,实现烟气中不低于0.01μg/m3浓度的汞的分离和富集;S1, using gold to capture mercury in flue gas, mercury and gold form gold amalgam, to achieve separation and enrichment of mercury with a concentration of not less than 0.01 μg/m 3 in flue gas;
S2,对金汞齐加热至850~1000℃,释放富集的汞;S2, heating the gold amalgam to 850-1000°C to release the enriched mercury;
S3,通过载气将富集汞的气体送入离子迁移谱检测单元中,加入氯仿作为掺杂剂,将离子迁移谱检测单元调整为CD-IMS负模式,对烟气中的汞进行检测,得到汞的检测结果。S3, the mercury-enriched gas is sent into the ion mobility spectrometry detection unit through the carrier gas, chloroform is added as a dopant, the ion mobility spectrometry detection unit is adjusted to the CD-IMS negative mode, and the mercury in the flue gas is detected, Get mercury test results.
释放富集的汞时,对金汞齐加热0.1~1分钟。When the enriched mercury is released, the gold amalgam is heated for 0.1 to 1 minute.
通过载气将富集汞的气体送入离子迁移谱检测单元中,载气流量为0.1~2L/min。The mercury-enriched gas is sent into the ion mobility spectrometry detection unit through a carrier gas, and the flow rate of the carrier gas is 0.1-2 L/min.
离子迁移谱检测单元负模式时,漂移时间为7.55ms处的峰值是HgCl-,HgCl-峰相对于Cl-峰的相对漂移时间为1.52。In the negative mode of the ion mobility spectrometry detection unit, the peak at the drift time of 7.55ms is HgCl - , and the relative drift time of the HgCl - peak relative to the Cl - peak is 1.52.
漂移气体温度为160~180℃,漂移气体流速为50-1000mL/min。The drift gas temperature is 160-180°C, and the drift gas flow rate is 50-1000mL/min.
与现有技术相比,本发明通过入离子迁移谱检测单元作为基础,通入富集汞的气体进行检测,加入氯仿作为掺杂剂,能够实现汞的快速测量,避免了数据滞后性问题,为监测和控制汞污染提供科学依据;并且由于许多挥发性有机化合物,如醇、胺、醛、酮和烷烃在CD-IMS负模式下不会电离,因此这些化合物不会干扰Hg的检测。本发明借助金汞齐实现了烟气中复杂基体与待分析元素的有效分离,实现了烟气中低浓度汞的直接检测。Compared with the prior art, the present invention uses an ion mobility spectrometry detection unit as a basis, introduces mercury-enriched gas for detection, and adds chloroform as a dopant, which can realize the rapid measurement of mercury and avoid the problem of data hysteresis. Provide a scientific basis for monitoring and controlling mercury pollution; and since many volatile organic compounds such as alcohols, amines, aldehydes, ketones and alkanes do not ionize in CD-IMS negative mode, these compounds do not interfere with Hg detection. The invention realizes the effective separation of the complex matrix in the flue gas and the element to be analyzed by means of the gold amalgam, and realizes the direct detection of low-concentration mercury in the flue gas.
附图说明Description of drawings
图1为本发明的系统图;1 is a system diagram of the present invention;
其中,1、烟气取样探头,2、反吹系统,3、预处理系统,4、氧传感器,5、汞测量系统,6、校准系统,7、数据采集和传输系统。Among them, 1. Flue gas sampling probe, 2. Backflushing system, 3. Pretreatment system, 4. Oxygen sensor, 5. Mercury measurement system, 6. Calibration system, 7. Data acquisition and transmission system.
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings.
一种汞的快速测量方法,包括以下步骤:A method for rapid measurement of mercury, comprising the following steps:
S1,利用金捕集烟气中的汞,汞与金形成金汞齐,实现烟气中不低于0.01μg/m3浓度的汞的分离和富集;S1, using gold to capture mercury in flue gas, mercury and gold form gold amalgam, to achieve separation and enrichment of mercury with a concentration of not less than 0.01 μg/m 3 in flue gas;
S2,对金汞齐加热至850~1000℃,加热0.1~1分钟,释放富集的汞;S2, heating the gold amalgam to 850-1000°C for 0.1-1 minute to release the enriched mercury;
S3,通过载气将富集汞的气体送入离子迁移谱检测单元中,载气流量为0.1~2L/min,加入氯仿作为掺杂剂,将离子迁移谱检测单元调整为CD-IMS负模式对烟气中的汞进行检测,漂移时间为7.55ms处的峰值是HgCl-,HgCl-峰相对于Cl-峰的相对漂移时间为1.52。漂移气体温度为160~180℃,漂移气体流速为50-1000mL/min,得到汞的检测结果。S3, the mercury-enriched gas is sent into the ion mobility spectrometry detection unit through the carrier gas, the flow rate of the carrier gas is 0.1-2 L/min, chloroform is added as a dopant, and the ion mobility spectrometry detection unit is adjusted to the CD-IMS negative mode The mercury in the flue gas is detected, the peak value at the drift time of 7.55ms is HgCl - , and the relative drift time of the HgCl - peak relative to the Cl - peak is 1.52. The temperature of the drift gas is 160-180° C., and the flow rate of the drift gas is 50-1000 mL/min to obtain the detection result of mercury.
参见图1,一种汞的在线测量系统,其特征在于,包括烟气取样探头1,烟气取样探头1插入烟道中,烟气取样探头1连接预处理系统3,预处理系统3连接汞测量系统5,预处理系统3和汞测量系统5的连接管路上设置有氧传感器4,氧传感器4用于检测烟气中的氧气浓度,汞测量系统5连接数据采集和传输系统7,烟气取样探头1上设置有反吹系统2,解决探头的堵塞问题;反吹系统2也可用于仪表校正模块的接口。汞测量系统5和烟气取样探头1均连接校准系统6,校准系统6用于提供汞标准气体。可以将汞标准气体通入烟气取样探头1,对整个采样测试系统进行气密性测试、仪表标定等工作,确保分析系统测量数据的准确性。校准系统6也可以将汞标准气体送至汞测量系统5,直接用于汞分析仪的校准。Referring to Fig. 1, an on-line mercury measurement system is characterized in that it includes a flue gas sampling probe 1, the flue gas sampling probe 1 is inserted into the flue, the flue gas sampling probe 1 is connected to a
预处理系统3用于脱除烟气中粉尘及水;汞测量系统5用于对金汞齐加热至850~1000℃,释放富集的汞;通过载气将富集汞的气体送入离子迁移谱检测单元中,加入氯仿作为掺杂剂,将离子迁移谱检测单元调整为CD-IMS负模式对烟气中的汞进行检测,得到汞的检测结果。数据采集和传输系统7用于收集汞测量系统5的数据。数据采集和传输系统7用于汞测量系统5数据的采集和传输,可以采用通讯总线或无线传输,将数据实时传输到电脑或手机。The
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210138511.4A CN114544744B (en) | 2022-02-15 | 2022-02-15 | A rapid measurement method for mercury |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210138511.4A CN114544744B (en) | 2022-02-15 | 2022-02-15 | A rapid measurement method for mercury |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114544744A true CN114544744A (en) | 2022-05-27 |
CN114544744B CN114544744B (en) | 2024-11-26 |
Family
ID=81675878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210138511.4A Active CN114544744B (en) | 2022-02-15 | 2022-02-15 | A rapid measurement method for mercury |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114544744B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667518A (en) * | 2008-09-05 | 2010-03-10 | 中国科学院大连化学物理研究所 | Photoemission ionization source and application thereof in mass spectrometry or ion mobility spectrometry |
CN101713762A (en) * | 2008-10-07 | 2010-05-26 | 中国科学院大连化学物理研究所 | Method for identifying and detecting halogenated hydrocarbons |
CN103512945A (en) * | 2012-06-29 | 2014-01-15 | 中国科学院大连化学物理研究所 | Application of chlorinated hydrocarbon compound in detection of explosives through using ion mobility spectrometry |
CN103811265A (en) * | 2012-11-09 | 2014-05-21 | 中国科学院大连化学物理研究所 | Doping agent auxiliary ionization source and application thereof in ion mobility spectrometry |
CN103868979A (en) * | 2012-12-12 | 2014-06-18 | 中国科学院大连化学物理研究所 | Method for detecting sulfide with reducing property |
CN110864946A (en) * | 2019-11-13 | 2020-03-06 | 清华大学 | A device and method for measuring mercury content in flue gas |
-
2022
- 2022-02-15 CN CN202210138511.4A patent/CN114544744B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667518A (en) * | 2008-09-05 | 2010-03-10 | 中国科学院大连化学物理研究所 | Photoemission ionization source and application thereof in mass spectrometry or ion mobility spectrometry |
CN101713762A (en) * | 2008-10-07 | 2010-05-26 | 中国科学院大连化学物理研究所 | Method for identifying and detecting halogenated hydrocarbons |
CN103512945A (en) * | 2012-06-29 | 2014-01-15 | 中国科学院大连化学物理研究所 | Application of chlorinated hydrocarbon compound in detection of explosives through using ion mobility spectrometry |
CN103811265A (en) * | 2012-11-09 | 2014-05-21 | 中国科学院大连化学物理研究所 | Doping agent auxiliary ionization source and application thereof in ion mobility spectrometry |
CN103868979A (en) * | 2012-12-12 | 2014-06-18 | 中国科学院大连化学物理研究所 | Method for detecting sulfide with reducing property |
CN110864946A (en) * | 2019-11-13 | 2020-03-06 | 清华大学 | A device and method for measuring mercury content in flue gas |
Also Published As
Publication number | Publication date |
---|---|
CN114544744B (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement | |
CN104898719B (en) | Pollution sources VOC concentration and total emission volumn real-time monitoring system | |
CN206177876U (en) | Real -time on -line measuring pyrolysis product's sampling device | |
CN103645127A (en) | Back flushing type real-time online monitoring system for smoke pollutants | |
CN108007699A (en) | A kind of modular pollutant of vehicle exhaust on-board emission test platform | |
CN106198704B (en) | A kind of quantitative analysis method for ion mobility spectrometry | |
CN102879506A (en) | Automatic gas sampling device and using method thereof | |
CN113777210B (en) | Method for simultaneously detecting water-soluble anion and cation content in atmosphere-particulate matters by rapid solvent extraction-ion chromatography | |
CN105784918B (en) | One kind burning HRR in-situ measuring method and device | |
CN101329228B (en) | A peroxyacyl nitrate lipid sample injection system and detection method | |
CN108956529A (en) | For comparing the portable NH of monitoring3, HCl analysis system | |
CN109900773A (en) | A method for accurate and rapid analysis of air composition in submarines | |
Qian et al. | A pre-concentration system design for electronic nose via finite element method | |
Jianbo et al. | Determination of trace amounts of germanium by flow injection hydride generation atomic fluorescence spectrometry with on-line coprecipitation | |
CN205484244U (en) | Heat of combustion rate of release normal position measuring device | |
US7087434B2 (en) | Automatic portable formaldehyde analyzer | |
CN114544744B (en) | A rapid measurement method for mercury | |
CN110470798B (en) | A kind of portable electronic nose enrichment device temperature compensation method | |
CN211627463U (en) | Online thermal desorption gas circuit system | |
CN106501138A (en) | Detection method and sampling equipment of PM2.5 in exhaled breath | |
CN103134848A (en) | Qualitative and semi-quantitative analysis method for sample detection by ion mobility spectrometry | |
CN102192948B (en) | Method and device for sampling mass spectrum for in-situ nondestructive analysis | |
CN112114025B (en) | In natural gas4He abundance measurement system and measurement method | |
CN104076054A (en) | Method for rapidly detecting lead serving as heavy metal element in tobacco based on X-ray fluorescence | |
CN204302248U (en) | A kind of being suitable for is enclosed in the ion chromatography apparatus used in glove box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |